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Fundamental relationships between the thermodynamics and ki-
netics of protein folding were investigated using chain models of
natural proteins with diverse folding rates by extensive compar-
isons between the distribution of conformations in thermodynamic
equilibrium and the distribution of conformations sampled along
folding trajectories. Consistent with theory and single-molecule
experiment, duration of the folding transition paths exhibits only
a weak correlation with overall folding time. Conformational dis-
tributions of folding trajectories near the overall thermodynamic
folding/unfolding barrier show significant deviations from preequi-
librium. These deviations, the distribution of transition path times,
and the variation of mean transition path time for different proteins
can all be rationalized by a diffusive process that we modeled using
simple Monte Carlo algorithms with an effective coordinate-in-
dependent diffusion coefficient. Conformations in the initial stages
of transition paths tend to form more nonlocal contacts than typical
conformations with the same number of native contacts. This
statistical bias, which is indicative of preferred folding pathways,
should be amenable to future single-molecule measurements. We
found that the preexponential factor defined in the transition state
theory of folding varies from protein to protein and that this
variation can be rationalized by our Monte Carlo diffusion model.
Thus, protein folding physics is different in certain fundamental
respects from the physics envisioned by a simple transition-state
picture. Nonetheless, transition state theory can be a useful ap-
proximate predictor of cooperative folding speed, because the
height of the overall folding barrier is apparently a proxy for
related rate-determining physical properties.

Protein folding is an intriguing phenomenon at the interface of
physics and biology. In the early days of folding kinetics

studies, folding was formulated almost exclusively in terms of
mass-action rate equations connecting the folded, unfolded, and
possibly, one or a few intermediate states (1, 2). With the advent
of site-directed mutagenesis, the concept of free energy barriers
from transition state theory (TST) (3) was introduced to in-
terpret mutational data (4), and subsequently, it was adopted for
the Φ-value analysis (5). Since the 1990s, the availability of more
detailed experimental data (6), in conjunction with computa-
tional development of coarse-grained chain models, has led to an
energy landscape picture of folding (7–15). This perspective
emphasizes the diversity of microscopic folding trajectories, and
it conceptualizes folding as a diffusive process (16–25) akin to
the theory of Kramers (26).
For two-state-like folding, the transition path (TP), i.e., the

sequence of kinetic events that leads directly from the unfolded
state to the folded state (27, 28), constitutes only a tiny fraction
of a folding trajectory that spends most of the time diffusing,
seemingly unproductively, in the vicinity of the free energy
minimum of the unfolded state. The development of ultrafast
laser spectroscopy (29, 30) and single-molecule (27, 28, 31)
techniques have made it possible to establish upper bounds on
the transition path time (tTP) ranging from <200 and <10 μs by
earlier (27) and more recent (28), respectively, direct single-
molecule FRET to <2 μs (30) by bulk relaxation measurements.
Consistent with these observations, recent extensive atomic
simulations have also provided estimated tTP values of the order

of ∼1 μs (32, 33). These advances offer exciting prospects of
characterizing the productive events along folding TPs.
It is timely, therefore, to further the theoretical investigation

of TP-related questions (19). To this end, we used coarse-grained
Cα models (14) to perform extensive simulations of the folding
trajectories of small proteins with 56- to 86-aa residues. These
tractable models are useful, because despite significant prog-
ress, current atomic models cannot provide the same degree of
sampling coverage for proteins of comparable sizes (32, 33). In
addition to structural insights, this study provides previously
unexplored vantage points to compare the diffusion and TST
pictures of folding. Deviations of folding behaviors from TST
predictions are not unexpected, because TST is mostly applicable
to simple gas reactions; however, the nature and extent of the
deviations have not been much explored. Our explicit-chain
simulation data conform well to the diffusion picture but not as
well to TST. In particular, the preexponential factors of the
simulated folding rates exhibit a small but appreciable variation
that depends on native topology. These findings and others
reported below underscore the importance of single-molecule
measurements (13, 27, 28, 31, 34, 35) in assessing the merits of
proposed scenarios and organizing principles of folding (7–25,
36, 37).

