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The brain uses sensory feedback to correct behavioral errors. Larger
errors by definition require greater corrections, and many models of
learning assume that larger sensory feedback errors drive larger
motor changes. However, an alternative perspective is that larger
errors drive learning less effectively because such errors fall outside
the range of errors normally experienced and are therefore unlikely
to reflect accurate feedback. This is especially crucial in vocal control
because auditory feedback can be contaminated by environmental
noise or sensory processing errors. A successful control strategymust
therefore rely on feedback to correct errors while disregarding
aberrant auditory signals that would lead to maladaptive vocal
corrections. We hypothesized that these constraints result in com-
pensation that is greatest for smaller imposed errors and least for
larger errors. To test this hypothesis, we manipulated the pitch of
auditory feedback in singing Bengalese finches. We found that
learning driven by larger sensory errors was both slower than that
resulting from smaller errors and showed less complete compensa-
tion for the imposed error. Additionally, we found that a simple
principle could account for these data: the amount of compensation
was proportional to the overlap between the baseline distribution of
pitch production and the distribution experienced during the shift.
Correspondingly, the fraction of compensation approached zero
when pitch was shifted outside of the song’s baseline pitch distribu-
tion. Our data demonstrate that sensory errors drive learning best
when they fall within the range of production variability, suggesting
that learning is constrained by the statistics of sensorimotor
experience.
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Error correction based on sensory feedback is a ubiquitous
mechanism for maintaining behavioral performance (1–4).

However, sensory information is vulnerable to environmental
noise and to errors in sensory encoding arising at the periphery or
during central processing of the sensory signal (5). Such con-
tamination can result in large mismatches between the actual and
expected sensory feedback that do not necessarily reflect errors in
performance. The brain must therefore decide whether to modify
behavior based on sensory feedback (and risk “adapting” to sig-
nals that do not accurately reflect performance) or ignore sensory
input (and risk leaving errors uncorrected). This problem is es-
pecially important in vocal behaviors, in which performance can
have significant consequences for the success of an organism and
auditory feedback is vulnerable to extrinsic acoustic signals and
errors in auditory encoding.
During development, both humans and songbirds learn by

processes of vocal imitation that rely heavily on auditory feedback
(2). Early vocalizations bear little resemblance to mature song or
speech, resulting in large differences (errors) between experienced
auditory feedback and the sensory goal.With practice, vocalizations
become more similar to the “target,” reducing the size of the error.
Based on these data, models of error correction often assume that
the change in the motor program will be larger when the error in
auditory feedback is larger, as shown in Fig. 1A.
In contrast, some studies of arm and eye movements have shown

that as the size of an experimentally induced sensory error increases,
the size of the behavioral response approaches an asymptote (3) or

begins to decline (4, 6). Furthermore, when the magnitude of an
auditory perturbation is gradually increased across a single training
session, vocal compensation by human subjects can plateau or begin
to decrease (7, 8), suggesting that larger errors are less effective at
driving learning. Together with studies showing that a succession of
small sensory perturbations is more effective at driving learning
than a single large step (1, 9, 10), these experiments suggest that,
contrary to the model in Fig. 1A, vocal adaptation may be better
driven by smaller errors.
We exploited a learning paradigm in songbirds to investigate the

computational rules underlying vocal error correction. We hypoth-
esized that contrary to the model shown in Fig. 1A, larger auditory
errors lead to smaller changes in vocal behavior. Adult Bengalese
finches were fitted with miniaturized headphones (Fig. 1B) and
online pitch perturbations were used to drive adaptive changes in
vocal output.We examined the relationship between auditory errors
and motor learning by varying the magnitude of the pitch shift and
quantifying differences in the resulting changes in song.

Methods
We used online perturbations of the pitch of auditory feedback to generate
adaptive changes in the pitch of song. All procedures were approved by the
University of California, San Francisco Institutional Animal Care and Use
Committee. As described previously (1), lightweight headphones (Fig. 1B)
were fit to each bird and online sound-processing hardware was used to shift
the pitch of acoustic signals, which were then played back through the
headphone speakers with a delay of 7–10 ms. After a baseline period (3–7 d)
of singing with zero pitch shift, the pitch of auditory feedback was shifted
upward or downward. Each experiment used a single shift size, and shift sizes
were varied among eight values (±50, ±100, ±150, and ±300 cents, see be-
low). In all cases, the pitch shift was constant in magnitude throughout the
shift epoch. Therefore, changes in the vocal pitch in the direction opposite
the feedback shift resulted in the bird receiving auditory feedback more
similar to the pitch of baseline song (e.g., Fig. 2A, dashed red line).

