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Abstract
Mutations in the gene encoding glucocerebrosidase (GBA), the enzyme deficient in the lysosomal
storage disorder Gaucher disease, are associated with the development of Parkinson disease and
other Lewy body disorders. In fact, GBA variants are currently the most common genetic risk
factor associated with parkinsonism, and identified subjects with Parkinson disease are more than
five times more likely to carry mutations in GBA. The mechanisms underlying this association are
not known, but proposed theories include enhanced protein aggregation, alterations in lipid levels,
and autophagy-lysosomal dysfunction promoting the retention of undegraded proteins. We review
the genetic studies linking GBA to parkinsonism, as well as several of the mechanisms postulated
to explain the association of GBA mutations and the synucleinopathies, which demonstrate how
studies of a rare mendelian disease may provide insights into our understanding of a common
complex disorder.
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Introduction
Of the many genes now associated with parkinsonism, mutations in the gene encoding for
glucocerebrosidase (GBA) are one of the most frequent genetic determinants known in
Parkinson disease (PD). The surprising discovery of a link between a rare Mendelian
disorder, Gaucher disease (GD), and the common complex disorders PD and Lewy body
dementia (LBD) provides new opportunities to evaluate different pathways and mechanisms
relevant to the pathogenesis of both disorders.
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Glucocerebrosidase is a lysosomal enzyme that catalyzes the hydrolysis of glucocerebroside,
a membrane glycolipid, to ceramide and glucose [1]. The gene for glucocerebrosidase
(GBA, Online Mendelian Inheritance in Man [OMIM] #606463) was mapped to 1q21-22,
cloned and sequenced more than two decades ago [2–4]. It is located in a very gene-rich
area, where seven genes and two pseudogenes are found within 85 kb of sequence [5]. The
GBA gene encompasses 7.6 kb of sequence and includes 11 exons and ten introns [3]. The
glucocerebrosidase pseudogene (GBAP) is a highly homologous 5.7 kb sequence located 16
kb downstream, with the same organization of exons and introns as GBA [3, 6].

Mutations in GBA result in defective glucocerebrosidase, the enzyme implicated in the most
common lipidosis, GD (type 1, OMIM#230800; type 2, OMIM#230900; type 3,
OMIM#2301000). First described in 1882, GD presents with hepatosplenomegaly, anemia,
thrombocytopenia, bone involvement, and neurologic symptoms (types 2 and 3) [7].
Mutations in GBA include point mutations, insertions, deletions, frameshift changes, splice
site alterations, and recombinant alleles reported in GD patients of different ethnicities [8•].
Patients with identical GBA genotypes may exhibit considerable clinical heterogeneity. To
date, there are approximately 300 mutations and polymorphisms in the GBA gene that have
been identified in patients with varying presentations of GD [8•]. Consequently, it is still
unclear how identical mutations can present such vast clinical variability [9, 10].

Among the many phenotypes associated with GD are patients presenting with parkinsonian
symptoms. During past decades, several case reports and case studies describing such
patients appeared in the literature [11–13]. Later, it was noted that some family members of
patients with GD who carry GBA mutations had an increased susceptibility for developing
PD [14, 15]. LBD also was reported to occur with increased frequency in GD patients and
carriers [16]. In recent years, multiple independent studies from around the world have
supported the original work identifying an association between GBA mutations and
development of Lewy body disorders.

Studies in Patients with Gaucher Disease and Parkinsonism
In one of the first attempts to explore GBA-associated parkinsonism, different molecular
approaches were used to evaluate a 48-year-old patient presenting with GD and atypical
parkinsonism, including direct sequencing of GBA; a nearby gene, metaxin 1; and other
known Parkinson genes (α-synuclein and parkin) using multiple techniques [17]. Gene
sequencing and Southern blotting were used to evaluate the GBA locus and demonstrated
that the patient had genotype L444P/D409H and also carried a duplication encompassing the
GBA pseudogene and metaxin 1. Northern and Western blotting performed to assess GBA
expression and protein levels revealed low expression and trace levels of protein. The
authors then assembled a series of 17 patients with GD who developed parkinsonism [18].
Molecular analysis of these cases revealed 12 different GBA genotypes, although N370S
was the most frequent GBA mutation found. No mutations were identified in the exonic
regions of parkin and α-synuclein genes.