Results
Our approach is outlined in Methods; additional details are
provided in SI Text. Coarse-grained models (14, 38) were used
for explicit-chain simulations. Like before (39, 40), the fractional
number of native contacts, Q, was used as a progress variable
(41). Extensive statistics on folding path (FP), first passage time
(FPT), TP, and tTP (Fig. 1) were collected for eight model pro-
teins (Table S1). To assess the diffusion picture of folding (16–
25), we compared the explicit-chain simulation results with the
results from a simple 1D nonexplicit-chain Monte Carlo (MC)
process with an effective constant diffusion coefficient D0. The
MC simulations do not address structural questions but are
important for conceptual understanding of the distributions
of FPT and tTP values. In general, diffusion coefficients for
folding are Q-dependent (20, 22), and formulations are avail-
able for computing D(Q) from chain simulation data (22, 42).
Here, we find it enlightening to use an even simpler diffusion
picture, which is exemplified by other simple diffusion models
of folding (21, 43, 44). Additional exposition of our rationale is
provided in SI Text.
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Statistics of Folding Trajectories Are Better Described by Conformational
Diffusion than the TST Picture. TST envisions a preequilibrium in
which the reactant states follow a Boltzmann distribution (3). In
protein folding, it is often assumed that a preequilibrium is achieved
by the folding trajectories in stopped-flow experiments (5). We test
this idea (Fig. S1A) by comparing the thermodynamic free energy
profile with kinetic (nonequilibrium) profiles (Fig. 2A) constructed
from N folding trajectories labeled by i. Let ðFPTÞi be the FPT
and tiðQÞ be the time that the protein resides at Q in trajectory i.
We computed two distributions, PFPðQÞ≡P

itiðQÞ=PiðFPTÞi and
PFPjsðQÞ≡ ½PitiðQÞ=ðFPTÞi�=N. PFPðQÞ is proportional to the to-
tal residence time at Q for an ensemble of trajectories, resulting in
more weights for longer trajectories, whereas PFPjsðQÞ gives equal
weight to every trajectory. In principle, PFPðQÞ can be determined
experimentally by ensemble measurements, whereas PFPjsðQÞ
requires single-molecule measurements.
If preequilibrium holds, the equilibrium and kinetic distribu-

tions should be identical for the unfolded conformations. Thus,
their profiles should coincide in the unfolded region after vertical
shifts are made to account for the differences in normalization
[i.e., −ln  PFPðQÞ should overlap with −ln  PeqðQÞ+ c for Q≤Q‡]
(Fig. S1A). For our model 2CI2 (Fig. 2A), the two profiles
overlap for an extended region in the unfolded basin, but there
are significant deviations near the equilibrium free energy barrier
at Q‡ ≈ 0:7. (A similar comparison for unfolding is given in Fig.
S1B.) In Fig. 2A, the single-molecule profile (thin red curve) is
lower than the ensemble kinetic profile (thin blue curve) for
Q> 0:4, indicating that longer trajectories spend proportionally
less time in these Q values. The same trend is observed for other
model proteins (Fig. S1C). The preequilibrium idea assumes that
the variation of residence time relative to the mean residence
time in every Q≤Q‡ is equal to the variation of FPT relative to
the mean FPT (MFPT). In contrast, our explicit-chain model
results in Fig. 2A show that, proportionally, the variation of
residence time in the barrier region is narrower than the varia-
tion of the FPT.
However, these behaviors are well-accounted for by a diffusive

process: our nonexplicit-chainMC simulations (thick red and blue
curves in Fig. 2A) reproduce the essentials of the explicit-chain
kinetic profiles; the MC and explicit-chain MFPTs also correlate
well (Fig. S2A andB andTable S2). Topursue thediffusion picture
further, we compare the MC-simulated PFPðQÞ with the analytical
prediction from the Smoluchowski equation (Eq. 1):

∂t pðQ;  tÞ= ∂Q
�
DðQÞexp½−βGðQÞ�∂ Qfexp½βGðQÞ�pðQ;  tÞg�; [1]

where p(Q, t) is the probability density of Q at time t; β= 1=kBT,
where kB is the Boltzmann constant and T is absolute tempera-
ture; D(Q) and G(Q) are the Q-dependent diffusion coefficient
and free energy, respectively; ∂t ≡∂=∂t; and ∂Q ≡∂=∂Q. The quan-
tity corresponding to PFPðQÞ is (Eq. 2)

½PFPðQÞ�D ≡
Z∞

0

pðQ; tÞdt

= e−βGðQÞ

2
64θðQ−QDÞ

ZQN

Q

dQ′ eβGðQ′Þ=D�
Q′

�

+ θðQD −QÞ
ZQN

QD

dQ′ eβGðQ′Þ=D�
Q′

�
3
75

[2]

for an initial distribution of δðQ−QDÞ at t = 0, with QN being a
perfect absorber (16). θ is the Heaviside function. Applying Eq. 2 to
discrete Q values (in incremental units of δQ) (Methods) for
βGðQÞ= − ln  PeqðQÞ and assuming a Q-independent D0 yields
(Eq. 3)