Individual adult male Bengalese finches (>190 d of age; n = 6) participated
in multiple experiments with different shift sizes. The order of presentation
of different shift sizes was varied pseudorandomly within each bird. Fol-
lowing 14- to 17-d exposure to each pitch shift, birds sang for at least 7 d with
zero shift (still wearing the headphones apparatus) and then for at least 25 d
without headphones before beginning the next experiment. Data from ex-
periments using ±100-cent shifts have been presented previously (1).

Acoustic Analysis. We quantified the average change in the pitch of song as
a function of time bymeasuring changes in pitch at particular times (“spectral
frames”) within individual song syllables (1). Individual birds produced
a median of four (range, three to nine) syllables with quantifiable pitch.
Individual iterations of each syllable were identified by visual inspection of
song spectrograms. Pitch was quantified for all songs produced in a 2-h
window between 10:00 AM and 12:00 PM. Birds sang many iterations of
each syllable in their repertoire, producing a median of 528 (range, 31–1489)
iterations of syllables with quantifiable pitch in each 2-h window. To mea-
sure the fractional change in the pitch of each syllable iteration relative to
that syllable’s baseline pitch, we converted pitch measurements (in hertz)
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obtained throughout each experiment (i.e., from both the baseline and shift
epochs) into units of cents as follows:

p= 1; 200 log2
hx

b
;

where p is the change in pitch (in cents) of the syllable during the selected
spectral frame, hx is the pitch (in hertz) of the syllable during the selected
spectral frame, and b is the average pitch of the syllable being analyzed (in
hertz) during the baseline epoch. Note that 100 cents is the same pitch in-
terval as a semitone, corresponding to a ∼6% change in absolute frequency.
Note also that the change in frequency (in hertz) resulting from a given pitch
shift (in cents) will depend on the frequency of the song syllable being shif-
ted. In our dataset, the average frequency shifts (in hertz) for 50-, 100-, 150-,
and 300-cent pitch shifts were 92.9, 215.9, 306.8, and 536.2 Hz, respectively.

To quantify the dynamics of learning and the fraction of error compen-
sation at equilibrium, we fit the behavioral data with a simple exponential
model as follows:

p
�
t
�
= −cE

�
1− e−t=τ

�
; [1]

where p(t) is the change in the mean pitch of song on postshift day t and E is
the experimentally imposed sensory (pitch) error. Free parameters c and τ

describe the fraction of the imposed error that is corrected at equilibrium
and the time constant of learning, respectively. This model was fit to group
data in which each iteration of each syllable contributed a single data point.
Furthermore, we fit the data with an alternate model in which the learning
at equilibrium was quantified in units of cents, rather than as a fraction of
the imposed pitch error:

p
�
t
�
= a

�
1− e−t=τ

�
: ½1′�

Here, free parameter a describes the equilibrium level of pitch correction
(in cents). All other model parameters and fitting procedures for Eq. 1′ are
the same as those described for Eq. 1.

Overlap Calculations. Our analysis considers the relationship between model
parameter c and the overlap between the bird’s baseline distribution of
pitches and the pitches experienced just after a pitch shift before any
adaptive vocal changes occur. This overlap was calculated according to the
following equation:

Z
rðxÞrðx +ΔÞdxZ

rðxÞ2dx
;

where r(x) is the probability density function of pitches in the baseline
condition and Δ is the applied pitch shift.