A larger study of 57 subjects was instrumental in establishing the association between the
two disorders. The study searched for GBA mutations in brain samples from patients
diagnosed with PD. Based on sequencing analyses, GBA alterations were detected in 12
samples (21%), including those from eight individuals with mutations (N370S, L444P,
K198T, R329C) and four with alterations (T369M, E326K) [19] that occur with similar
frequency in patients and controls and are considered GBA polymorphisms [20]. A group
from northern Israel then explored the association between GBA mutations and PD by
screening 99 Ashkenazi patients with idiopathic PD and 1,543 healthy Ashkenazi Jews for
six GBA mutations (N370S, L444P, c.84dupG, IVS+1A>G, V394L, and R496H) commonly
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found among Ashkenazi Jews. The researchers identified these mutations in 31.3% of
patients with PD versus 6.2% of healthy controls (P<0.001) [21].

Subsequently, various cohorts of patients with PD have been screened for common GBA
mutations (most often N370S and L444P) or by sequencing the entire GBA gene [21–28,
29•, 30, 31•, 32, 33, 34•, 35, 36••]. These studies reported a higher frequency of GBA
mutations among both Ashkenazi Jewish and non-Jewish populations with PD than in
matched controls. Among different research centers, the frequency of heterozygous GBA
mutations varied between 10.7% and 31.3% among Ashkenazi Jewish cases with PD and
between 2.3% and 9.4% in non-Ashkenazi Jewish patients (Table 1). Some studies reported
a lower frequency of GBA mutations [25], whereas others had statistically insignificant
results [23, 28]. This discrepancy may be attributed to the specific mutations screened for in
the respective studies, because it is now known that the mutation frequency differs greatly
among different ethnic groups [37]. For example, among Ashkenazi Jews, the carrier
frequency for GBA mutations is between 1 in 14 and 1 in 18, and the N370S variant
accounts for 70% of the mutant alleles [1]. On the other hand, GBA mutations are found in
less than 1% of the population in other ethnic groups, in which a greater number of different
mutations are found. Consequently, screening for the GBA mutations common in Ashkenazi
Jews is not a reliable strategy for other ethnic cohorts. Moreover, the N370S mutation may
not be present in the Asian population, as it has not been identified in patients with Gaucher
disease of East Asian ancestry [34•, 38].

Most of the published studies specifically investigated sporadic PD. Recently, Nichols et al.
[32] studied GBA alterations in familial PD. First, they screened all GBA exons in one
proband from 96 selected families with cases of PD. Nine GBA alterations were found in 21
cases, including four novel alleles (21.8%). The selection of these patients was based on the
LOD (logarithmic odds) scores for microsatellite markers close to the GBA locus. The
authors then checked 1,325 familial PD cases from 566 families and 359 controls for the
variations identified in the first 96 families, and detected 161 carriers (12.2%) in these
patients versus 5.3% of controls. Although this study is important because it demonstrates
the increased frequency of GBA mutations in familial PD cases, the authors also included
subjects with E326K and T369M as mutation carriers. After removing subjects carrying
these polymorphisms, the mutation rate for the remaining screened mutant alleles was 4.1%
in cases versus 1.1% in controls, consistent with other studies screening for only a limited
group of GBA mutations. However, in another recent study investigating familial Parkinson
cases from Japan, GBA mutations were found in eight of 34 complex families and in five of
34 probands (14.7%), and all affected family members had concordant variants. This study
showed GBA variants to be associated with familial PD cases as well as sporadic disease
[34•].

Although these initial cohort studies suggested that GBA mutations are a risk factor for
parkinsonism, there were deficiencies in study design because of the lack of appropriate
controls, mixed ethnicity of samples, screening for only a limited number of GBA
mutations, and inaccurate definitions of GBA mutant alleles. To address these issues, a large
multicenter cohort was assembled including patients from 16 different research centers,
totaling 5,691 patients with PD (780 Ashkenazi Jews) and 4,898 controls (387 Ashkenazi
Jews) [36]. Among Ashkenazi Jews, N370S and L444P were detected in 15% of patients
and 3% of controls, whereas in patients with PD from other ethnic groups, the combined
frequency of one of these two mutations was 3%. When full GBA sequencing was
performed, 7% of non-Ashkenazi Jewish patients with PD were found to be mutation
carriers. Overall, the odds ratio for carrying a GBA mutation in subjects with PD was 5.43
(95% CI, 3.89–7.57), rendering mutations in this gene a common risk factor for PD (Fig. 1).
However, it is unknown whether any specific GBA mutations have a higher degree of
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association with development of PD, as the frequency of each mutated allele in different
populations appeared to be a reflection of the carrier frequency in that specific population.