½PFPðQÞ�D0 =

8>>><
>>>:

�
PeqðQÞ=D0

� PQN

Q′=Q
Peq

�
Q′

�−1 for Q>QD

�
PeqðQÞ=D0

� PQN

Q′=QD

Peq
�
Q′

�−1 for Q≤QD;

[3]

Fig. 2A shows that this analytical profile (green curve) essentially
coincides with the profile obtained from our MC simulation
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Fig. 1. FPT and tTP illustrated using model 2CI2 simulated at the transition
midpoint. (A) The TP (red trace) is the last part of an example folding tra-
jectory (FP, black trace plus red trace) with an FPT ≈ 2.7 × 107. The rest of the
equilibrium fluctuation is shown in gray. (B) The TP in A plotted in an ex-
panded horizontal scale shows that the model protein makes a transition
from QD = 0.122 to QN = 1 during a tTP ≈ 4.6 × 104.
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Fig. 2. FPT and tTP distributions. (A) Thermodynamic and kinetic FP profiles
for model 2CI2. The simulated equilibrium free energy profile −lnPeq(Q) + c
(where c is a vertical shift; in the text) and the kinetic −lnPFP(Q) and
−lnPFPjs(Q) profiles are shown, respectively, by the black curve and the thin
blue and red curves (c = −0.30). The corresponding nonexplicit-chain
−lnPFP(Q) and −lnPFPjs(Q) profiles obtained by MC simulations with an ef-
fective constant D0 are shown by the thick blue and red curves (results from
the Metropolis and Kawasaki algorithms are nearly identical). As expected,
the thick blue curve coincides with the analytically derived −lnPFP(Q) profile
for constant diffusive coefficient D0 (green curve). (B) Scatter plots of the
explicit-chain simulated ‹tTP› (in units of Langevin time steps) with (i) the
nonexplicit-chain MC simulated ‹tTP›D0 by assuming a constant D0 (red data
points; top horizontal scale) (Fig. S2C; in units defined in the caption for
Table S2) and (ii) a quantity in the Szabo formula quoted in ref. 27 (black
data points; bottom horizontal scale) for the eight proteins studied, where
ΔG‡ is the thermodynamic free energy barrier in the explicit-chain model
(Table S2). The red and black lines are the least-squares fits, with r = 0.94
and r = 0.78, respectively, for the data points plotted in the same color. (C)
TPT distributions. For every protein, the range of simulated tTP values was
divided into 20 bins of equal size, ΔtTP. The simulated probability density is
then provided by the normalized population of each bin divided by
ΔtTP (shown here as data points). The continuous curves are two-parameter
fits of the simulated tTP/10

5 values to equation 31 in the work by Malinin and
Chernyak (47), and the fitted parameters are given in Fig. S2. (D) Scatter plot
of explicit chain-simulated tTP vs. FPT for model 2CI2 (r = −0.034).
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(thick blue curve), indicating that the latter is a good represen-
tation of a diffusive process governed by the Smoluchowski equa-
tion. As has been shown (16, 45, 46), Eq. 1 leads to the following
general expression for MFPT of folding (Eq. 4):

ðMFPTÞD =
ZQN

QD

dQ
ZQ

0

dQ′exp
�
βGðQÞ− βG

�
Q′

���
DðQÞ; [4]

which reduces to (Eq. 5)

ðMFPTÞD0 =
XQN

Q=QD

PeqðQÞ−1
XQ
Q′=0

Peq
�
Q′

�
=D0 [5]

when Q is discrete and DðQÞ=D0 is a constant. Thus, an effec-
tive constant diffusion coefficient can be defined using Eq. 5
when MFPT and PeqðQÞ are known (Fig. S2A).
The duration of a TP is only a tiny fraction of the folding time