Permutation Tests for Significant Differences in c and τ. To test the hypothesis
that the value of c or τ differed between shift sizes, we used a permutation
test (11) against the null hypothesis that the tested parameter was equal in
the two conditions. For example, to test the hypothesis that c differs be-
tween 50- and 100-cent shift sizes, we tested against the null hypothesis
H0: c50 = c100, where c50 is the value of c in the 50-cent shift condition and
c100 is the value of c in the 100-cent condition. This test is derived from the
following generalization of Eq. 1:

p
�
t;n

�
= − cn En

�
1− e−t=τn

�
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

Φ

:

Here, p(t,n) represents the change in the mean pitch of song on postshift
day t for shift size n. This equation can be rewritten using the function δn=k,
which equals 1 if the pitch value pwas collected during exposure to shift size
k and zero otherwise:

Fig. 1. (A) Schematic illustrating the hypothesis that, during vocal learning,
auditory feedback is compared with a sensory target, and any mismatch
(“Error”) is used to drive modifications of the vocal motor system. (B) Pho-
tograph showing headphones used to deliver manipulated auditory feed-
back in real time, as described previously (1).
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Fig. 2. Relationship between the size of sensory errors and vocal error correction. (A) Data from four separate experiments in which the same Bengalese
finch experienced downward shifts in auditory feedback of four different magnitudes (−50, −100, −150, and −300 cents). The gray boxes indicate the 14 d
during which the pitch shift was applied, and the solid lines show change in the mean pitch of song as a function of time (Methods). The solid lines indicate
the median value of the (nonnormal) pitch distribution, and the error bars show the distributions’ 40th and 60th percentiles. The dashed lines in each plot
indicate the pitch of auditory feedback played through the headphones (equal to the pitch of the song produced by the bird minus the appropriate
downward pitch shift; note discontinuity on vertical axes). (B) Combined data from all experiments oriented so that adaptive changes are positive. The solid
lines indicate median values, and the error bars show only the 60th percentile for visual clarity. Inset indicates the number of experiments for each shift size.
The asterisk indicates the first day on which data differ significantly across the four shift size conditions (P < 0.05, Kruskal–Wallis test). Color conventions are
as in A.

21100 | www.pnas.org/cgi/doi/10.1073/pnas.1213622109 Sober and Brainard

www.pnas.org/cgi/doi/10.1073/pnas.1213622109


pðt;nÞ= − ½c1δn=1 + c2δn=2�Φ: [2]

According to the null hypothesis of H0: c50 = c100, the model will produce
the same predictions if c50 and c100 are randomly interchanged across trials.
This manipulation is implemented by permuting (randomly resorting) the
values of n shown explicitly in Eq. 2, leaving the values of Φ unpermuted. To
perform the permutation test, we created 1,000 artificial datasets in this
manner, fit the model to each dataset, and computed the resulting R2. If the
R2 value for the true dataset is greater than the 95th percentile of artificial
R2 values, then H0 can be rejected. Null hypotheses for different pairs of shift
sizes (e.g., H′0: c50 = c150) and for parameter τ (e.g., H″0: τ50 = τ100) were
tested in a similar fashion.

Results
Shifting the pitch of auditory feedback consistently led to com-
pensatory changes in the pitch of song, as shown for a represen-
tative bird in Fig. 2A. In all but one case, vocal changes induced by
feedback shifts were confined to shifts in pitch, as reported pre-
viously (1). In one experiment (of 19 total) involving a +300-cent
shift, we observed dramatic changes in syllable structure that
made it difficult to measure the pitch of the syllable and bore
a strong resemblance to spectral changes that precede song deg-
radation in zebra finches (12). We therefore excluded data from
this experiment from further analysis.
Comparing data from experiments involving different shift sizes

revealed inverse relationships between pitch shift magnitude and
both the speed and completeness of learning. First, as the size of
the imposed pitch shift increased, the absolute pitch of song
changed more slowly. As shown in data from four experiments in
a single bird (Fig. 2A) and in data combined across all birds (Fig.
2B), smaller changes in the pitch of auditory feedback led to larger
changes in the pitch of song in the first few days after pitch shifts
began. As early as 24 h after the beginning of the feedback shift
(Fig. 2B, asterisk), group data from the four shift size conditions
differed significantly (P < 0.05, Kruskal–Wallis test).
Second, as size of the pitch shift increased, the fraction of error

