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Abstract

We propose a preconditioned alternating projection algorithm (PAPA) for solving the maximum &
posteriorf (MAP) emission computed tomography (ECT) reconstruction problem. Specifically, we
formulate the reconstruction problem as a constrained convex optimization problem with the total
variation (TV) regularization. We then characterize the solution of the constrained convex
optimization problem and show that it satisfies a system of fixed-point equations defined in terms
of two proximity operators raised from the convex functions that define the TV-norm and the
constrain involved in the problem. The characterization (of the solution) via the proximity
operators that define two projection operators naturally leads to an alternating projection algorithm
for finding the solution. For efficient numerical computation, we introduce to the alternating
projection algorithm a preconditioning matrix (the EM-preconditioner) for the dense system
matrix involved in the optimization problem. We prove theoretically convergence of the
preconditioned alternating projection algorithm. In numerical experiments, performance of our
algorithms, with an appropriately selected preconditioning matrix, is compared with performance
of the conventional MAP expectation-maximization (MAP-EM) algorithm with TV regularizer
(EM-TV) and that of the recently developed nested EM-TV algorithm for ECT reconstruction.
Based on the numerical experiments performed in this work, we observe that the alternating
projection algorithm with the EM-preconditioner outperforms significantly the EM-TV in all
aspects including the convergence speed, the noise in the reconstructed images and the image
quality. It also outperforms the nested EM-TV in the convergence speed while providing
comparable image quality.

1 Introduction

Emission computed tomography (ECT) is a honinvasive molecular imaging method that
requires administration of radioactive tracers to patients. It comprises of two branches:
positron emission tomography (PET) and single-photon emission computed tomography
(SPECT) [49, 60]. It might provide estimate of the spatial and/or temporal distribution of
radioactive tracer inside a patient body through tomographic reconstruction from the
detected emission events (typically in the form of projection images for SPECT and
sinograms or list data for PET). ECT provides a three-dimensional (3D) functional rather
than structural information provided by computed tomography (CT) or magnetic resonance
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imaging (MRI). In a SPECT imaging system, the detectors (detector units) record the
number of single events due to gamma or x-ray photons emitted by SPECT radioactive
tracer distributed inside a patient body. The photons are detected only if they travel along
directions well defined by a collimator. The collection of such emission data can be sorted
into a set of 2D projection images [60]. In PET systems, the pairs of detectors record the
number of coincidence events due to two 511 keV gamma photons emitted in positron
annihilation events. Positrons are emitted by PET radioactive tracer distributed inside a
patient body. They travel certain randomly distributed distances in the tissue before they
annihilate electrons and produce pairs of 511 keV photons emitted in random and
approximately opposite directions. The collections of such emission data form list data and
can be sorted into a set of sinograms [49]. Clinical applications of ECT include detection,
staging and monitoring response to cancer therapy, detection and risk stratification of
cardiovascular diseases, mapping of regional blood flow in the brain, bone scans, pulmonary
ventilation/perfusion scans, and renal scans [63].

The aim of the reconstruction process is to obtain accurate estimation of the radiotracer
distribution in a patient or a phantom from the detected emission photons. The most
commonly used probability distribution for a description of raw ECT data is the Poisson
model [35, 55, 60]. It states that the vector of the number of events recorded by the detector
units during ECT scan is a Poisson distributed random vector with a mean equal to the sum
of the system matrix multiplied by the mean radiotracer activity distribution vector within an
object of interest and by the mean “background” counts vector. Sources of background
counts include cosmic rays and terrestrial radioactive background. They are assumed to
follow the Poisson distribution. For a given realization of the detected ECT data and for the
known expected background counts, this model allows one to estimate the mean radiotracer
activity distribution.

Finding numerical solutions of the model is a long-standing research problem. The iterative
expectation-maximization (EM) algorithm is a frequently used reconstruction method for
ECT imaging [35, 58]. Many reconstruction algorithms for the model are based on
optimizing an objective function deduced in part from the statistical model of detection
realization data. For example, the maximume-likelihood (ML) method is based on
minimizing the negative log-likelihood of observed emission data conditional on radiotracer
distribution. Under the Bayesian framework, the maximum a posteriori (MAP) estimator
seeks minimizing the sum of the negative log-likelihood of observed emission data
conditional on radiotracer distribution and a regularizing penalty function, which penalizes
solutions that have low probability. With various considerations such as computational
efficiency of the algorithm to be developed and the spatial resolution of the reconstructed
images, many different types of penalty functions were proposed. The total-variation based
penalty function introduced in [28, 48] is particularly interesting in the field of ECT image
reconstruction because it preserves the high spatial frequencies components of the
reconstructed radiopharmacuetical distribution including discontinuities and steep gradients.
Many efficient algorithms for this model were proposed, including EM-based methods [28,
48, 54], projected quasi-Newton methods [1, 2, 3], and forward-backward approaches [7, 13,
56]. In particular, a nested EM-TV iterative scheme was proposed recently in [54] for
reconstruction of PET data with low signal-to-noise ratio, while an alternating extragradient
method was proposed in [7] for solving the primal-dual formulation of the Poisson ECT data
model with the TV regularization.

In the present paper, we study the numerical solution of the model that optimizes the sum of
the negative log-likelihood of observed emission data conditional on radiotracer distribution
(i.e. the Kullbach-Leibler divergence) and a total-variation regularization term. The ECT

detector physics requires that the solution of this model be nonnegative. Difficulties with the
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numerical solution of such a model stem from the nonlinearity due to the use of the
Kullbach-Leibler divergence and the TV regularization, from the nonnegativity constraint on
the solution, and from the dense and large sized system matrix necessary for realistic ECT
models. Motivated by our previous work [39, 42, 43], we characterize the solutions of the
model in terms of a fixed-point of the proximity operators with a precondition matrix.
Numerical algorithms are then developed based on such a characterization. More precisely,
by identifying the total-variation as a composition of the convex function, which defines the
‘E-norm’ or the *B-norm’, and the first order difference operator, we formulate a
characterization of the exact positive solutions to the optimization problem in terms of a
system of fixed-point equations via the proximity operators of the convex function that
defines the ‘&-norm’ or the ‘&-norm’ and the one that defines the first quadrant of an
Euclidean space. The proximity operators of these simple functions have closed forms,
which provide great computational advantages. The nonlinearity is expressed in terms of a
system of fixed-point equations, which naturally leads to an alternating projection algorithm.
The dense system matrix of a large size is treated by preconditioning. Appropriate choices of
the preconditioning matrices lead to efficient computational algorithms for solving the
model.

This paper is divided into seven sections. In Section 2 we outline the Maximum a Posteriori
ECT image reconstruction model in terms of a somewhat general constrained convex
optimization problem. In Section 3, characterizations of the solution of the optimization
problem are presented in terms of a system of fixed-point equations via proximity operators,
and the iterative algorithms for finding the solution are developed based on the
characterizations. Section 4 is devoted to convergence analysis of the algorithm. In Section
5, we specialize the general algorithm to the TV-regularized ECT image reconstruction
problem. Numerical experiments are presented in Section 6 to test the approximation
accuracy and computational efficiency of the proposed algorithm. The numerical results
demonstrate that the alternating projection algorithm with the EM-preconditioner
outperforms significantly the EM-TV in both the convergence speed and the image quality.
We also observe that our algorithm performs favorably in comparison to the nested EM-TV
in both the convergence speed and the image quality. We make concluding remarks in
Section 7.

2 Maximum a Posteriori Estimation for ECT Reconstruction

In this section, we first present a mathematical model of a realistic ECT imaging system. We
then find the unknown radioactive tracer distribution by maximizing the posterior
probability distribution (the object function) using the observed emission data, known
probability density function of the unknown radioactive tracer distribution, and the Bayes
law. This approach is called the maximum a posteriori expectation-maximization (MAP-
EM). Finally, the existence of a solution of the resulting variational problem is discussed.

We begin by introducing the notation to be used throughout this paper. Let N := {1, 2, ...,
K}. We use the same notation “1” to represent both the scalar number 1 and the vector with
all components equal to one. They can be distinguished by the context of their use. For x €
RX, the expression x> 0 means that all components of xare no less than 0, and in this case,

we say that xis a nonnegative vector. We denote by R* the set {x: x€ RXand x> 0}. For
any vectors xand yin R, we define

Yi

. X Xi .
xOy:=(xy;:i €Ny) and - := (—:zeNk)
y )
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respectively, as the componentwise multiplication of xand y; and componentwise division
of xby y. The logarithmic function at x € R¥ is defined as

In x:=(Inx;: i € Ny),

while the expression “x+ -y”, the sum of the vector x with a scalar -y € R, is understood as
the vector

x+y = (x+y i € Np).

We use (-, -) and Il - Il, respectively, for the inner product and the corresponding &-norm in an
Euclidean space, while we use Il - ll; and Il - lleo, respectively, for the £-norm and £°-norm.

It is well accepted that gamma and x-ray photons, as well as positrons emitted in radioactive
decay follow a Poisson distribution. Assuming that the detection of photons by detector
units are events independent of one another and can be described by a Bernoulli process,
consequently the projection images are a collection of Poisson random variables. The
Poisson distribution approximates the photon detection process only if one can neglect the
detector dead-time i.e. count losses in the real detector systems, and no corrections are
applied to the raw data. In addition to photons emitted from the patient, the detector bins
(units) detect events due to ubiquitous radioactive terrestrial background and cosmic rays. It
is assumed that they also follow the Poisson distribution.