GBA Mutations in Other Lewy Body Disorders
Because of the diversity of PD phenotypes encountered in these studies, investigators
expanded their studies to determine whether GBA mutations are associated with other Lewy
body disorders. The synucleinopathies include PD, LBD (encompassing dementia with
Lewy bodies, Lewy body variant Alzheimer disease, and multiple system atrophy [MSA]).
They are characterized by the deposition of inclusion bodies consisting primarily of
fibrillated α-synuclein in the brainstem or cortical (limbic or neocortical) regions, as
previously described [39, 40].

Initially, Goker-Alpan et al. [16] examined all GBA exons in DNA from brain samples of 75
autopsy cases with pathologically confirmed Lewy body disorders (28 PD, 35 LBD, and 12
MSA) and found GBA mutations in 23% of 35 cases with LBD, 4% of cases with PD, and
none with MSA. Subsequently, screening for just N370S and L444P, Mata et al. [41]
detected GBA alterations in 2 (3.5%) of 57 patients with dementia with Lewy bodies
(P=0.045) compared with control subjects (0.4%). Farrer et al. [42] reported mutations in
GBA in 6% of 50 brain samples from subjects with pathologically confirmed diffuse LBD.
In a fourth study, Clark et al. [43] sequenced GBA in brain samples from 187 cases,
including 95 individuals with LBD, 60 patients with Alzheimer disease, and 35
pathologically normal controls. They detected GBA mutations in 28% of cases with LBD,
10% of cases with Alzheimer disease, and 3% of control cases (P<0.001). Although GBA
mutations were not found exclusively in cases with Lewy bodies, they showed that GBA
carriers are significantly more likely to have Lewy bodies as a pathologic finding. Whereas
the first study by Goker-Alpan et al. [16] had only 12 cases of MSA, a recent study from the
United Kingdom screened all GBA exons from 108 pathologically confirmed cases of MSA
and 257 controls. As with the first study, the authors failed to show any significant
difference between cases and controls (P=0.66) [44]. Moreover, in a study from Poland of
66 patients with MSA, screening for mutations L444P and N370S yielded no mutation
carriers [45].

Histopathologic Findings in GBA Mutation Carriers
Analyses of postmortem brain tissue from patients with GD who developed parkinsonism
demonstrated classic PD pathology as well as Lewy bodies in hippocampal regions CA2
through CA4, which are areas affected in GD [18, 46, 47]. Kono et al. [48] used positron
emission tomography to investigate underlying dopaminergic dysfunction in parkinsonism
associated with GBA mutations and demonstrated presynaptic dopaminergic dysfunction
characteristic of patients with PD. Neumann et al. [31•] showed that in addition to classic
PD pathology, in PD samples carrying GBA mutations, α-synuclein inclusions were
detectable in cortical areas corresponding to Braak stages 5 to 6. These findings are similar
to LBD, suggesting that GBA carriers have more advanced neuropathologic disease. This
result is similar to the study by Clark et al. [43] reporting GBA as a marker for cortical
Lewy body pathologic findings, independent of histopathologic findings typical of
Alzheimer disease.

Clinical Findings in GBA Mutation Carriers
Parallel to studies focusing on the mutation analysis of patients with parkinsonism, several
groups focused on the associated clinical manifestations in GBA mutation carriers, including
age of onset, motor symptoms, cognitive deficits, and response to L-dopa treatment.
Although the earliest studies in patients with GD and PD reported early onset and treatment-
refractory parkinsonism with prevalent cognitive decline [11, 18], subsequent publications
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show there is a broad spectrum of parkinsonian phenotypes among GBA mutation carriers,
with variations in both age of onset and treatment response.