(Fig. 1); however, TPs are important, because they inform us
how productive protein folding occurs. Fig. 2B shows that the
variation in the average tTP among the model proteins can be
reasonably captured by a diffusion picture: our MC model (red
data points) as well as the relation ‹tTP› ≈ (2πF)−1[ln(βΔG‡) +
constant] proposed by Szabo (27, 28), where ΔG‡ is the free
energy barrier. From the fitted curve to the black data points in
Fig. 2B, the front factor F ≈ 4.6 × 10−6 estimated by this relation is
smaller, but it is within less than one order of magnitude from the
Fdb ≈ 1.7 × 10−5 value estimated previously for a similar class of
explicit-chain protein models (39). A possible origin of this minor
mismatch will be discussed below. The distributions of our ex-
plicit-chain tTP are also rationalizable by a diffusion picture: they
are well-described by our MC simulations (Fig. S2D) and can be
fitted (Fig. 2C) to an analytical formula for P(tTP) derived (47)
from a Fokker–Planck formulation (details in Fig. S2). The tTP
distribution recently obtained from a G�o model also exhibited
a similar trend (24). Consistent with experiments (27, 28), tTP is
two or three orders smaller than FPT here. There is no correla-
tion between tTP and FPT (Fig. 2D and Fig. S3), indicating that
the duration of productive folding is independent of the time
spent in the largely unproductive conformational search.

Initial Stages of Transition Paths Have Statistically Atypical Contact
Patterns.Why do TPs succeed, whereas other much more common
trajectories fail to reach the native structure? Do the conforma-
tions traversed by TPs constitute an ensemble of specific pathways
that is fundamentally different from non-TP trajectories? We used
two parameters to quantify the difference in conformational
character between TPs and FPs: (i) ‹COTP›/‹COFP› is the average
native contact order (CO) sampled along TPs divided by the
average native contact order sampled along FPs, and (ii)
‹½Δ‡PcðQÞ�2›=P

i;j½PTP;ijðQÞ−PFP;ijðQ‡Þ�2= ~
Q  n is the mean square

deviation of native contact probabilities sampled along TPs from
the native contact probabilities achieved by FPs in the putative
transition state at Q‡ (Methods).
These two parameters show deviations of the conformational

properties of TPs from the conformational properties of FPs in
the folding quasi-preequilibrium (a quasi prefix is added because
preequilibrium is not exact; see above). The observed deviations
are insensitive to whether the averaging over FPs is normalized
by individual FPT [as for PFPjs(Q)] or not [as for PFP(Q)]. Re-
markably, the deviations start at the earliest stage of the TPs. Fig.
3, Upper indicates that TPs tend to begin in the unfolded region
with a higher contact order than a typical conformation in the
quasi-preequilibrium with the same Q (‹COTP›/‹COFP› ≈ 1.07–
1.1 at Q ≈ QD). As Q increases, the variation of ‹COTP›/‹COFP›
can be mostly oscillatory (Fig. 3 A–C and E–G) or essentially
monotonic (Fig. 3 D and H). Except for 1SHF (Fig. 3F), the
‹COTP›/‹COFP› ratio is larger than unity (with maximum values >
1.1 for most cases) for an extended range of Q < Q‡. In three

cases (1IMQ, 3GB1, and 1CSP), ‹COTP›/‹COFP› exhibits a high
value of 1.12, 1.14, and 1.44 at Q ≈ 0.65, 0.62, and 0.51, re-
spectively, just before Q‡ is reached. Except for 1SHF, all other
‹[Δ‡Pc(Q)]2› curves for the TPs (red) in Fig. 3, Lower are lower
than the corresponding curves for FPs (black), indicating that, on
average, the contact pattern of a TP conformation at any Q < Q‡

is more similar to the contact pattern of the putative transition
state at Q‡ than a typical conformation in the quasi-preequili-
brium with the same Q. While this trend might be expected, it
is noteworthy that, for 1IMQ, 3GB1, and 1CSP, the black curve
for the FPs exhibits a prominent hump near Q‡ that coincides
with a prominent peak value of ‹COTP›/‹COFP› (Fig. 3 C, E, and
G). Apparently, for these model proteins, TPs have to adopt
conformations with exceptionally high contact order just before
the rate-limiting step to avoid a large deviation from the con-
tact pattern and maintain a smooth progress to the putative
transition state.
A more detailed comparison of the TP and FP contact pat-