Let Frepresent the expected radiotracer distribution within a patient or a phantom. Let g
denote a vector with the /~th component being the number of single photons for SPECT or
numbers of pairs of annihilation photons for PET originated from the radiotracer and
recorded by the /~th detector unit or detector unit pair during the SPECT or PET scan,
respectively. The dimension of the vector g is the number of detector units or detector unit
pairs in the SPECT or PET imaging system, respectively. We assume that y is a vector of
the same size as g, with its /~th component being the mean number of “background” counts
recorded by the /~th bin in SPECT or bin pair in PET. Under these assumptions, the
observed emission data vector grelated to the unknown radiotracer distribution Fcan be
approximated by the following model [35, 55]

g=Poisson (Af+y), (1)

where Poisson(a) denotes a Poisson distributed random vector with mean a. and A is the
ECT system matrix with its (/))-th element equal to the probability of detection of the photon
emitted from voxel jof image Fby the /th detector bin in SPECT or detector bin pair in
PET.

The maximum a posteriori probability (MAP) EM estimate has been proven useful in ECT
for estimating the unobservable radiotracer distribution fwhen prior knowledge on
probability distribution function of fis available, especially when the observed emission
data g are noisy or incomplete [10, 19, 20, 21, 22, 30, 45]. Specifically, we assume that g in
(1) is a given random vector in R™and fis a random vector in R%. The MAP estimate £. is
obtained by maximizing the conditional a posteriori probability p(#g), the probability that F
occurs when g is observed. This probability may be computed using the Bayes law

p(flg) o« pelHp(f), @
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where a o § means that the scalar a is proportional to the scalar p. By taking the logarithm
of the both sides of equation (2), the MAP estimate can then be calculated using the formula

fyx=arg max {ln pglH)+n p(f): f € R‘l}. (3)

In other words, the MAP estimate 7. is obtained by maximizing expectation, that is, by
minimizing the sum of a negative log-likelihood of the observed emission data conditional
on radiotracer distribution and a positive logarithm of the prior probability distribution. The
first term can be considered as a fidelity term, a measure of the discrepancy between the
estimated and the observed data. The second term is a regularization function, which
penalizes solutions that have low probability. The Gibbs priors are commonly used in ECT
reconstruction [18, 30, 36] in both convex [17, 20, 45, 47] and nonconvex [21, 31, 62] forms

p(f) < exp(=AU(f)) (a)

with Gibbs real-valued energy function (/) defined on R? and a positive regularization
parameter A called hyperparameter.

We formulate our maximum a posteriori ECT reconstruction model from (3) and (4) by
computing the likelihood objective p(g]# using equation (1) and specifying the energy
function U. According to equation (1), g follows the Poisson distribution having Af+ y as
its mean. As a result, the probability density function p(g{#) of g conditioned on fcan be
computed by using the formula

H ((ANi+y)¥ exp(—((ANi+7i)

.
i€N,, &i:

pelf)= (5)

We choose the energy function Uin (4) as the total variation semi-norm. Accordingly,
following the notation used in [42], we have that

U(f) = (eB)(f). (6)

where Bis an n1x dfirst-order difference matrix and ¢ the &-norm for the anisotropic total-
variation or the £-norm for the isotropic total-variation on R”. We shall provide more details
of the total variation later in Section 5. Taking the logarithm of the both sides of equation (5)
and incorporating identities

> & In(AN)+y)=(In(Af+y), g)

ieN,,
and
D An=arn

€N,

in the resulting equation, we obtain that

In p(glf)=(n(Af+y), g) — (Af, I)+const;,
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where const; is a constant independent of £ Moreover, from (4) and (6) we have that

In p(f)= — A(@B)(f)+consty,

where consty is again a constant independent of £ Substituting the above two equations into
(3) leads to the following variational problem

min {(Af, 1) - (In(Af+y), )+ A@B)(f) : f €RY). ()

Although the variational problem (7) is derived in the specific context of the ECT image
reconstruction, in this paper, we shall consider solving the problem in the following
somewhat more general setting. We assume that A is a matrix in R”7* 9, gis a given vector
in R, -y is a positive vector in R, A is a positive number, ¢ is a convex nonnegative
function on R”, and Bis an nx dmatrix. The ECT image reconstruction model is a special
case of model (7) when ¢ o Bis chosen as the total-variation semi-norm. For this reason, we
call the above variational problem the Poisson-TV model. In the remaining part of this
section and Sections 3 and 4, we consider model (7) in the general setting described above
while in Sections 5 and 6 we specify it for the ECT image reconstruction model. In model

(7), the requirement of £ e R is feasible due to the fact that frepresents the mean
radiotracer activity distribution in the object in ECT.

In the remaining part of this section, we establish the existence of the solutions to the
variational problem (7). Recall that for a lower semicontinuous and convex function ~
defined over R?, a sufficient condition for ~to have a minimizer over a closed convex set C
is that the intersection of Cand a lower level set of F~at some height € € R defined by

leveeF := {f:fERd,F(f) Sf}’

is nonempty and bounded (see, for example, [5]). We require some conditions on the system
matrix A, motivated from the ECT imaging system. We denote by Athe collection of m x d
matrices, each of whose columns is a nonzero vector in R”. Since photons emitted from each
voxel of an object are detected by detector bins in the ECT imaging system, it is reasonable
to assume that the general system matrix Ain (1) isin A

Proposition 2.1. /fA€ A g e R, vy is a positive vector inR™, \ is a positive number, ¢ Is a
convex nonnegative function on R”, and B is an n x d matrix, then the solution set of model
(7) is nonempty.
Proof. Let F :R? — R be defined at any 7 € R as

F(f) := (Af, I) — (In(Af+y), g)+A(p o B)(f).

Clearly, Fis the objective function of the variational problem (7). It suffices to prove that ~
is convex and coercive on the unbounded convex domain R<.

Note that ¢ is a convex function. The convexity of Fon R? is equivalent to the convexity of
the function

Inverse Probl. Author manuscript; available in PMC 2013 November 01.
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Fi:={A,1)—(n(A - +y),8)

on R%. Since £ is twice continuously differentiable and the Hessian of A at f € R?

V2F(f) = ATdi & )A,
1(H) iag ((Af+y)2

is positive semi-definite due to g € R”, the convexity of ~follows.

Since ¢ is bounded below by 0, for any § € R we have that leveg 7 C leveg /. Hence, by

Theorem 11.9 in [5], the existence of the minimizer of the objective function ~over R?
follows from the boundedness of the lower level set levee /7 for some € € R. Recalling the
exercise 14 of Section 1.2 in [8] and the conditions imposed on A, gand v, we know that the
function A, has compact lower level sets, which in turn completes the proof.

3 Characterizations and Algorithms

In this section, we first characterize solutions of the optimization problem (7) via the
proximity operator. We then develop an alternating projection algorithm for solving the
optimization problem based on the characterizations.

Let H denote an Euclidean space. For a proper convex function y : H — R U {+c0},
having a nonempty domain (the set on which  is finite), the proximity operator of v,
denoted by prox.,, is a mapping from H to itself, defined for a given vector x € H by

prox,,(x) := arg min {L//(u)+%||u —x*:ue H} 8)

The subdifferential of a proper function y on H at a given vector x € H is the set defined by
o(x):={y:yeH andy(z) = ¥y (x)+{y,z — x) forall z € H}.

The subdifferential and the proximity operator of the function - are intimately related.
Specifically, for xin the domain of y and y € H we have that

y € dy(x) if and only if x=prox,(x+y). (9)

For a discussion of this relation, see, for example, [5, Proposition 16.34] and [42, 50].

The indicator function of a closed convex set Cin H is defined as

L [0 ifuec
T 400, otherwise.

It can be observed that the proximity operator for the indicator function of a closed convex
subset Cin H is the projection operator onto C. For notational simplicity, when the set Cis

d
RS, we let
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The subdifferential of T can be explicitly given. To this end, for a given vector x= (x;:
N) in R, we define a projection matrix Passociated with x by:

P(x) := diag (6(x;) :i € Np),

Page 8

i€

where 8(x)) equals to 1 if x;=0, and 0 otherwise. Then, by the definition of subdifferential,

for a vector xin R%, we have that

T(x)= - PR, (10)

Define

S:={S:S is a d x d diagonal matrix with positive diagonal entries}.

For any S€ Sand x e RY, from (10) together with the identity SR?=R%, we have that

ST (x)= — SP(x)R?= — P(x)SRY = — P(x)R? =07 (x).

Thus, we observe that

SOT=07T. (11)

For given positive numbers A and ., a vector gin R, an m x dmatrix A€ Aan nx d
matrix B, we define H: R% x R" — R, at (f,b) € RY x R", as

H(f, D) := (Af. 1) — (In(Af+y), g)+Au(Bf. b). (12)

We use V g and V ,H to denote the gradient of A with respect to its first and the second
variables, respectively. More precisely, we have for any point (f, b) € R? x R" that

AT [ __& T
VeH(f, b)=A (1 Af+y)+/l,uB b, (13)

VoH(f,b)=AuBf. (14)

Set

and o := —. (15)

>~
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With this preparation, we present below a characterization of the solutions of model (7) via a
coupled fixed-point equations.