The first patients reported with GD and PD developed parkinsonian features in their 40s and
50s, an age earlier than that of most patients with sporadic Parkinson cases [14, 18]. In
subsequent studies, the age of onset of motor impairment was reported to be 1.7–6 years
earlier in GBA mutation carriers than in patients without GBA mutations [21, 25, 27, 28,
31•, 32, 33]. GBA mutations also have been associated with earlier-onset (<50 years) PD, in
which the frequency of GBA mutations was found to be twice that of late-onset cases [27,
28, 32]. Even among cohorts in which PD developed before the age of 50 years, GBA
mutation carriers had an earlier age of onset of clinical symptoms [27, 29•].

There also are conflicting reports with respect to the efficacy of L-dopa treatment in carriers
of GBA mutations. While some reports described parkinsonian symptoms in patients with
GD to be poorly responsive to L-dopa treatment [18], several others reported good or
excellent response to treatment among GBA carriers [26, 28, 31•, 41, 49].

Overall, most studies could not detect any significant difference in clinical manifestations
and disease progression between GBA carriers and controls applying the unified PD rating
scale, Mini Mental State Examination, and Hoehn and Yahr clinical evaluation scale.
Parkinsonism associated with GBA mutations appears to be phenotypically indistinguishable
from sporadic PD. However, some studies found a higher frequency of cognitive decline
[31•, 49], bradykinesia [50], and olfactory dysfunction [49] and a lower frequency of rigidity
[27, 29•] to be associated with GBA mutations.

Generally it has been difficult to ascertain whether a correlation exists between the GBA
genotype and the severity of parkinsonian manifestations. Although most studies reported
N370S as the most common mutation among patients with PD, it has been suggested that
more severe GBA mutations confer an increased risk of developing parkinsonism [29•].
Mutations such as R120W and L444P also were reported to confer an increased risk in cases
of familial PD [34].

Mechanisms for the Association of GBA Mutations and the Synucleinopathies
The relationship between GBA mutations and the pathogenesis of PD and other Lewy body
disorders is not clear. Most autosomal recessively inherited forms of PD, as in the case of
parkin, DJ-1, PINK1, and ATP13A2, are considered to be the result of loss-of-function
mutations and present with early-onset disease. On the other hand, autosomal dominant
forms of PD generally are attributed to gain-of-function mutations, as seen with the genes
for α-synuclein and LRRK2 [51]. In parkinsonism associated with GBA mutations, both
gain- and loss-of-function theories have been postulated. The neuropathologic findings in
patients with both GD and PD, as well as GBA carriers, appear to be typical of other
synucleinopathies, suggesting that glucocerebrosidase may contribute to aggregation of α-
synuclein through enhanced protein aggregation or as a consequence of glucocerebrosidase
deficiency.

Evidence Implicating Lipid Alterations as a Loss of GBA Function
Glucocerebrosidase degrades glucocerebroside to ceramide. It previously was postulated
that alterations in ceramide metabolism are associated with Lewy body formation. By
reviewing the literature, Bras et al. [52] identified a group of genes involved in ceramide
metabolism associated with Lewy body pathology. The role of lipid homeostasis and
lysosomal function is an expanding field of research. Conradi et al. [53] identified the
accumulation of lipofuscin spheroids in the cortical regions of brains from patients with
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neuropathic GD. These lipofuscin deposits, proposed to be ganglioside in origin, are
undigested lysosomal material and indicate inefficient lysosomal degradation in GD.

It has been shown that α-synuclein binds to lipids in the plasma membrane and synaptic
vesicles [54]. Although α-synuclein normally is an unstructured soluble protein, it can
aggregate to form insoluble amyloid fibrils in pathologic conditions. The binding of lipids
may be able to prevent the formation of the fibrillar forms of α-synuclein and the
aggregation of this protein. It has been postulated that accumulation of polyunsaturated
lipids that might accumulate as a result of deficient glucocerebrosidase activity may alter the
sphingolipid composition of membranes and disrupt membrane binding of α-synuclein,
thereby enhancing its accumulation in the cytoplasm [55–57].

Evidence of lysosomal dysfunction in another lysosomal lipid storage disease, Niemann-
Pick type C, may represent an additional facet of the effect of unbalanced lipid homeostasis
[56]. In this case, the dysregulation of lipid and cholesterol trafficking leads to a buildup in
the lysosome and disrupts proteolysis, which may increase levels of undegraded proteins. In
addition, Martinez et al. [57] showed that GM1 ganglioside lipid rafts interact with α-
synuclein, and both Martinez et al. [57] and Sharon et al. [58] showed that fatty acids also
may contribute to the oligomerization of α-synuclein.