terns is provided for 2CI2. The FP contact probability maps
(lower right of each panel in Fig. 4) show that, along a typical
trajectory in the quasi-preequilibrium that starts in the unfolded
state, the low-CO α-helix (residues 13–23) tends to form first
(Q = 0.2), and the low-CO β-structure (referred to as β2) near the
C terminus involving two very short β-strands tends to form
second (Q = 0.3), which is then followed by the formation of the
higher-CO parallel β-sheet (referred to as β1) involving residues
28–33 and 46–51 (Q ≥ 0.4). This ordering of structure formation
is largely preserved in the TPs (Fig. S4A). However, the differ-
ence between the TP and FP contact probabilities (upper left of
each panel in Fig. 4) indicates that early formation of α and
β2 when Q ≤ 0.3 is less favored, whereas early formation of β1 at
Q ≈ 0.3 is more favored along TPs than along FPs. These obser-
vations echo the trend seen in Fig. 3 that TPs tend to have more
early nonlocal contacts, suggesting that certain early local con-
tacts can impede folding and require backtracking to overcome
or early nonlocal contacts can help anchor the native topology.
Consistent with this view, the variation of α- and β2-populations
along the TPs is smoother and more akin to a monotonic in-
crease than the variation along the FPs (Fig. S4A). An example
of folding facilitated by early nonlocal contacts is provided in Fig.
S4B. Disfavoring of early local contacts in TPs is exhibited by the
other model proteins in this study as well (Fig. S5).

 1.04

 1.08

 1.12

 0.2  0.4  0.6

 0.05
 0.15
 0.25
 0.35

 0.2  0.4  0.6

 1.02

 1.06

 1.1

 0.2  0.4  0.6

 0.05

 0.15

 0.25

 0.2  0.4  0.6

 1.02

 1.06

 1.1

 0.2  0.4  0.6  0.8

 0.05

 0.15

 0.25

 0.2  0.4  0.6  0.8

 1.02

 1.06

 1.1

 0.4  0.5  0.6  0.7

 0.02

 0.05

 0.08

 0.4  0.5  0.6  0.7

 1.02

 1.06

 1.1

 1.14

 0.2  0.4  0.6  0.8

 0.05

 0.15

 0.25

 0.2  0.4  0.6  0.8

 1

 1.03

 1.06

 0.2  0.4  0.6  0.8

 0

 0.2

 0.4

 0.2  0.4  0.6  0.8

 1.05
 1.15
 1.25
 1.35

 0.2  0.4  0.6

 0.1
 0.2
 0.3

 0.2  0.4  0.6

 1

 1.02

 1.04

 1.06

 0.4  0.5  0.6  0.7

 0.04
 0.08
 0.12

 0.4  0.5  0.6  0.7

2CI2  1CQU  1IMQ  1BDD

 3GB1  1SHF  1CSP  1HYW

A B C D

E F G H
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Preexponential Factors: Near Constancy and Variations. The TST pic-
ture posits that folding rate is given by F exp[−βΔG‡], where F is a
preexponential (front) factor and βΔG‡ = − ln½PeqðQ‡Þ=PeqðQDÞ�
is the barrier height measured from the peak of the equilibrium
free energy profile at Q‡ to the denatured-state minimum at QD
(4, 5). F is taken to be constant in Φ-value analysis so that any
change in the folding rate is ascribed solely to change in barrier
height (5). We assessed this assumption by examining the de-
pendence of our simulated logarithmic folding rate (lnkf) on
βΔG‡ in Fig. 5 (red filled circles); several other intuitively
plausible measures of folding barrier were also considered in Fig.
5. These measures include the free energy −lnPeq(Q

‡) itself
(instead of the free energy difference between Q‡ and QD) and
the logarithmic population at Q‡ or within one or two contacts
around Q‡ (to cover a broader barrier region) along kinetic (FP)
folding trajectories rather than in the equilibrium ensemble (i.e.,
FP population at Q‡, within Q‡ ± δQ, or within Q‡ ± 2δQ).
Fig. 5 shows good correlation between lnkf and βΔG‡ as well as