compensated at equilibrium decreased. For example, at the end of
the shift epoch the adaptive change in the pitch of song in response
to a 50-cent shift (Fig. 2B, red) was ∼30 cents, showing that birds
compensated for ∼60% (30 of 50) of the imposed sensory error.
Increasing the size of the pitch shift to 100 cents (Fig. 2B, blue) led
to a mean adaptive change of ∼40 cents, corresponding to 40%
compensation for the larger error. For 150- and 300-cent shifts, the
fraction of compensation at the end of the shift epoch similarly
decreased with shift size. Such incomplete learning could result
from the bird’s relying in part on nonauditory inputs such as pro-
prioceptive feedback or the output of an internal model used to

predict sensory feedback (13–15). Furthermore, note that prior
studies have demonstrated that Bengalese finches are able to
produce changes in vocal pitches of 150 cents or greater (1, 10). It is
therefore unlikely that the plateau in vocal learning shown in Fig.
2B reflects any mechanical constraint limiting pitch changes.
To allow quantitative comparisons of the time course of learning

across shift sizes (even in cases in which learning may not have
reached equilibrium by the end of the shift epoch), we fit our data
with an exponential model of learning (Methods). The solid lines in
Fig. 3A show group data plotted as the fraction of the total error
compensated (rather than the absolute change in the pitch of song
as in Fig. 2B), and the dashed lines show model fits for each shift
size. Fit values of c show that as the size of sensory errors increases,
the fraction of error correction decreases monotonically (Fig. 3B).
As shown in Fig. 3C, the time constant of learning increased
monotonically with shift size across shift magnitudes of 50, 100,
and 150 cents. When fit to the 300-cent data, the model did
not converge on a value of τ, presumably because the adaptive
change being modeled was similar in magnitude to the day-to-
day pitch fluctuations that occur even in the absence of experi-
mental manipulations (1).
Fitting this model also allowed us to determine the statistical

significance of behavioral changes in individual experiments and
compare the dynamics of learning across shift sizes. In all but one
experiment (which used a −300-cent shift), the fit value of c was
significantly different from zero, indicating a significant adaptive
change in the pitch of song. Therefore, as previously reported for
±100 cent shifts (1), ±50- and ±150-cent shifts reliably drive
adaptive changes in song, and ±300-cent shifts do so in some
cases. Permutation tests (Methods) were used to assess the sig-
nificance of differences in the fit values of c and τ. All pairwise
differences in c were significant (P < 0.03 in all cases) except for
the difference between values fit to the 100- and 150-cent datasets
(P = 0.34), as were all pairwise differences in τ between the 50-,
100-, and 150-cent datasets (P < 0.001 in all cases).
Furthermore, our data suggest that the fraction of error cor-

rection is limited by the statistics of birds’ prior sensorimotor
experience. We observed that the fit value of c approaches zero
when the pitch shift becomes sufficiently large (±300 cents) that
the distribution of pitches heard by the bird no longer overlaps
with the baseline (preshift) distribution. Fig. 4A shows the base-
line distribution of pitches (black lines) and the same distribution
translated by each shift size (colored lines). As the shift magni-
tude increases across experiments from ±50 to ±300 cents, the
overlap between the distributions decreases. We computed the
normalized overlap between the baseline and shifted distributions

0 7 14
0

50

100

Day #

P
itc

h 
ch

an
ge

 fr
om

 b
as

el
in

e
(%

 c
om

pe
ns

at
io

n)

50 100 150 300
0

10

20

30

τ  
(d

ay
s)

Shift size (cents)
50 100 150 300

0

50

100

Shift size (cents)

c
(fi

t %
 c

om
pe

ns
as

tio
n)

A CB

(dnc)