To explore whether alterations in glucocerebrosidase affect α-synuclein metabolism,
Manning-Boğ et al. [59] analyzed in vitro and in vivo effects of exposure to conduritol-β-
epoxide (CBE), an established inhibitor of glucocerebrosidase, and demonstrated that
exposure to CBE could increase α-synuclein accumulation as detected by increased
immunoreactivity in cultured cells and in the substantia nigra of a mouse model. They also
observed that exposure to CBE induced astrocyte activation and aggregation of α-synuclein
within these cells. This might correspond to the previous observation of astrogliosis in
postmortem brains of patients with GD who developed PD [47].

However, there are some shortcomings in the theory that GBA mutations in subjects with
parkinsonism result in lipid alterations due to a loss of functional glucocerebrosidase
activity. Ceramide levels in the cell are tightly regulated, and ceramide can be derived from
many different degradative and synthetic pathways. The amount of enzymatic activity in
Gaucher heterozygotes should be sufficient to prevent substrate accumulation, and there is
no evidence that ceramide is deficient in patients with GD, even those severely affected.

Gain-of-Function Role for GBA Mutations
There are other observations that favor a gain-of-function role for GBA mutations. Recent
studies demonstrated that some mutations in GBA result in a misfolded protein [60].
Misfolded glucocerebrosidase might contribute to parkinsonism by leading to lysosomal
insufficiency, by impairing autophagic pathways necessary for preventing the
synucleinopathies, or by overwhelming the ubiquitin–proteasome pathway.

Lysosomal Alteration and the Synucleinopathies—One potential mode of action is
that glucocerebrosidase dysfunction might lead to lysosomal insufficiency, thereby reducing
α-synuclein degradation. Lysosomes acquire proteins via fusion with vesicles or via specific
receptor-mediated incorporation. de Duve [61] and Essner and Novikoff [62] canonically
described the lysosome as the major cellular compartment for protein degradation. The
lysosome is a specific target of investigation for studies of the synucleinopathies because
multiple lines of evidence, including identification of genetic mutations and familial forms
of PD, implicate impaired lysosomal function. Mutations in ATP13A2, a lysosomal-resident
P-type ATPase, have been associated with the onset of parkinsonism with dementia [63],
juvenile parkinsonism, and young-onset PD [64]. Cuervo et al. [65] originally demonstrated
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that α-synuclein was degraded via chaperone-mediated autophagy, a lysosomal receptor-
based pathway that degrades proteins containing the KFERQ peptide sequence
(approximately 40% of all known proteins). Moreover, this pathway may be blocked by the
A53T and A30P mutant variants of α-synuclein, as well as posttranslationally dopamine-
modified variants of α-synuclein [66]. One speculation is that disturbances in the lysosome
contribute to reduced α-synuclein degradation and consequently promote its aggregation.

Autophagic Dysfunction—An alternate theory is that GBA mutations may cause
autophagic dysfunction, interfering with a process required for neuronal survival.
Macroautophagy is a ubiquitous biochemical process common to all eukaryotic organisms.
For autophagy to occur, induction via the mTOR or beclin 1/vps34 (class III PI3K) pathway
initiates the production and involvement of various autophagy (Atg) proteins, including
Atg5 and Atg7, and the posttranslational addition of a phosphatidylethanolamine to
MAP-1A LC3 (also known as Atg8), which is a constituent and reliable biomarker of the
double-membraned autophagic vacuole [67, 68]. The newly formed double-membraned
structure envelops the cytoplasmic material, including protein aggregates and defective
mitochondria, for delivery and fusion to acidic compartments such as lysosomes and late
endosomes, where their contents ultimately are degraded.