Theorem 3.1. Let A€ A g e RT, vy and'\ be two positive numbers, ¢ be a proper convex

nonnegative function defined on R", and B be an nx d matrix. If f € R is a solution of the
minimization problem (7), then for any B, . > 0, and S€ 'S there exists b € R” such that the

pair(f,b) € RY x R" is a solution of the following coupled equations

b=(J — prox,1,) (b+aVp,H({, b)), (16)
f=proxy (f =SV H(f,b)). @a7)

Conversely, if there existB, L. >0, SES b€ R” and f e R such that the above equations
hold, then f is a solution of the minimization problem (7).

Proof. Let fbe a solution of the minimization problem (7). Applying Fermat’s rule to (7), we
get the relation

0ecAT (1 - ﬁ) +ABTA(BH+IT(). (1)

B 1
Hence, for arbitrary positive numbers B and ., there exist % € jaT(f) and b € pa‘f’(Bf) such
that from (13) and (18), we have that

A
0=V H(f, b)+Bu. (19)

1
By using relation (9), equation (16) is a direct consequence of be ;3‘1"(Bf) and (14).

Multiplying the inclusion # € gaT(f) by the diagonal matrix Sand using (11) yield the
relation Sv € 0T (#). Applying (9) to the above inclusion, we have that

S=prox(f+Su). (20)

Solving v from (19) and substituting it into (20) yield (17).

Conversely, if B, . are given positive numbers and Sis a matrix in Ssuch that (7, 6) is a
solution of (16)—(17), then all the arguments discussed above are reversible. This completes
the proof.

The characterization of the solutions to the minimization problem (7) in Theorem 3.1 is
essential for deriving other equivalent ones with the aim of developing efficient algorithms
for finding the solutions of the variational problem. As an example, an alternative
formulation for the minimization problem (7) based on Theorem 3.1 is presented below.
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Proposition 3.2. Let A€ A g e R, 'y and'\. be two positive numbers, ¢ be a proper convex

nonnegative function defined on R”, and B be an nx d matrix. If f € R? is a solution of the
minimization problem (7), then for any B, n > 0, and S€ 'S there exists b € R” such that the

pair(f,b) € RY x R is a solution of the coupled equations

b=(7 —prox,1,) (b+0V,H (proxy (f — TSV H(f, b)), b)), (21)
J=proxy (f =7SVeH(f, D). (22)

Conversely, if there existp, . >0, SES b€ R" and f e RY such that the above equations
hold, then f is a solution of the minimization problem (7).

From the given assumptions, the existence of a fixed point (7., b.) of the coupled equations
(21)-(22) is a direct consequence of Proposition 2.1 and Theorem 3.1 together with
Proposition 3.2.

Based on the above characterization, the following Picard iteration is adopted to find a

solution of the equations (21)~(22): Given any initial (7@, 5©) e R? x R", forany k=0, 1,
..., We compute

b V=7 - Prox,-1,,) (b +0V,H (prox, (f® — SV H(f®,60)), b®)) ’a
£ D=prox.. (8 — 7SV H(f®), pk+Dy). (23)
We show next that both & - prox,,-1, and proxy are projections. Since the iterative scheme
(23) applies these two projections alternatingly, we shall call scheme (23) an alternating
projection algorithm. It is of particularly interest that Sin the characterization of Proposition
3.2 can be viewed as a preconditioner in our developed iterative scheme (23), therefore, it
makes the algorithm practically tractable. For this reason, we call this matrix the
preconditioning matrix.

To better prepare the convergence analysis of this algorithm which will be our focus of the
next section, we present an equivalent form of (23). This new form is as follows:

h® 2= prox, (f® — SV H(F®, b0y),
b D=(7 — prox,1,) GO +0VpH (h9,b0)),  (24)
fED=proxy (f% — S VH(FO, b*+D)).

We now derive a technical lemma to show that the operator & —prox,,-1, in (24) is a
projection operator on a closed convex set of R”. To this end, we need to review the concept
of the conjugate function and some related results. Let y : H — R U {+o0o} be a proper
function. The function y* : H — R U {+oo} defined, at v € H, by

W (u) := sup {{x, u) — (x) : x € H}

is called the conjugate of y at w. For a proper lower semicontinuous convex function y on
H and any positive number a, the proximity operator of y and that of its conjugate y*
satisfy the following relation ([5, Theorem 14.3 (ii)] and [44, Proposition 4.a])
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F =PIOX o, + APIOX -1 a' s (25

Next, we recall the notion of the positive homogeneous function. A function y : H —
{-o0} U R U {+o0} is positive homogeneous if for any x € H and any positive number a,

Ylax)=ay(x). (26)

Clearly, y(0) = 0. Furthermore, if  is a positive homogeneous and proper lower
semicontinuous convex function on H then the conjugate function y* is the indicator
function on the set dy(0) (see, e.g., [5, 52]), that is,

Y=t (@)

Lemma 3.3. /fy is a positive homogeneous and proper lower semicontinuous convex
function on H and a. Is a positive number, then R — proxq., IS the projection operator on the
setady(0), that is,

I — PIOX,, =Prox, .. .. (28)

Proof. From (27), we know that a"1y* = a"3y,(0) = 1ay(0)- Combining this relation with
(25), we obtain that

J — proX,,=aprox,, ..o a7 =prox

Lay(0) Lady(0)”

proving the desired formula.

By Lemma 3.3, we conclude that & —prox,-1, in (24) is the same as prox, -1, ) Hence,
each equation in the iterative algorithm (24) involves an operator of the form prox, ~( = 7
(VG)(+)) for a convex set Cin H, a function G defined on H and a symmetric positive
definite matrix 7 mapping H to itself.

We shall end this section by providing a more general characterization of the solutions of the
minimization problem (7). To this end, for a proper convex nonnegative function ¢ on R”,
an nx dmatrix B, a given # € R a positive number ., and a positive integer 7, we define

Q) :R" — R", with

Q2 =7 and Q) := (J — prox,1,) (-+Bh),

recursively, by:

0= 00" (29

By using equation (14) and the proof of Proposition 3.2, we may establish the following
result.
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Proposition 3.4. Let A€ A g e R”, 'y and'\. be two positive numbers, ¢ be a proper convex

nonnegative function defined on R”, and B be an nx d matrix. If f € R? is a solution of the
minimization problem (7), then for any B, n > 0, and S€ 'S there exists b € R” such that the

pair(f,b) € RY x R is a solution of the coupled equations

b=Q'" r(b) (30)

f=proxy (f =SV H(f,b)). (31)

Conversely, if there existB, L. >0, SES b€ R and f e R such that the above equations
hold, then f is a solution of the minimization problem (7).

Essentially, both Theorem 3.1 and Proposition 3.2 can be viewed as special cases of
Proposition 3.4 with r= 1. The purpose of introducing the operator Q'swith rgreater than 1
is mainly from consideration of developing efficient algorithms in Sections 5 and 6.

4 Convergence Analysis

We analyze in this section convergence of the preconditioned alternating projection
algorithm described in the last section.

The convergence consideration of the algorithm requires introducing the notion of the
weighted norm. For a symmetric and positive definite matrix 7: H — H, we define the
weighted inner product by

xX,y), = (T_lx, ), x,y € H.

The induced weighted norm is accordingly defined by
llxl, == f(x, x),.

Note that a symmetric positive definite matrix has precisely one symmetric positive definite

_1 _1
square root. Hence, we can rewrite {x, x) T=(T"2x,T 2X>, which in turn implies that the
above weighted norm is a norm on H.

Next we present a lemma which provides a tool for the proof of the convergence of the

sequence generated by the iterative scheme (23). For any initial pair (7©, 5©) e R x R”,
we let

v = {(f(k),b(k)) 1k e N}, where N :={1,2,...}

be the sequence generated by the iterative scheme (23).

Lemma 4.1. Leto and be the two positive numbers defined by (15), H be a function on RY
x R” defined by (12), S € Sand ¢ be a positive homogeneous and convex function onR". If
the following conditions hold
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1. the sequence is boundea,
2. limg ool A44D) — ARl g = limy 0 I16KFD) — KA = 0,

then there exists a subsequence of % that converges to a solution of the coupled equations
(21)—(22).

Proof. Since by hypothesis #is a bounded sequence in R x R”, there exists a subsequence
{(A%, (kD) : j€ N} that converges to a point (7 £) in RY x R™ This together with
Condition (ii) ensures that the subsequence {(A¥*1), {k#1)) : j€ NI} converges to the same
ppipt. Therefore, in (23) by choosing & := k;and letting /— 00, we conclude that the point
(7,b) satisfies the coupled equations (21)—(22).

The use of Lemma 4.1 in the proof of the convergence result requires that we verify the

hypotheses of the lemma. This is fulfilled by establishing the following estimate on the
quantities defined by

I 2 1 2
® .— (k) _ + 0 _p
W= I = full 46 - bl

for a solution (£, b.) of equations (21)—(22) that
e<k>+ik§“”f</+1> _ h<j>”2+Lkic“h<j> _ f</)||2+LkiD 10D Z B <O, (3
27 = S 21 = / 5 20 = J -

where /4 is defined as in (24), and C;, Djare some positive constants.

We now establish several results needed for proving estimate (32). For a proper convex
function y : H — R U {+c0} and a symmetric positive definite matrix 7, the proximity

operator of y with respect to 7, denoted by proxg, is defined for a given vector x € H by

1
proxg(x) = arg min {lﬁ(u)+§||u — xII? ‘u€ H}

Clearly, we have that pr0X¢,=pr0X1¢. Moreover, for xin the domain of y and y € H, we have
the following generalization of (9)

vy € Toy(x) if and only if x:prox;(x+y). (33)

We next present a reformulation of the proximity operator proxr.
Proposition 4.2. IfSES then
proxszroxi,. (34)
Proof Let x € R%and p= prox(X). By relation (9), we have the inclusion x - p € dT(p).