the other seven barrier measures considered, with slopes of all fitted
lines ≈ −1. Thus, despite the deviation of the kinetic profiles from
the thermodynamic free energy profiles in the barrier region
(Fig. 2A and Fig. S1), the TST formula kf = Fexp[−βΔG‡] applies
approximately to this set of models with a near-constant F ≈
2.9 × 10−5 estimated from the y intercept of a line with slope = −1
fitted to the βΔG‡ data points in Fig. 5. This F value is compa-
rable with the Fdb ≈ 1.7 × 10−5 estimated previously for similar
models (39). However, the correlations between lnkf and all of
the barrier measures that we considered are imperfect. For
βΔG‡, this imperfection is manifested by a factor of ≈ 2.3 be-
tween the largest and smallest F values defined by kf exp[βΔG‡]
for each of the individual proteins. The ranges of variation of the
corresponding ratio for other barrier measures in Fig. 5 are
similar (from 1.7 to 2.5). This variation in F is not envisioned by
the TST picture but can be rationalized, in part, by the Kramers-
like diffusive process of our constant-D0 MC model: Eq. 5 and
the relation kf = (MFPT)−1 imply that the preexponential factor
predicted by our nonexplicit-chain MC model is given by
KD0 = PeqðQDÞ½PeqðQ‡ÞðMFPTÞD0�−1. A factor of 1.8 was found
between the largest and smallest KD0, similar in magnitude to
the corresponding factor of 2.3 for the explicit-chain F values.
Fig. 5, Inset shows a moderate correlation between F and KD0
but a lack of correlation between F and ‹tTP›. Interestingly, the
average F−1 (3.5 × 104) is not far from the average ‹tTP› (5.0 ×
104) over the model proteins, reflecting an approximate scaling
relation ‹tTP› ∼ F−1 ln(βΔG‡) that entails a weak dependence on
ΔG‡ and that ‹tTP› is comparable with the characteristic re-
laxation time near the transition region (48).
Intuitively, the TST picture envisions two independent con-

tributing factors to the folding rate: the probability of being in
the barrier region (the exponential factor) and the rate of leaving
the barrier to the folded state (the preexponential factor).
However, because of the deviation from preequilibrium in the
barrier region (Fig. 2A and Fig. S1), this picture does not apply

to the equilibrium free energy profile (as envisioned by TST) but
rather, the kinetic FP profiles. If we define an FP preexponential
factor FFP by the relation kf = FFP PFP(Q

‡) for the barrier
measure −lnPFP(Q

‡) in Fig. 5 (open red circles), it can readily
be shown that FFP = 1/‹t(Q‡)›, i.e., FFP is the reciprocal of the
average residence time at Q‡; thus, it may be interpreted as the
probability per unit time of leaving Q‡ for the native state, be-
cause an overwhelming majority—if not all—of the folding tra-
jectories must go through a last visit of Q‡ before arrival at the
native structure. Moreover, 1/‹t(Q‡)› can be seen as an in-
dependent, intrinsic rate of leaving Q‡, because t(Q‡) and for
that matter, slightly more broadly defined residence times in the
barrier region are not correlated with folding time (Fig. S6).
According to the data in Table S1, the 1/‹t(Q‡)› values among
our model proteins span a narrow range between 0.89 × 10−3 and
2.25 × 10−3. This finding is consistent with an average FFP ≈ exp
(y intercept) = 1.44 × 10−3 from a least-squares linear fit of the
lnkf vs. −lnPFP(Q

‡) values in Fig. 5 in which the slope of the fitted
line is constrained to be −1.

Discussion
Diffusion Picture and Single-Molecule Transition Paths. The above
comparison between explicit-chain and nonexplicit-chain MC
simulations underscores the use and versatility of the diffusion
picture of folding pioneered in the works by Bryngelson and
Wolynes, Socci et al., and Wang et al. (16–18). Indeed, much
insight has been gained by relating explicit-chain dynamics to
coordinate-dependent diffusion (19, 20, 22, 24, 42, 49), with the
recognition that the diffusion process on any free energy profile
G(Q) governed by a coordinate-dependent diffusion coefficient
D(Q) is equivalent to the diffusion process on a transformed
profile G0(q) = G(Q) − (kBT/2) ln[D(Q)/D0] with a coordinate-
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(♦), (viii) −ln[PFPjs(Q‡ − 2δQ) + PFPjs(Q‡ − δQ) + PFPjs(Q‡) + PFPjs(Q‡ + δQ) +
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spectively (r ≥ 0.996 for all fits). Inset shows the scatter plot of the simulated
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the front factor KD0 (left vertical scale, arbitrary unit) deduced by our con-
stant D0 MC simulation (black filled circles; r = 0.5) as well as vs. the explicit-
chain simulated ‹tTP› in Fig. 2B (red open circles; right vertical scale, r = 0.22).
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independent diffusion coefficient D0 and a transformed co-
ordinate (49) given by q=