In addition to the lysosome, the autophagic vacuole also has been determined to be a
compartment requisite for α-synuclein clearance [69, 70] through the engulfment of the
cytoplasmic or vesicular form of α-synuclein and its delivery to the lysosome for final
degradation. Moreover, gene replacement of beclin 1 [71], which upregulates autophagy,
ameliorates the deleterious effects of α-synuclein overexpression in animal models of PD
and LBD. Reduced autophagy also can promote α-synuclein oligomerization [70].
Furthermore, disruption of autophagy, by ablation of the Atg5 or Atg7 genes, leads to the
promotion of neuronal deposition of lipofuscin and polyubiquitinated aggregates [72, 73].
Finally, disruption of the autophagic pathway can reduce lipid metabolism, as Singh et al.
[74] reported that lipids are transported to the lysosome via autophagy for degradation.

To complicate matters, ceramides are known inducers of autophagy [75], although their
effect in GD or in GBA mutation carriers has not been characterized. Although these
degradative pathways are intricately linked, it would appear that either mutated
glucocerebrosidase or accumulated glucocerebroside may disrupt cellular pathways
necessary for autophagic–lysosomal degradation. Moreover, as these pathways have
significant crosstalk, it is conceivable that disturbances in one metabolic system, such as
glucocerebrosidase function, would lead to proteolytic failure, ultimately resulting in α-
synuclein aggregation, Lewy body formation, and neural degeneration.

Endoplasmic Reticulum Stress and Interruptions to the Ubiquitin–Proteasome
Pathway—Another theory is that mutant glucocerebrosidase might overwhelm the
ubiquitin–proteasome pathway, causing a delay in the degradation of accumulated proteins,
including α-synuclein [76]. The proteasomal pathway degrades mutant glucocerebrosidase,
and it has been shown that some mutant variants are not trafficked from the endoplasmic
reticulum to the lysosome, where they attain their mature functional conformation, but rather
are transported to the proteasome for degradation. Ron and Horowitz [77] showed that
glucocerebrosidase undergoes ubiquitination and is degraded. This degradative process
involves the heat shock protein chaperones and, consequently, is sensitive to alterations in
levels of molecular chaperones. The same authors proposed that one deleterious mechanism
of mutant GBA is that the protein undergoes parkin-mediated ubiquitination, creating an
imbalance in protein degradation resulting in secondary toxicity [78].
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One observation that conflicts with a gain-of-function mechanism relates to the spectrum of
GBA mutations encountered in subjects with PD. Among the many different mutations
encountered are c.84dupG, IVS2+1G>A, and recombinant alleles that would be considered
null alleles. These mutations, albeit rare, make it hard to support a gain-of-function
mechanism when no protein is being made. However, the very truncated forms of the mutant
protein still might induce endoplasmic reticulum stress.

Conclusions
The association of glucocerebrosidase with parkinsonism was discovered not through
genomic techniques, but rather through careful clinical observation and investigations. This
unanticipated finding has opened new avenues for research on the synucleinopathies.
Although the full pathogenesis of these disorders remains elusive, probing the contribution
of mutations in GBA to the disease process very likely will prove fruitful, as this finding
suggests that glucocerebrosidase and α-synuclein are implicated in a common cellular
pathway. Whether the route is related to protein accumulation or to lipid dysregulation, the
metabolic pathways, protein structure, protein interactions, and other properties relevant to
this enzyme merit close evaluation. This story also illustrates how studies of rare disorders
can provide insights into mechanisms and pathways relevant to common diseases.
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Fig. 1.
Frequency of GBA mutation carriers among patients with Parkinson disease and the
distribution of different mutations in Ashkenazi Jews and non-Ashkenazi ethnic populations.
A Twenty percent of Ashkenazi Jewish patients were found to carry a GBA mutation. B
Among non-Ashkenazi Jewish patients for whom full sequencing was performed, 6.5%
carried GBA mutations (from a meta-analysis by Sidransky et al. [36••]). The data in panel
B are summarized based on whole GBA sequencing in three studies (Sidransky et al., 2009
[36••]; Neumann et al., 2009 [31•]; and Kalinderi et al., 2009 [33]). “Other alleles” include
K(-27)R, K7E, R32H, R39H, R44C, R131C, R131S, D140H, R163Q, R163X, G193E,
G193W, K198T, F213I, F216Y, R239C, R257Q, R262H, L268L, S271G, T323I, E326K,
R329C, L336P, G344S, N370K, L371I, D380N, D380A, D443N, V460M, T482K, R496C,
Q497R, c.1263-1317 del55bp, RecA456P, and RecNcil
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