Since p e RY, using equation (11), we get that x— p € SOT(p). By relation (33), it yields that
p:proxfr(x), which completes the proof.
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With Proposition 4.2 in mind, we next discuss several properties of the operator

T . . .
prox, (- = T(VG)()), which are crucial in our convergence analysis.

Lemma 4.3. Let C be a nonempty closed convex subset of H, T be a symmetric positive
definite matrix mapping H to itself and G be a proper convex differentiable function on H.
Set

p::prox[TC (x=TVG(x). (35

Then the following statements hold:
1. Foranyye€ C,

lp = ylI2 < llx =2 = llp = 212 = 2(VG(x), p =) (36)
and

Ip = ylI2 < llx =2 = lIp = 22 = 26VG(x), p — x)+2[G() - G()].  (37)

2. Furthermore, if G is also differentiable at p, then for any y € C,

lp = YI2 < llx =yI2 = llp = 12 = AVG(x) = VG(p), p — x)+2[G(y) — G(p)].  (38)

Proof. We first prove the inequalities in Item (i). Note that for any y € H, we have that

lp = YZ=llx = ylIZ = llp = AlZ+2(T " (p = %), (p = ¥)).  (39)

By equations (35) and (9), we have the inclusion relation

x=TVG(x)—peTo(p).

Multiplying the above inclusion by the symmetric positive definite matrix 71 and recalling
the definition of the subdifferential, we have for all y € Cthat

(T™'(x = TVG(x) = p).y = p) < 1) = 1.(p)=0.
By splitting the term { 7-1(o-x), p—y) as the sum of { T (x- TV G(X)-p), y-p) and (~V G(x),

p-), and using the above inequality, from (39) we conclude that inequality (36) holds.
Inequality (37) follows from (36) together with

(VG(x), p = »=(VG(x), p = )H(VG(x), x = y)

and the inequality

(VG(x), x = y) =2 G(x) = G(y)

ensured by the convexity of G.
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Finally, since G is differentiable at p, again by the convexity of G, we have that

(VG(p), p —x) 2 G(p) - G(x).

This together with (37) leads to (38).

As a consequence of Lemma 4.3 with G being identical to zero, using (36) twice we derive
for all x, y € H that

lprox;, (x) = prox Wil < llx =3l (ao)
We next show that a solution of the coupled equations (16)—(17) is a saddle point of the
function H. This result is necessary for establishing inequality (32).

Lemma 4.4. Let H be a function onR9 x R" defined by (12). If(fi,by) eRIxR" isa
solution of the coupled equations (16)—(17), then inequality

H(fi,b) < H(fx,by) < H(f,by) (41
holds for any point (f,b) € RY x (u™' 0¢(0)).
Proof. We prove this lemma by showing the following two inequalities
H(fb) < H(fx.bx), forallbe (u'0p(0)) (42)
and

H(fiby) < H(f,by), forall feRe. (43)

We first prove inequality (42). By the definition of 4. and (28), we have that

by :prox[lr N (bx+Bf,).

Employing the characterization of the projection, we observe that

(Bf.,b — by )=((by+Bf,) — by, b—b,) <0, forallbe (u_l&p(O)),

which is equivalent to inequality (42).

It remains to show inequality (43). Using the relations (9) and (34), from (17) we get for any
S € Sthat

0 € SVyH(fx, b*)+SatR,[ (f%)-

Multiplying the above inclusion by the matrix S™1 guarantees that A(:, b.) achieves its
minimum value at the point £.. Thus, inequality (43) is valid.
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We next prove estimate (32) by employing Lemma 4.3 and Lemma 4.4. To this end, foran S
€ S we define the quantities

HV/-H(h(f),b(-f+”)—V/H(_f(f),b(-f“))” ) ] . )
Aj= KD =Dl =, if ”hm - f(j)”s #0,
0, otherwise,
and
HV/-H(f(-f),b(-f”))—V/-H(f(f’,b(-f‘)ll A irl .
B;:= P50 , Af YD — b0 2 0,
0, otherwise.

Lemma 4.5. I7(%., b.) is a solution of the coupled equations (21)—(22), then the estimate
(32) holds with Cj:= 1 - 2tA; and D;:= 1 - 2Tl Bl S B;.

Proof. Let jbe a positive integer. Identifying x, y, p, Tand G in (38), respectively, with b,
b., B, 1and —o H(HY, ), and recalling £/*1) being defined by the projection (24), we
have that

1 ; 1 . 1 . . L .
B~ bull” < (16 = bl = = B +HGD, B D)-HGD, b), - (a4)
20 20 20
where we have used the fact that VpAH(7, -) is a constant. Likewise, identifying x, y, p, Tand

Gin (37), respectively, with £, £., #*D, Sand tH(-, /D), recalling £#*1) being defined by
the projection (23) and applying Proposition 4.2, we observe that

2 1 . 1 . ) . . . . . . .
= £l < U = Flli= Y = PNV HGD, 6UD), fO— fI D)+ Hfi, b D)=H(FP, 6I*D). )

Using the inequality

H(fy, D) < HHD, by),

which is ensured by Lemma 4.4, in the sum of the last two terms of (44) and (45) yields

H(h(j), b(j+]))—H(f(j), b(*j+l))+H(f*, b(j+]))—H(h(j), by) < H(h(j), b<j+]))—H(f(j), b(jH)). (46)

The convexity of A(-, /D) ensures that

(VfH(h(j), b(j+1)), f(/) _ h(j)) < H(f(j), b(j+1)) _ H(h(j), b(j+])),

which combined with (46) gives

H(h(j), b(j”))—H(f(j), b(j+1))+H(f*, b(j+]))—H(h(j), by) < (VfH(h(j), b(j+1)), h(j)—f(j)>. 47

Moreover, identifying x, y; p, Tand Gin (36), respectively, with £, £#*1), A, Sand TH(,
H9), and recalling the definition (24) of /) in terms of the projection, we obtain that
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U _ e s Lpaoen _ 2 Lo _ oo D 0y p)_ D
=l = FOU = =Y = BN ==l = FONHV HGEP, BY), B =970, (a8)
27 ST 2r s 2t s
Recalling the definition of &), summing (44) and (45), and using (48), (47) in the resulting
sum yield
. . . . 1 . . 1 . .
D oD < _ | pUtD h(’)llf ——||hY = f(”||f — YD D)+, (49)
2t 2t 20

where

I = (VfH(f(j), b(./'+1)) _ VfH(h(j), b(j+])), f(j) _ h(j)),

L= (VfH(f(j), b(.i)) _ VfH(f(j), b(./+1))’f(j+1) _ h(j)>.

Next we further estimate the last two inner products in (49). Note that Sand S1 are
diagonal and positive definite matrices, and hence they have unique diagonal positive

definite square roots % and S respectively. We then have that

N

L= <S% (VfH(f(j), b(j+1)) _ VfH(h(j), b(j+1))) , S—% (f(j) _ h(j))> < ||VfH(f(j), b(j+1)) _ VfH(h(j), b(j+l))||s-1 ,”f(j) _ h(j)” .

The last inequality follows from using the Cauchy-Schwartz inequality together with the
definition of the weighted norm. Likewise, we can also get that

L < IVeH(D,B0) = Ve HFD, BT D) I = RPN s

From the definitions of /1) in (23) and /4 in (24) and inequality (40), we get

F9*D = 1l < afls (T HGED, 69D =V eH (D, 59| =]
N

s (VfH(f(j)’b(jH))_VfH(f(j)’b(j)))H' (52)

On the other hand, since

VfH(f(j), b(j)) _ VfH(f(j),b(j”)):/l,uBT(b(j) _ b(j+])),

this equation with (52) yields that

. _ L
IF9D — BN < Tl BILIIS 2 IBY — YV,

which together with the estimate (51) implies that

L < AutBBILIIS 169 — b1, (53)
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Combining inequalities (49), (50) and (53) together with using the definition of A;gives the
estimate

. . 1 . ) C; . ) D; . )
U)oU) < __||f(/+1) _ h(./)HS _ _f”h(./) _f(})”S _ _/||b(./+1) _ b(./)” . (54
2T 2T 20

Summing the above inequality (54) for jrunning from 0 to kyields estimate (32).

In order to use the last lemma to show the validity of the hypotheses of Lemma 4.1, we
bound the constants A;and B, that appear in the last lemma. To this end, we need the
following lemma that pertains to the Lipschitz continuity of the gradient of A with respect to
each of its variables.

Lemma 4.6. /f H is a function on RY x R defined by (12) and S € S then for a fixed vector

lgllolIAIIS 112
b inR"™ NV g, b) is Lipschitz continuous with constant 2 while for a fixed
vector Fin R V 4 f -) is Lipschitz continuous with constant A\l Bly. That is, for any f,,

fer?and bER”

lglloollANZNS I
IV (H (1, B) - VeH( B < =222~ pll - (65)
s Y

and for any by, b, € R” and f € R?