Fig. 3. Inverse relationship between pitch shift magnitude and the completeness of error correction and results of model fitting. (A) Group data (median
values), plotted in units of the percentage of the sensory error compensated (rather than absolute change in pitch). Other conventions are as in Fig. 2B. (B) Fit
value of free parameter c, which quantifies the fraction of the sensory error compensated when learning has reached equilibrium. Permutation tests
(Methods) revealed that all pairwise differences in c were significant (P < 0.03 in all cases) except for the difference between values fit to the 100- and 150-
cent datasets (P = 0.34). (C) Fit values of free parameter τ, the time constant of learning. The model did not converge (dnc) on a value of τ for the 300-cent
shift data (see text). All pairwise differences in τ between the 50-, 100-, and 150-cent datasets were significant (P < 0.001 in all cases). Error bars in B and C
represent 95% confidence intervals and are obscured by symbols in some cases.
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(Methods, Overlap calculations). Fig. 4B plots overlap against the
fit value of c for each shift size, showing that both values decrease
with increasing shift magnitude and approach zero together.
To askwhether variability in overlap could predict variability in c,

we fit Eq. 1 to data from each experiment, rather than combining
data across birdswithin shift sizes, as in our other analyses.Wewere
able to fit c to data from 13 of 18 experiments. In the other five
experiments, the model did not converge on a value of c due to the
day-to-day variability of the pitch data, which is substantially
greater in data drawn from a single experiment compared with data
combined across experiments using the same shift size (1). Cases in
which the model did not converge on a value of c appeared in 100-
cent (two cases), 150-cent (two cases), and 300-cent (one case) shift
experiments and could represent either the greatest or smallest
degree of learning (as measured by the change in song pitch on the
last shift day) within each shift size. As shown in Fig. 4C, we found
a significant correlation between overlap and the fit value of c (P =
0.002; note that the significance of this regression is due primarily to
differences across shift sizes, rather than experiment-by-experi-
ment variability within each shift size). The slope and intercept of
this regression (Fig. 4C, dotted line) were not significantly different
from unity and zero, respectively. As described below, this re-
lationship between overlap and the extent of error correction
suggests a simple strategy bywhich songbirds rely on the statistics of
prior vocal motor experience to constrain sensorimotor learning.
Additionally, we fit our data with an alternate model (Eq. 1′) in

which we quantified the absolute size of the error correction at
equilibrium (in cents) rather than the fraction of the total imposed
pitch error corrected at equilibrium, as in our primary analysis. Fit
values of free parameter a in Eq. 1′ for 50-, 100-, 150-, and 300-cent
shifts were 30.4, 39.5, 49.5, and 4.7 cents, respectively, and all
pairwise differences were significant at P < 0.05 except for that
between the 100- and 150-cent conditions. This nonmonotonic
relationship between pitch shift size and absolute change in vocal

pitch suggests a trade-off between the robustness of error correc-
tion (which decreases with error size) and the size of the sensory
error itself, consistent with the primary analysis presented above.

Discussion
Our results demonstrate an inverse relationship between the
magnitude of the pitch shift and both the completeness and speed
of vocal error correction. Varying the shift size revealed that as the
magnitude of auditory errors increases from ±50 cents to ±300
cents, the fraction of errors corrected when learning has reached
equilibrium (c) (Fig. 3B) decreases and the time constant of
learning (τ) (Fig. 3C) increases. Furthermore, the fraction of error
correction (c) approaches zero when auditory errors become large
enough to shift the distribution of pitches heard by the bird outside
of the baseline distribution of pitches (Fig. 4).
Our results suggest a simple principle that predicts the extent to

which auditory errors drive vocal learning. As shown in Fig. 4, the
fraction of compensation approaches zero when (in the 300-cent
shift experiments) sensory errors are large enough so that the
distribution of pitch in themanipulated auditory feedback does not
overlap with the baseline distribution of pitch. Such a finding
suggests that learning in response to a sensory error is limited by
the probability that the sensory signal could have come from the
distribution of signals accumulated over past experience. This
strategy represents a simple and robust solution to the problem of
how much to rely on the inherently unreliable sensory signals
needed to calibrate behavior (6) because it uses the statistics of the
bird’s sensorimotor experience to determine whether to correct an
apparent behavioral error.
Limiting learning in response to large sensory errors appears to

be a principle common to many forms of complex behavior, sug-
gesting that other systems might similarly constrain learning based
on the expected distribution of sensory feedback. The inverse re-
lationship between pitch error size and vocal learning reported
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here parallels similar findings in the response of the human arm
movement system to visual (6) and force (3) perturbations and of
the primate oculomotor system to visual errors during saccades (4).
Similarly, in response to brief (200-500 ms) pitch perturbations
during ongoing speech, transient compensatory vocal changes in
human subjects occur on fewer trials (16) and correct a smaller
fraction of the imposed error (17) for larger perturbations. Further
analysis of these data from humans and nonhuman primates might
reveal that theobserved inverse relationships between error size and
learning in fact reflect limitations imposed on learning based on the
range of baseline feedback rather then on absolute error size per se.
Additionally, our results indicate that the vocal error correction