RQ dQ′½D0=DðQ′Þ�1=2. [Note that G0(q)
is similar but not identical to the effective free energy profile
G(Q) − kBT ln[D(Q)/D0] in refs. 20 and 25.] Here, our goal is not
so much an accurate reproduction of explicit-chain simulation
data for an individual protein by a complex diffusion model that
is custom-built for that particular protein. Instead, we asked how
far a single constant-D0 diffusion process can uniformly account
for explicit-chain behaviors across multiple proteins. We dis-
covered that even such a simple diffusion picture can afford
quantitative rationalization for the explicit-chain simulated ki-
netic profiles (Fig. 2A), MFPT, distribution of tTP (Fig. S2), di-
versity of ‹tTP› (Fig. 2B), and variation of the TST preexponential
factor (Fig. 5).
Consistent with recent single-molecule experiments (28), the

variation of ‹tTP› among the model proteins that we studied
spanned only a factor of 4.8, much narrower than the factor of
2.2 × 103 observed between the fastest and slowest folding rates.
This range of explicit-chain ‹tTP› variation is captured by our
nonexplicit-chain constant-D0 MC simulations that produced
a factor of 3.9 between the largest and smallest ‹tTP› values (Fig.
2B). The explicit-chain ‹tTP›/MFPT ratio is also well-captured by
the MC simulations, with ‹tTP›D0/(MFPT)D0 = 0.99‹tTP›/MFPT
on average (computed from Table S2; the corresponding factors
for individual proteins vary between 0.72 and 1.47). Notably, the
variation of ‹tTP› observed in our simulations is considerably
wider than the variation predicted by the Szabo formula ‹tTP› ≈
(2πF)−1[ln(βΔG‡) + C], where C = ln(2eγ) = 1.27 (27) or ln3 =
1.10 (28). If we use F ≈ 2.9 × 10−5 estimated above from Fig. 5,
the ‹tTP› variation predicted by the Szabo formula spans only
a factor of ≈1.9 (instead of the observed factor of 4.8). The ‹tTP›
values predicted by the Szabo formula are also smaller, around
0.2–0.6 times the value of the explicit-chain ‹tTP› values (0.37 on
average). Thus, our nonexplicit-chain MC simulation performs
better than the approximate Szabo formula. The differences in
their predictions might have originated from certain features
along the free energy profile that were not considered under
the simplifying assumptions used in deriving the Szabo for-
mula. Potentially, the low viscosity used in our Langevin dy-
namics for computational efficiency (50, 51) may also impact
on its agreement with the Szabo formula, because the Kram-
ers theory for barrier crossing was derived in the large vis-
cosity limit (26). In this regard, it will be instructive to also
conduct simulations away from the transition midpoint, be-
cause recent experiments showed that conformational diffu-
sion in the unfolded state is strongly dependent on denaturant
concentration (52). These issues deserve to be investigated in
future studies.

Contrasting the Diffusion and TST Pictures. Much of the traditional
understanding of protein folding (53), including structural in-
formation of putative transition states inferred from mutagenesis
(5, 54), was based on a TST-inspired picture of the folding
reaction. Although we have shown that the preequilibrium as-
sumption (Fig. 2A) and a simple correspondence between stopped-
flowed folding and unfolding pathways (SI Text and Fig. S7) do not
apply strictly, TST is still a useful approximate method for pre-
dicting rates of cooperative folding, because preexponential factors
for two-state-like folders are nearly, although not exactly (20),
a constant (Fig. 5). However, as a theoretical construct that focuses
only on a few points along the thermodynamic free energy profile,
TST offers no prediction for tTP. The diffusion picture is much
richer. It stipulates that folding rate is governed by not only a few
isolated energy points but the entire free energy profile (Eqs. 4 and
5). In this regard, it is noteworthy that Kubelka et al. (21) have put
forth a theoretical model based on 1D diffusion that can provide
accurate residue-by-residue predictions of folding kinetics of the
35-residue subdomain from the villin headpiece with far fewer
adjustable parameters than a chemical kinetics model based on
TST. Our nonexplicit-chain MC model is conceptually similar to
their theoretical model (21). The main difference is that we used
an explicit-chain model instead of a nonexplicit-chain Ising-like

model (55) to construct the free energy profile for diffusion. In the
common Kramers rate formula, the dependence of folding kinetics
on an extended region of the free energy profile is manifested by
the ωω′ term in the preexponential factor, where ωω′ is the product
of the curvatures at the unfolded-state minimum and the peak of
the barrier (26). Because ωω′ is not necessarily identical for dif-
ferent proteins, the preexponential factor can vary. The common
Kramers rate formula is an approximate solution to the Smo-
luchowski equation that applies only to an idealized free energy
profile (26), whereas our general MC model does not assume the
free energy profile to take any particular shape. As shown above,
properties of the explicit-chain tTP are accounted for well by our
simple nonexplicit-chain diffusion model. A highlight of the suc-
cess is the good correlation (r = 0.94) that we observed between
‹tTP› and ‹tTP›D0 (Fig. 2B).