IVeH(f, b1) = VeH(f, bo)ll < AuliBlLlibr — ball. - (s6)

Proof. Using (13) and the definition of the weighted norm, for any £, f, e R?and bE R”,
we have that

1

oL (@SS - Anos
AR+ 0 AhL+Y) ||

IVsH(fi.b) = Ve H (2, DI =

It can be verified that

IAf;+7) © (Af+P)lle = ¥* and [[ASTS 3 (- f))ogll < AL IS Z b llglleoll fi — ol

from which inequality (55) follows.
Inequality (56) follows directly from the expression of V #/given in (13).

Finally, we show the convergence of the sequence #:= {(£X), &X) : k€ NI} generated by the
preconditioned alternating projection algorithm (23).

Theorem 4.7. Let A, W, y be positive numbers, o and <t be the numbers defined by (15), S €
S ¢ be a positive homogeneous convex function on R”, and H be the function on RY x R”
defined by (12). Ifp and . are chosen to satisty the conditions
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_ 2 _
< 1 -e)y 0<By < 1-¢

= ’ :u = s
2llgllNAIZNIS 12 21BIZIS Il

for some e € (0, 1), then for any initial pair (f©, b©) e R? x R, the sequence % converges
to a solution of the coupled equations (21)—(22).

Proof. We prove this theorem by employing Lemma 4.1. The conditions imposed on p and p
together with Lemma 4.6 lead to that both 1 - 2tA;and 1 - 2t IIBII,lI Sll, B are bounded
below by e for all j. Hence, Lemma 4.5 implies that the sequence {(X), 1) : j€ NI} is
bounded and sequence {IIb(/+1) - A1 : j€ N} converges to 0 and moreover both the
sequences {IA) - Miis: j€ N}, {14 - AMilg: jE NI} converge to 0, which implies the
convergence of the sequence {IIA4*1) — Al s: k€ NI} to 0. Therefore, by Lemma 4.1, there
exists a subsequence {(A%2, (kD) . j€ N} which converges to (f,5) € R? x (u~'8¢(0)), @
solution of the equations (21)—(22). It remains to show that the sequence #also converges to
the same point (#4). Indeed, inequality (54) ensures that

1 . 2 1 2
2—||f<f“> f*||+ ||b(f“> byl s;nf‘f) f*I|+ ||b<f+” bl (57)

Replacing the point (£, 4.) in inequality (57) by the point (74) and summing the resulting
inequality for jfrom k;to k— 1 with k> k;lead to the inequality

1 ~ 1 ~
— ™ - f||+ ||b<“ BIF < — 7% — f||+ ||b<’” BlI”.
2 2t

This clearly guarantees that the sequence %converges to the point (7).

We remark that the conditions stated in the last theorem imposed on the parameter p and
are rather restricted. We shall demonstrate in Section 6 by numerical examples that choices
of significantly larger p and p. than those allowed by the theorem lead to convergence of the
iteration.

5 TV-Regularized MAP ECT Reconstruction

In this section, we specialize the general preconditioned alternating projection algorithm
developed in Section 3 to the MAP ECT reconstruction by specifying the function ¢, the
matrices B and the preconditioning matrix Sin (23). In particular, we present explicit
formulas of the proximity operators for the two special convex functions involved in the
algorithm. We also discuss the importance of the inner iteration for efficient computation in
the context of MAP ECT reconstruction. Finally, we compare differences and advantages of
our proposed algorithm with those of several existing algorithms for the Poisson-TV model

().

We first present explicit expressions of ¢ and B according to the definition of the total-
variation [53]. The concrete expressions of ¢ and B depend on how three dimensional
images are vectorized. A three-dimensional image is assembled by a stack of two-
dimensional images. For convenience of exposition, we assume that an image considered in
this paper has a size of px px g The image is treated as a vector in RP7in such a way that
the /jk-th voxel of the image, where / /€ N,and k€ N, corresponds to the (#(/ - 1)p+(k
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- 1)2)-th element of the vector in RP4, In the current section, we set d:= f2q. To define
the matrix B, we define an a x a difference matrix O, by

In terms of the notion of the matrix Kronecker product ®, we define the 3d'x dmatrix B by
,®1,®D,

B:=| ,®D,®I,
D,®I,®1,

The convex function ¢ : R39— R is defined at z€ R3?as

d
w(z):=Z
i=1

[2i, Za+is 224+ Il (58)

The isotropic total-variation of a vector fis then expressed as ¢(B1).

Execution of the iterative scheme (23) requires the availability of explicit formulas for the

proximity operators of functions ¢ defined in (58) and the indicator function " := tg«. For a
positive number p. and a vector z € R37, the components of the vector

yi= proxﬂflw(z)

can be computed by using the formula

1 iy Zd+is 17
O} [Zi, Zd+is 22d+i] ieN,.

[Yi> Yasis y2a+i] T =max {||[Zi,Zd+i,sz+i]T|| - e
H [zi» za+i> z2a+i] 'l

With this formula, for any positive integer rand a vector /€ R the operator Q), defined by
(29) can be explicitly computed. The proximity operator of the indicator function T (the

projection operator onto the first octant R¢) also has an explicit expression. That is, for
X € R’i,

(prox(x)),=max{x;, 0},i € Ny.

Thus, both proxu—1¢ and proxy have closed forms in the current context. These closed forms
are convenient for numerical evaluation of the proximity operators of the two specific
functions in the sense that no further optimization problems are required to solve. These
specific examples can be evaluated numerically within the machine precision. While in
general, computing the proximity operator of a convex function requires solving an
optimization problem by its definition. Even in the situation when closed forms of the
proximity operators are available, some round-off errors may be introduced during
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computation. In such a case, one needs to consider the stability issue of computing the
proximity operator.

Based on Proposition 3.4, we propose the following algorithm (Algorithm 1) for the MAP
ECT reconstruction.

Algorithm 1
(Alternating Projection Algorithm for MAP ECT Reconstruction with a Fixed Matrix S)

1: Preparation: V#, V,H, T are defined in (13), (14) and (15), respectively. The parameter ris a positive integer.
2: Initialization: £9 = 1, 40 = 0.

3: repeat

4:  Step 1: /0 < proxy(£¥ — TSV H(£R, HKY)

LR )

a

Step 2:
Step 3: £51) «— proxy (KX — TSV H(£P, HFD))

7: until “convergence”

24

The parameter rin Algorithm 1 is the iteration number for the inner iteration. When ris
chosen to be 1, three steps in Algorithm 1 correspond to the three equations in (24),
respectively. In Algorithm 1, both Steps 1 and 3 involve the matrices A and AT while Step 2
involves matrix B. In the context of the MAP ECT reconstruction, matrix A is a dense
matrix of a large size and matrix B is a sparse matrix of a relatively small size. As a result,
computation with the matrix A or AT is more costly than computation with the matrix B. To
reduce the overall computational cost, we suggest that the inner iteration be carried out with
an appropriate choice of iteration number r. By paying less computational effort with an
appropriate rwe could obtain a more accurate estimate A4*1) at the A-th outer iterate. We
shall study in the next section by numerical examples the choices of the iteration number r.

The preconditioning matrix Sis not specified in Algorithm 1. The choice of the
preconditioning matrix is crucial in designing computationally efficient algorithms. One
may choose the preconditioning matrix Sas the identity matrix, which corresponds to the
trivial case without preconditioning. More interesting cases are the nontrivial choices. The
choice of the preconditioning matrix Smay be motivated from different ways with the same
purpose of speeding up the convergence of the algorithm. A possible nontrivial choice is
motivated by the idea of the projected Newton method. For more details of the projected
Newton method, see [3, 6]. In passing, we point it out that preconditioning techniques were
used in the context of emission computed tomography for other algorithms (see, for
example, [15, 32, 34, 45]).

We propose a choice of the preconditioner Sbased on the classical expectation-
maximization (EM). Recall that EM is an iterative scheme for computing the maximum
likelihood estimate. According to [35], when the EM algorithm is applied to (1), we have for

any f© e R that

(k+l):E(k)AT( 8 )7 -
f AfP 1y 9

where £ is a diagonal matrix defined by
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(k)
E® .= diag (%) (60)

In the EM algorithm, the matrix £ determines the direction for the next step of a search
for the minimizer, for the purpose of finding the maximum likelihood estimate. By
comparing (59) with the form of V #given in (13), motivated by the matrix £4) having the
form (60) we suggest that we choose the matrix Sin Algorithm 1 as the diagonal matrix £
at the A-th iteration. This choice of the preconditioning matrix allows the search of the
minimizer to follow the direction of the search in the classical EM algorithm for finding the
maximum likelihood estimate while preserving the advantage of the alternating projection
nature in the proposed algorithm. In this way, the preconditioning matrix is updated at every
iterate step when a new value A4 is available. This leads to the following algorithm
(Algorithm 2) for the MAP ECT reconstruction.

Since the choice of Sis motivated from the EM algorithm (59), we shall call Algorithm 2
the EM preconditioned alternating projection algorithm (PAPA) for MAP ECT
reconstruction and call the matrix £the EM-preconditioner. A numerical comparison of the
proposed Algorithm 1 and Algorithm 2 will be presented in the next section. The numerical
study shows that the EM-preconditioner speeds up significantly the convergence of the
alternating projection algorithm.

We further comment on the dynamics of the EM-preconditioner. The PAPA algorithm
which we described in Section 3 and for which we proved convergence in Section 4 has a
fixed preconditioning matrix S. The preconditioner in Algorithm 2 changes dynamically
from step to step. In the next section, we shall study the dynamics of the EM-preconditioner
numerically and shall see that after some iteration steps, the change in the EM-
preconditioner is so small that it can be neglected. In other wards, the EM-preconditioner
tends to a fixed preconditioning matrix as the iteration number increases. Therefore, in
practise, we may fix the preconditioning matrix after some iteration steps and propose the
following semi-dynamic PAPA (Algorithm 3). In this way, the convergence theorem
established in Section 4 is still applicable.