model shown in Fig. 1A requires modification. Although future
experiments will be needed to fully clarify the algorithm underlying
vocal error correction in adulthood, at least two plausible (and
nonexclusive)models could explain our findings. First, the reduced
speed and completeness of learning in response to larger errors
might reflect a change in multisensory integration. Psychophysical
studies of human motor control have shown that when integrating
sensory signals, subjects can flexibly weight sensory inputs (18, 19)
and that such weighting appears to be based on the variability of
the available sensory signals, as predicted by theories of optimal
motor control (20). Such a flexible weighting strategy might ac-
count for the inverse relationship between the size of sensory pitch
shifts and themagnitude of the behavioral responses. That is, when
experiencing large errors, songbirds might reduce their reliance on
auditory information and increase their reliance on proprioceptive
signals (13, 14) or internal models ofmotor output (15) to estimate
vocal pitch. The resulting integrated estimate might then be com-
pared with an internal target to generate an error signal. Such
a reweighting strategymight reflect an estimate that larger auditory
errors reflect unreliable auditory signals (rather thanmotor errors)
and are therefore less relevant to motor performance (6).
A second possibility is that the inverse relationship between pitch

shift magnitude and learning reflects a reinforcement-based mech-
anism (21–23) in which plasticity is driven by the occurrence of
“successful” trials rather than the magnitude of experienced errors.
Internal reinforcement signalsmight reward trials in which the pitch
of experienced auditory feedback falls within some acceptable
range.Because the range of acceptablepitcheswould presumably be
similar to the baseline pitch distribution (Fig. 4A, black), smaller
pitch shifts would result in more reinforcement, as reflected by
the larger amount of overlap between the baseline and shifted (Fig.
4A, red) distributions. Conversely, larger shifts might lead to less

learning because the small amount of overlap between distributions
(as in Fig. 4A, Right) results in less reinforcement. This account of
our results is consistent with recent studies that use white noise-
based negative reinforcement signals to drive adaptive changes in
pitch (10, 24). These studies show that when a subset of pitches is
punished by an aversivewhite noise stimulus, songbirds change their
pitch distribution to avoid white noise. The common principle uni-
fying these two sets of results might therefore be that birds will only
adjust their vocal output when their current rangeofmotor variation
sometimes results in “successful” outcomes. In the present study,
a successful outcome would be one in which auditory feedback falls
within the bird’s baseline pitch distribution. In white noise experi-
ments, a successful outcome would be an escape from negative re-
inforcement. Indeed, experimental conditions in which no trials are
successful (very largepitch shifts inour studyorpreviously published
experiments in which white noise is provided on every trial) produce
zero or near-zero learning (10, 24). Therefore, despite the meth-
odological differences between shifting the pitch of feedback and
differentially reinforcing some syllable variants with white noise, we
believe that learning in both paradigms can be explained by birds
evaluating the relative value of a range of vocal pitches.
Our results show that the adult song system corrects small errors

more rapidly and robustly than large errors. This relationship is
somewhat surprising given that song acquisition in juvenile birds is
characterized by initially very large errors in vocal production, which
are minimized during the dramatic changes to vocal output over
a ∼6-wk-long period of sensorimotor learning. Although the mech-
anisms governing juvenile song acquisition and adult error correction
might be distinct, it is possible that they rely on the same underlying
computation. Although the absolute size of errors in young birds is
very large, so is the variability of song itself (25–29). Constraining
learning based on variability (Fig. 4) might therefore both allow the
large changes necessary during song acquisition (when both error
size and behavioral variability are high) and also provide the stability
required during adult song maintenance (when both error size and
behavioral variability are low). Our studies suggest that, for error
correction in juvenile songbirds, and more broadly for error correc-
tion in other complex behaviors, the statistics of prior experience
constrain the capacity for learning and adaptation.
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