Transition Paths and a Likely Role of Early Nonlocal Contacts. Our
explicit-chain simulations indicate that successful folding is as-
sociated with an enhancement of nonlocal contacts during the
early and middle stages of TPs (Fig. 3). This result was un-
expected. Natural proteins with more nonlocal contacts tend to
fold slower (55–57). Because they entail larger reductions in
conformational entropy, nonlocal contacts should be harder to
form than local contacts. Thus, protein folding has been envi-
sioned to begin by forming the most local contacts and proceed
subsequently by a zipping-like mechanism that incurs the least
incremental conformational entropic cost (58, 59). From this
vantage point, the enhancement of nonlocal contacts along TPs
is counterintuitive, and it suggests that other more subtle factors
may be at play. In the present models, results in Fig. 3, especially
results for 1IMQ, 3GB1, and 1CSP, indicate that some local
contacts can be detrimental to folding. Our analysis was based on
a coarse-grained native-centric model that neglected structural/
energetic details. Nevertheless, in view of these models’ proven
abilities to capture general principles of folding (14), the trends
observed here should reflect tendencies that exist in real pro-
teins. At the very least, our results established the principle that
the statistical contact pattern along TPs can deviate significantly
from the pattern of the quasi-preequilibrium ensemble. In this
respect, it will be instructive to investigate how our predictions
might be modulated by the application of other tractable explicit-
chain models that incorporate nonnative interactions (40, 60),
interaction heterogeneity (12, 61, 62), and/or side-chain effects
(13) and ascertain whether a similar trend exists in all-atom
simulations (63). Experiments revealed that some proteins do
fold by first forming nonlocal contacts (64, 65). It will be ex-
tremely illuminating if differences in contact pattern between
TPs and the non-TP population in the unfolded basin can be
quantified by future single-molecule experiments.

Methods
Our explicit-chain results were simulated using a Cα coarse-grained model
with desolvation barriers in its native-centric potential (38–40) (SI Text).
Among the proteins that we studied, two are α-proteins (1BDD and 1IMQ),
two are β-proteins (1SHF and 1CSP), and the rest are α/β-proteins (Table S1).
We first determined the normalized equilibrium conformational distribution
Peq(Q) for the proteins near their respective transition midpoints. QD and QN

denote, respectively, the Q values at the low-Q (denatured) and high-Q
(native) minima of the free energy profile −lnPeq(Q), whereas Q‡ is the pu-
tative transition-state Q value at the peak of −lnPeq(Q) between QD and QN.
Each folding trajectory (FP) was initiated at QD; FPT is the time for it to reach
QN. As the last stretch of an FP, TP begins with a last visit to QD before QN is
reached (Fig. 1A); tTP is the time duration of a TP. Contact order
CO=

P
i;j ji− jj=Q ~

Qn, where
~
Qn is the number of native contacts in the Pro-

tein Data Bank structure (Table S1) and the summation over (i,j) is over the
Q

~
Qn native contacts in the given conformation (39).
Our nonexplicit-chain MC simulations with an effective constant D0 were

based on the free energy profile βΔG(Q) = −lnPeq(Q) from the explicit-chain
model. Given that the protein is at Q, the MC process attempts to move to
either neighboring Q − δQ or Q + δQ with equal probability p± (≤0.5), where
δQ = 1/Q̃n. Two different probabilities were used to accept the attempted
move: (i) min[1,exp(−βΔGQ)], where ΔGQ = G(Q ± δQ) − G(Q), as in the
common Metropolis algorithm; or (ii ) A−1 exp(−βΔGQ/2) for some constant
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A, as in the Kawasaki algorithm (66). Attempted moves to Q < 0 or Q > 1
are rejected (i.e., both Q = 0 and Q = 1 are reflecting). The MC simulation
time is the number of attempted moves. As for the explicit-chain model,
folding simulations were initiated at QD, with QN acting as a perfect ab-
sorber. Results from the two algorithms are very similar (Fig. S2). As shown
in SI Text, the Kawasaki MC dynamics (ii ) are a discretized version of
a diffusive process governed by a constant-D0 Smoluchowski equation,

whereas the Metropolis MC dynamics (i ) are a good approximation of
such a process.
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