Algorithm 2
(Preconditioned Alternating Projection Algorithm for MAP ECT Reconstruction)

Preparation: V #, V ,H, © are defined in (13), (14) and (15), respectively. The parameter ris a positive integer.
Initialization: £9 =1, 40 =0.

repeat

ATl

(k)
S® — diag (f )

Step 1:

step2. " Pra(FY = 7SOV H(FP, b))

k+1 r k
Step 3;b( e Qh(k)(b( ))

op . f 1 P (19 = TS OF (O, b))

until “convergence”
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Algorithm 3
(Semi-Dynamic PAPA for MAP ECT Reconstruction)

Preparation: V #, V ,H, © are defined in (13), (14) and (15), respectively. The parameters rand /are positive integers.
Initialization: £9 =1, 40 =0.

Run Algorithm 2 until A> /.

(D
SO  diag (f—)

Set ATl

repeat

Stop 1 AL PR‘{ (f(k) Y (l)fo(f(k)’ b(k)))

k+1 r k
Step 2: b( *h — Qh(k)(b( ))

step FlED Pp (f(k) - 7S (I)VfH(f<k), b(’<+1)))

until “convergence”

To close this section we compare PAPA with four existing algorithms, namely, the
alternating extragradient method (AEM) [7], the nested EM-TV algorithm [54], the nested
iterative algorithm for convex constrained problem [13], and the preconditioned primal-dual
algorithm (P-PD) [50, 56].

The AEM algorithm, which is a variant of the extragradient method, was developed to solve
the saddle-point formulation of the Poisson-TV model (7). We point out that the AEM
appears to be a special case of the proposed Algorithm 1 with the trivial preconditioner S=/
and inner iteration number r= 1, but it was developed based on a different principle. The
introduction of inner iteration number rand a nontrivial preconditioner Sin PAPA allows us
to develop more efficient reconstruction algorithms.

We now compare PAPA with the nested EM-TV algorithm. Actually, the nested EM-TV
requires to solve an optimization problem of the form

1 kshy A1 &Y\ 1 10(BA - F € RY
argmin 4 5 f—f ,WO(f—f 2) ) +Ap(Bf) . f € RY

exactly in each outer iteration. While PAPA does not need to do this and it leads to a more
efficient algorithm. This will be demonstrated by numerical examples in the next section.

Next we compare PAPA with the nested iterative algorithm proposed in [13] for solving
convex constrained problems. The paper combined the forward-backward and the Douglas-
Rachford iterations together to minimize the sum of two functions over a convex set. The
validity of the resulting algorithm requires at least one of the two functions differentiable.
While PAPA is developed based on a fixed-point characterization (in terms of the proximity
operator) of the solutions of the Poisson-TV model (7), which does not necessarily require
any term of the objective function to be differentiable.

Finally, we compare PAPA with the P-PD algorithm developed in [56], which prototyped
several convex optimization problems for computed tomography (CT) image reconstruction
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with the primal-dual (PD) algorithm, proposed earlier in [12]. Within each complete iterate
step, the PD algorithm introduces an extrapolation step based on the current and previous
iterates, which can be seen as an approximate extragradient step. In contrast, PAPA
computes the primal leading point /(4 by taking an extragradient step based on the current
iterate only. Besides, PAPA made good use of the sparsity of the difference matrix B by
carrying out the inner iteration to reduce the overall computational cost, while reference [56]
did not. Indeed, matrix A is much denser than matrix B, and hence computation with A or
AT is more costly than that with B. As we have pointed out earlier, by carrying out the inner
iteration with an appropriate iteration number rwe could greatly accelerate the whole
iterative scheme. Moreover, following the idea in [50], paper [56] developed a P-PD
algorithm for model (7) using fixed diagonal preconditioners. While in PAPA, we proposed
a dynamic preconditioner motivated from the EM algorithm, which proves to be more
efficient and converging faster in the numerical experiments presented in the next section.

6 Numerical Experiments

In this section, we report numerical results obtained from computational experiments for the
proposed algorithms. We compare our algorithms with the conventional EM-TV algorithm
[48] and the nested EM-TV algorithm [54] in terms of the reconstruction quality and
computational performance. We also compare the convergence speed of our proposed
algorithms with that of the P-PD algorithm developed in [56].

6.1 Simulated SPECT Projection Data

We created a digital cylindrical emission phantom with uniform mean background activity
distribution (that is, with uniform mean number of nuclear disintegrations per time unit and
per unit volume) and sets of 7 hot spheres and 7 cold spheres embedded in the cylinder. The
hot and cold spheres simulate hyperperfused and hypoperfused defects, respectively. Such
defects are of interest in nuclear medicine and one of the main tasks of ECT is detection of
such defects. Mean activities across all spheres are uniform. The mean activity ratios of
hot:background:cold areas are 40:10:1, respectively. The pixel size used is 0.172 cm. The
phantom dimensions are: base radius 84 pixels and length 128 pixels. The spheres radii are
3,4,5,6,7,9and 14 pixels. Their centers are in slices 33 and 97. The locations of spheres
in transaxial and sagittal planes are shown in Figure 1. The spheres are separated by a
uniform region located between slices 47 and 82. The mean activity distribution in the
phantom represents the mean radiotracer distribution, that is, the image fin (1). The parallel-
collimator SPECT projection data for our experiments consist of 120 views in 256 x 128
matrix with pixel size 1.78 mm and were generated using analytical pixel-wise discretized
projector A in (1) with 20 rays per detector bin [59]. The generated data follow Poisson
probability distribution created by a random number generator and the total number of
detector counts in 120 views equal to 1.79 x 106 and 1.947 x 107 corresponding to
approximately 10 : 1 total activities ratio. Neither attenuation nor scatter was modeled and
an ideal detector was assumed. Each image in these projection sets was then downsampled
to a 128 x 64 matrix with pixel size 3.56 mm. The coefficient of variation (CV) defined as
the ratio of the standard deviation to the mean in the projection image of a sufficiently large
uniform region away from edges is used as a measure of Poisson noise in the noisy
projection data. Using such a definition, our projection sets are characterized at 56% and
15% noise levels, respectively (Figure 2). For the sake of convenience, the phantom with
higher (less noisy) and lower total activity (more noisy) is called“low-noise phantom” and
“high-noise phantom”, respectively. The low-noise phantom corresponds to clinically
realistic SPECT data, while the high-noise phantom SPECT data would result in clinically
unacceptable high noise in the reconstructed images if treated with conventional
reconstruction techniques.
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Examples of one noise realization for one projection view are shown in Figure 2.

6.2 Numerical Studies of the Proposed Algorithms

In this subsection, we assess the numerical performance of the proposed algorithms:
Algorithms 1, 2 and 3 in image reconstruction for the SPECT projection data generated from
the low-noise and high-noise phantoms. Specifically, we consider three issues related to the
proposed algorithms: the necessity of the preconditioning, the convergence of the proposed
preconditioner (60) and the role of the multiple iteration steps in the inner iteration.

In our numerical experiments, the regularization parameter A in the Poisson-TV model (7) is
chosen by adopting the Bias-Noise curve method. Specifically, we calculated bias and the
coefficient of variation (CV) in a reconstructed background region of interest for candidate
regularization parameters (ranging from 1 x 10~ to 1), and obtained the bias-CV curve.
When choosing the optimal parameters, we consider the best trade-off between bias and CV.
Furthermore, in order to improve the statistical accuracy, we generated three SPECT
projection data sets with different noise realizations from the low-noise and the high-noise
phantom, respectively, and evaluated the mean values of bias and CV with respect to the
three different noise realizations. In particular, in our numerical experiments, the
regularization parameter A in the Poisson-TV madel (7) is chosen to be 0.1 and 0.2 for the
SPECT projection data sets generated from low-noise and high-noise phantom, respectively.
The constant y in the model is set to be 0.01 for both phantoms. Let {% : K€ N} be a
sequence generated by either Algorithm 1, 2 or 3. For a pre-given tolerance tol, the iterative
process of an algorithm is terminated if the following requirement is satisfied

PO = FEPIr P < ol )

The parameters in Algorithms 1, 2 and 3 are specified as follows. For Algorithm 1 without
preconditioning (S = /) we choose B to be 10 times of the upper bound suggested by

Theorem 4.7, and u := 1/(2ﬁ||B||§). For Algorithm 1 with the fixed diagonal preconditioner

. 1 1
diag (ﬁ) we set B = A, and #=1/(21||B||§||ﬁlloo). For Algorithms 2 and 3 we set p = A,
2 S
and /~t=1/(2/1||B||2||ﬁ||00) in their A<th iterations.

In the first experiment, we compare the performance of Algorithm 1 without preconditioning

1
(S= /) with that of Algorithm 1 with the fixed diagonal preconditioner 428 (ﬁ) and that
of Algorithms 2 and 3. The parameter rfor all the algorithms is fixed at 10 and the other
parameters for each algorithm are chosen as discussed above. When implementing
Algorithm 3, in the first 100 iterations, we use the dynamic preconditioner and after 100
iterations, we fix the preconditioner. Table 1 gives a summary of the CPU times (process
times) and numbers of the complete iterations for reconstructing images from the noisy
SPECT projection data set generated from low-noise phantom. It clearly shows that
Algorithms 2 and 3, which have dynamic and semi-dynamic EM-preconditioners
respectively, converge significantly faster than Algorithm 1 with either preconditioner. We
remark that Algorithm 1 with either preconditioner cannot meet the stopping criteria for the
last tolerance level. This phenomenon is marked by (—,-) in the table. Therefore, in the
remaining part of this section, only Algorithm 3 will be used to compare with other existing
algorithms for the Poisson-TV model (7). For comparison, we include in Table 1 the
numerical results for the P-PD algorithm [56] which also uses a fixed preconditioner. Its
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performance is even worse than that of Algorithm 1 with the fixed diagonal preconditioner

. 1
diag (ﬁ)

The proposed preconditioner (60) depends on the current iterate and is updated at each
iterate step. The second experiment explores numerically how the preconditioner (60)
changes in iterations in terms of its £-norm and Frobenius-norm. Figure 3 presents the
curves of both norms versus iteration numbers for the low-noise and high-noise phantoms.
From the figure we conclude that after a few iterations, the change of the preconditioner (60)
is neglectable. This suggests that except for the first few iterations, the preconditioner may
be chosen to be the same. In this regard, the convergence result (Theorem 4.7) that we
establish for the fixed preconditioner is applicable to the practical situation.

The third experiment tests numerically the choice of the parameter rin the inner iteration for
Algorithm 3 (PAPA) in terms of the CPU time that the algorithm requires to reach the
stopping criteria (61) for different tolerances. We perform PAPA with rfrom 6 to 15 for the
noisy SPECT projection data sets generated from low-noise and high-noise phantoms with
the tolerance tol = 107, The numerical results for the noisy SPECT projection data set
generated from the low-noise phantom show that the algorithms with the parameter r
ranging from 7 to 11 perform comparably and are better than those with other ranges of r.
The numerical results for the noisy SPECT projection data set generated from the high-noise
phantom indicate that the algorithms with the parameter rranging from 10 to 12 perform
comparably and are better than those with other ranges of 7. According to this numerical
observation, in the remaining part of this section, we fix the parameter rfor PAPA at 10.

6.3 Comparison of PAPA with the EM-TV Algorithm

We now compare performance of the proposed PAPA with that of the conventional EM-TV
[48], in terms of the CPU time, local image quality metrics: the coefficient-of-variation (CV)
measured within the uniform region of interest, contrast-to-noise ratio (CNR), and a global
image quality metric: the normalized mean-squared error (NMSE).

We first recall the conventional EM-TV algorithm. For a given positive number &, the
smoothed version of the total variation is a function £: R? — R defined at v € R%as

d
Rw) = ) [[[(Bwy, (Bu)guis (B, 617 (62)
i=1

With this function R, the conventional EM-TV algorithm [48] is described in Algorithm 4.

Algorithm 4
(Conventional EM-TV Algorithm for MAP ECT Reconstruction)

Initialization: £9 = 1.

repeat

(k)
FED  diag S | AT[—2—
AT1+AVR(f®) AfP 4y

until “convergence”
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For reconstructions with the conventional EM-TV algorithm, following [48] we choose & =
0.001 which is less than 1% of the maximum value of the phantom. Moreover, we note that
when A vanishes the conventional EM-TV algorithm reduces to the EM algorithm (59).

We now evaluate the quality of the reconstructed images. First, we compare noise in the
reconstructed images. We use the coefficient of variation (CV) within a uniform region of
interest as a surrogate of noise measure in the reconstructed images obtained using
Algorithm 2 and the conventional EM-TV. The CV of an image /* reconstructed by an
algorithm is defined by

CV := M,
Eq (/%)

where SDg(') and Eq(-) denote the standard deviation and the mean of the reconstructed
activities over a region. In our case, the region is a cylinder with the radius of base and the
height equal to 25 and 8 pixels, respectively. This cylindrical region lies between the hot
spheres and the cold spheres (please refer to Figure 1 (c)) and does not intersect with any hot
or cold spheres. Under these circumstances, the means of CVs (with respect to 5 different
noise realizations) for PAPA and the conventional EM-TV are 0.12% and 3.81%,
respectively, for the low-noise phantom, and are 4.09% and 13.15%, respectively, for the
high-noise phantom. From these numerical results, we find out that PAPA performs
considerably (factor of 31 for low-noise phantom data and factor of 3 for high-noise
phantom data) better than the conventional EM-TV in terms of the noise.

Next, a local quality metric, contrast-to-noise ratio (CNR), of images will be used to
measure the quality of the reconstructed hot or cold spheres. Too low CNR might result in
inability to detect the lesion by an observer. The contrast-to-noise ratio (CNR) for a
reconstructed image 7 is defined as a ratio of a lesion contrast to the background noise [4,
40, 51]

B, ()~ Eg ()]
~ SD, (f*)

Here [Eq 7(£°) is the mean reconstructed activity in the region Q 7where a specific hot (resp.
cold) sphere is located, while Qg is a spherical region with the same diameter as the hot
(resp. cold) sphere but located within the uniform region of the cylindrical phantom that
does not intersect with any hot or cold sphere. The CNR metric is important in Radiology
because it allows to asses detectability of a lesion that is one of the main tasks of ECT. It is
well established by human observer studies that the lesion contrast and the background noise
influence lesion detectability [40]. We note that even when the signal-to-noise ratio is high,
the presence of a significant bias in the reconstructed image might result in the lesion
contrast being too low for a lesion to be detected. Very high noise or correlation of the noise
will contribute to low detectability of the lesion even if the lesion contrast is high [46]. The
curves of the means of CNRs (with respect to 5 different noise realizations again) versus
diameters of spheres are plotted in Figure 4. Again, we observe that PAPA very significantly
(factor of 7-14 for high-noise phantom) outperforms the conventional EM-TV in terms of
the CNR values.

We use the normalized mean-squared error (NMSE) to assess accuracy of reconstructions.
The NMSE is a global image quality metric. It quantifies the difference between the activity
reconstruction 7/° and the true mean activity fin the whole object. It is defined by
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)
A1

The mean values of NMSE (with respect to 5 different noise realizations) for the images
reconstructed by PAPA and the conventional EM-TV are 0.485 and 0.787, respectively, for
the low-noise phantom, and 2.55 and 3.93, respectively, for the high-noise phantom. Once
again, PAPA significantly outperforms the conventional EM-TV in terms of the NMSE
values.

6.4 Comparison of PAPA with the Nested EM-TV Algorithm

In this subsection, we compare performance of PAPA with the nested EM-TV algorithm, the
algorithm recently described in [54].

In Algorithm 5, we describe the nested EM-TV algorithm for ECT reconstruction. This
algorithm has two major steps: the EM step and the TV correction step, and they are
performed alternatively. The EM step is identical to (59). The TV correction step is a
modified version of the Rudin-Osher-Fatemi (ROF) model and was implemented by
exploiting an existing scheme for the ROF model. In fact, it was stated in [54] that the TV
correction step in Algorithm 5 was carried out by adopting Chambolle’s method originally
reported in [11]. We shall follow the suggestion made in [54] to apply Chambolle’s method
with 10 iterations for each TV correction step to achieve an approximate solution.

Algorithm 5
(Nested EM-TV Algorithm for MAP ECT Reconstruction)

Initialization: £9 = 1.

repeat

(k)
o-an )5t

EM St ep: ATl AfO+y

ATl

F&+Y — argmin {% <f — D S e (f - f<k*%>)> +Ap(BPf € Ri}

TV Step: e

until “convergence”

In Table 2, we list the CPU time expended and the number of the complete iterations used
by PAPA, the nested EM-TV and the conventional EM-TV, for the two SPECT projection
data sets. After examining the table, we conclude that under the same stopping criteria
PAPA is better than the nested EM-TV, and significantly better than the conventional EM-
TV in terms of the convergence speed. We remark that the conventional EM-TV algorithm
cannot even meet the stopping criteria for most of the given tolerance levels.

In addition to the CPU time and the number of complete iterations, we further estimate the
number of arithmetic operations for PAPA and the nested EM-TV algorithm. We list in
Table 3 the number of total arithmetic operations required by PAPA and the nested EM-TV,
under various stopping criteria.

Furthermore, we compare the image quality metrics of the reconstructed images obtained by
using PAPA and by the nested EM-TV. The means of CVs for the reconstructions by PAPA
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and the conventional EM-TV are reported in Table 4. The means of CNRs with respect to 5
different noise realizations versus the diameters of the hot spheres (resp. cold spheres) for
PAPA, the nested EM-TV, and the conventional EM-TV are listed in Table 5 (resp. 6).
Moreover, the means of NMSEs with respect to 5 different noise realizations for the images
of the low-noise phantom and the high-noise phantom are presented in Table 7. We
conclude from these tables that both PAPA and the nested EM-TV outperform the
conventional EM-TV in terms of the values of CV, CNR and NMSE while PAPA performs
comparably with the nested EM-TV.

In order to qualitatively compare the image reconstruction quality, in Figures 5 and 6 we
present selected transaxial cross-sections through the reconstructed images of the hot and
cold spheres, respectively. Images reconstructed by PAPA, the nested EM-TV, and the
conventional EM-TV for two noise levels (56% and 15%) are shown. We observe much
higher background noise in the images reconstructed by the conventional EM-TV, as
compared to PAPA and the nested EM-TV. The quality of images reconstructed by PAPA
and the nested EM-TV is similar. The hot sphere with 4-pixel radius cannot be detected in
the images reconstructed from high-noise data by the conventional EM-TV. But, it is
detectable in the reconstructions performed using PAPA and the nested EM-TV. The cold
spheres with 6 and 7-pixel radii are poorly visible in the images reconstructed from high-
noise data by the conventional EM-TV. However, they are easily detectable in the
reconstructions performed using PAPA and the nested EM-TV.

To better access the differences between images reconstructed using PAPA and the nested
EM-TV, we obtain line profiles through selected transaxial cross-sections of the
reconstructed images containing the hot and cold spheres. They are shown in Figures 7 and
8 for hot and cold spheres, respectively. We observe that for hot spheres reconstructions
PAPA provides images with slightly better contrast and spatial resolution, as compared to
the nested EM-TV. For cold spheres reconstructions both algorithms perform similarly. The
conventional EM-TV reconstructions are inferior in any case.

7 Concluding Remarks

There is a great need to reduce radiation dose to the patients undergoing ECT examinations.
This could be accomplished by lowering the total amount of activity in the radiotracer
administered. However, it would lead to very high Poisson noise in the raw ECT data. In
turn, such very noisy data if treated by conventional techniques, such as EM-TV or OSEM,
would lead to very noisy and clinically unacceptable reconstructed images. To attain good
quality ECT reconstructions from low-dose ECT examinations, we propose a preconditioned
alternating projection algorithm (PAPA) for solving the maximum a posteriori (MAP) ECT
reconstruction problem. We prove that the algorithm enjoys nice theoretical convergence
results in the case that the preconditioner is fixed. Motivated by the classical EM algorithm,
we propose dynamic and semi-dynamic EM-preconditioners for PAPA to accelerate
convergence of the original iterative scheme, which is the main contribution of this work.
We demonstrate in the numerical experiments that the EM-preconditioner converges fast to
a fixed preconditioning matrix, which in turn confirms the applicability of the convergence
result to the practical situation. Since the total-variation (TV) based penalty function can
well preserve the edges and details of the reconstructed object, we particularly concentrate
on the example with TV regularization. Based on the numerical experiments performed in
this work, we observe that the alternating projection algorithm with the EM-preconditioner
significantly outperforms the conventional EM-TV in all aspects including the convergence
speed, the noise in the reconstructed images and the image quality. It also outperforms the
recently developed algorithm - the nested EM-TV - in the convergence speed while having a
comparable image quality.
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We conclude that the developed alternating projection algorithm with dynamic or semi-
dynamic EM-preconditioner might allow very significant reduction in the radiation dose to
the patients imaged using ECT by providing the same contrast-to-noise ratio for hot and cold
lesions as conventional EM-TV, but with the total administered radiotracer activity 2 to 6
times lower than presently used in ECT examinations reconstructed using the conventional
EM-TV.
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(a) (b) ()

Figure 1.

Morphology of numerical phantom used: (a) Transaxial cross-section (slice 17) through the
centers of all hot spheres; (b)Transaxial cross-section (slice 49) through the centers of all
cold spheres; (c) Sagittal cross-section through the centers of the two largest spheres. The
mean activity ratios of hot:background:cold areas are 40:10:1, respectively. The spheres
radii are counterclockwise: 3, 6, 4, 5, 7, 9 and 14 (center) pixels, respectively. The pixel size
used is 0.172 cm.
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Figure 2.

Example of one parallel-beam collimator SPECT projection view, out of 120 views in the
projection set, simulated for one noise realization for a digital phantom shown in Figure 1:
(a) 15% Poisson noise, 1.62 x 10° counts per view; (b) 56% Poisson noise, 1.49 x 10%
counts per view.
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Figure 3.
Curves of (a) £-norm and (b) Frobenius-norm of the preconditioner (60) versus iteration
numbers for low-noise and high-noise phantoms.
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(d)

Reconstructed image quality assessment for hot and cold spheres: Plots of mean (with
respect to 5 different noise realizations) contrast-to-noise ratio (CNR) vs. diameter of
sphere. The vertical error bars denote the calculated standard deviation of the mean. For the
EM-TV the error bars are smaller than the symbols used: (a) hot spheres in low-noise
phantom; (b) cold spheres in low-noise phantom; (c) hot spheres in high-noise phantom; (d)
cold spheres in high-noise phantom. Open squares - the conventional EM-TV. Open circles -

PAPA.
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Figure 5.
Transaxial cross-sections through the centers of the hot spheres (slice 17) in images
reconstructed for low-noise phantom: (a) PAPA,; (b) the nested EM-TV; and (c) the
conventional EM-TV. Transaxial cross-sections through the centers of the hot spheres (slice
17) in images reconstructed for high-noise phantom: (d) PAPA,; (e) the nested EM-TV; and

(f) the conventional EM-TV. The calibration bars indicates the linear mapping between
reconstructed activity and the gray scale used.
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Figure 6.
Transaxial cross-sections through the centers of the cold spheres (slice 49) in images
reconstructed for low-noise phantom: (a) PAPA,; (b) the nested EM-TV; and (c) the
conventional EM-TV. Transaxial cross-sections through the centers of the cold spheres
(slice 49) in images reconstructed for high-noise phantom: (d) PAPA,; (e) the nested EM-

TV; and (f) the conventional EM-TV. The calibration bars indicates the linear mapping
between reconstructed activity and the gray scale used.
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One-pixel wide line profiles through the centers of hot spheres with 7, 14 and 3-pixel radii in
transaxial cross-sections (slice 17) of: (a) the high-noise phantom; (b) image reconstructed
using PAPA from the high-noise phantom data; (c) image reconstructed using the nested
EM-TV from the high-noise phantom data; and (d) image reconstructed using conventional

EM-TV from the high-noise phantom data.
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One-pixel wide line profiles through the centers of cold spheres with 7, 14 and 3-pixel radii
in transaxial cross-sections (slice 49) of: (a) the high-noise phantom; (b) image
reconstructed using PAPA from the high-noise phantom data; (c) image reconstructed using
the nested EM-TV from the high-noise phantom data; and (d) image reconstructed using
conventional EM-TV from the high-noise phantom data.
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Table 4
Means of CVs for the reconstructions by PAPA, the nested EM-TV and the conventional EM-TV.

Phantom low-noise phantom  high-noise phantom
PAPA 0.12% 4.09%
nested EM-TV 0.14% 4.54%
EM-TV 3.81% 13.15%

Inverse Probl. Author manuscript; available in PMC 2013 November 01.

Page 45



Page 46

Krol et al.

zeee LETY 68¢'8 G18'6 G88'1T 9TT'ET L00°LT AL-N3
Svv's 2€6°€T ¥€2'82 S06°TE 015°LE 200°TY 6125 AL-IN3T paisau
8yrv'S 6€6'€T JAZA T4 6T6'TE STAWA 610 TY T.1°2S Vdvd
wojueyd asiou-ybiy
1A% 14 TSV oY v8¢'Ly ¢.8'TS LTL°9S 69795 T08'59 NL-N3
L19°0T9 296°'T¥0T 696°LLCT vS¥'8yyT  88ETLST  96%'/8ST  TYI'CI6T AL-IN3T paisau
TLZTT9 GE8'EYOT CEL08CT  L6Z'TSPT  vET'V.ST  LSS06ST  89L'ST6T Vdvd
wojueyd as1ou-mo|
€ 14 S 9 L 6 ¥T salayds Jo sisrewelq

" AL-INT [RUOIUSAUOI 8U) PUB A L-NT PaIsau 8yl ‘Vdvd Buisn pajoniisuodal sasayds 10y / 10§ SYND JO SUBSIA
g 9|qel

$watermark-text $watermark-text

$watermark-text

Inverse Probl. Author manuscript; available in PMC 2013 November 01.



Page 47

Krol et al.

6680  ¥2L0 01e'T TARS ¥8v'¢C rSe 626’1 AL-N3

29L0  ¥2ro 420" 89G'8 9/59 GOT'0T  €LEVT AL-IN3T paisau

¥9.°0 ¥evo eVva'T 0,98 1199 90T°0T 8LEVT Vdvd
wojueyd asiou-ybiy

€66'¢ G8.°9 07907 LTt 66G°CT S61T°GT TeL'8T NL-N3

LEV'YT TEEL6 08€'6CC L8G'€8C L80'0EE 8ESICY 1S VS AL-IN3T paisau

SOG¥T /8826 9..°6¢C T86'€8C CIS0EE vvv'leh  €9G°EVS Vdvd
wojueyd as1ou-mo|

€ 14 S 9 L 6 vT salayds Jo sisrewelq

"AL-INT [RUOIIUSAUOI Y} PUB A L-JAIT PaIsau 8yl ‘Ydd Buisn pajoniisuodal sasayds pjod / 10y SHND JO SUES|A

99|qel

$watermark-text $watermark-text

$watermark-text

Inverse Probl. Author manuscript; available in PMC 2013 November 01.



1X31-)ewiarems 1Xa1-)ew1a1ems

1Xa1-)1ewa1ems

Krol et al.

Table 7
Means of NMSEs for the reconstructions by PAPA, the nested EM-TV and the conventional EM-TV.

Phantom low-noise phantom  high-noise phantom
PAPA 0.48469 2.54701
nested EM-TV 0.48481 2.54794
EM-TV 0.78670 3.92571
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