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Abstract

Background: In radiation protection, biokinetic models for zirconium processing are of crucial importance in dose
estimation and further risk analysis for humans exposed to this radioactive substance. They provide limiting values of
detrimental effects and build the basis for applications in internal dosimetry, the prediction for radioactive zirconium
retention in various organs as well as retrospective dosimetry. Multi-compartmental models are the tool of choice for
simulating the processing of zirconium. Although easily interpretable, determining the exact compartment structure
and interaction mechanisms is generally daunting. In the context of observing the dynamics of multiple
compartments, Bayesian methods provide efficient tools for model inference and selection.

Results: We are the first to apply a Markov chain Monte Carlo approach to compute Bayes factors for the evaluation
of two competing models for zirconium processing in the human body after ingestion. Based on in vivo
measurements of human plasma and urine levels we were able to show that a recently published model is superior to
the standard model of the International Commission on Radiological Protection. The Bayes factors were estimated by
means of the numerically stable thermodynamic integration in combination with a recently developed copula-based
Metropolis-Hastings sampler.

Conclusions: In contrast to the standard model the novel model predicts lower accretion of zirconium in bones. This
results in lower levels of noxious doses for exposed individuals. Moreover, the Bayesian approach allows for
retrospective dose assessment, including credible intervals for the initially ingested zirconium, in a significantly more
reliable fashion than previously possible. All methods presented here are readily applicable to many modeling tasks in
systems biology.

Keywords: Bayesian inference, Model selection, MCMC sampling, Compartmental model, Internal dosimetry,
Systems biology

Background
Radioactive zirconium (Zr) isotopes are produced in large
quantities in nuclear fission reactors; one of the most com-
mon fragments in uranium fission is the radioactive 95Zr.
For example, the estimated released 95Zr activity of the
Fukushima and Chernobyl accidents is considered to have
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detrimental health effects not only via irradiation, but also
via the intake of edibles [1,2]. The estimation of radiation
doses is indispensable for risk analysis. This is true for
occupational exposure [3] and patients undergoing diag-
nostic and therapeutic nuclear medicine [4] as well as for
the public in general [5]. To calculate the radiation dose a
mathematical model is required for quantifying the depo-
sition of radioactivity from the incorporated radionu-
clide inside the human body. In internal dosimetry, this
model is called biokinetic model as defined by the Inter-
national Commission on Radiological Protection (ICRP)
in [5]. Also, the ICRP put forward the current standard
model, which we will simply denote the ICRP model. The
parameters of this model were mostly derived from ani-
mal data. In order to obtain more reliable dose estimates
for humans, the Helmholtz Zentrum München (HMGU)
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developed a new, physiologically more plausible biokinetic
model [6]. It is based on the processing of non-radioactive
Zr isotopes in 16 investigations with 12 healthy human
subjects. The measurements were taken in vivo in plasma
and urine up to 100 days after administration by appli-
cation of the double tracer technique. Moreover, a global
statistical analysis method has been developed and the
uncertainty and sensitivity of the HMGU model parame-
ters were analyzed [7,8].

The biokinetic models mentioned above incorpo-
rate basic processes in the human physiological system
[3,5,9,10]. Mathematically, this is characterized as follows:
All major human organs and tissues are simplified in the
model structure as separate compartments that represent
kinetically homogeneous amounts of radionuclides; the
connections between organs and tissues are described via
transfer rates, i.e. model parameters that represent the
exchange rates between the individual mutually exclu-
sive compartments. These multi-compartmental systems
along with their transfer parameters describing the kinetic
behavior of radionuclides in the human body are called
compartmental models [5,11]. Throughout this paper we
use the terms biokinetic model and compartmental model
interchangeably. The transfer of substances into and out
of compartments is governed by the law of mass balance.
Transfer parameters are frequently evaluated on the basis
of experimental data obtained from laboratory animals
and, to a lesser extent, human beings [10]. Although ani-
mal data is not directly comparable to human data, the
former can nevertheless be very helpful as prior informa-
tion.

In this publication, we address the problem of model
inference and model selection. A Bayesian approach
enables us to cover model and measurement uncertainties
for a compartmental model based on human data, while
simultaneously taking into account the prior information.
The Bayesian framework provides a fully probabilistic
approach [12]. It is grounded on the probability distribu-
tion of a problem specific parameter space conditioned on
the given data. This specifies a measure of belief for all
possible parameter values. Similarly – albeit not identical
– to confidence intervals, Bayesian analyses provide cred-
ible sets for the parameters at stake, holding regions and
limits of high parameter probability [13]. However, as they
are intrinsically driven by prior informations, some care
has to be taken in their interpretation [14].

For an overall assessment of the two competing bioki-
netic models for Zr, the previous model parameter uncer-
tainty analysis [7,8] is not sufficient, because uncertainties
arising from the model structure were not taken into
account. This shortcoming was addressed by our Bayesian
approach. Considering the models themselves as a ran-
dom variable allows to compute the probability for each
of the models conditioned on given data. The ratio of the

marginal likelihoods of two models, i.e. the ratio of the
probability for the data to be produced by the specific
model, is known as the Bayes factor, a quantity intro-
duced by Jeffreys [15]. Performing model selection using
Bayes factors is particularly useful when dealing with a few
models only. While classical model selection approaches
using statistics such as the AIC or likelihood ratio tests are
based on single best parameter estimates [16], the Bayes
factor takes into account all possible parameters values
and thus deals with model uncertainty and avoids over-
fitting issues [17,18]. Moreover, in contrast to classical
tests, the Bayes factor provides evidence for either one
of the (possibly non-nested) models by definition. With
the introduction of Markov chain Monte Carlo (MCMC)
methods [19-21] as tools for sampling from probability
distributions, a remarkable increase in Bayesian analyses
was noticed. However, due to very complex probability
surfaces these approaches often struggle with sampling
efficiency [22]. In order to avoid resulting convergence
issues of the MCMC approach, we combined a technique
called thermodynamic integration with a novel copula-
based Metropolis-Hastings sampler [23]. This provides
numerically stable results for the inference process.

The HMGU and ICRP models were compared based
on in vivo plasma and urine data of 16 investigations of
12 human subjects [6] using Bayes factors. More pre-
cisely, the models were evaluated for each investigation
individually and for the concatenated data of all investi-
gations. The latter allows to infer transfer rates (including
credible intervals) for an average individual. We further-
more provide an analysis based on the (i) plasma data and
(ii) urine data individually. Throughout the analysis, the
HMGU model turned out to be superior compared to the
ICRP model with respect to covering the specific data.
This means the HMGU model more precisely explains
the given observations and therefore the processing of zir-
conium in the human body. We then used the HMGU
model to analyze the accretion of zirconium in bones:
not only did we observe a delayed aggregation but also to
lesser extents than predicted by the ICRP model. Lastly,
the Bayesian framework yielded credible bounds for ret-
rospective dose assessment of an average individual, this
is, based on the concatenated data of all 16 investigations.
We provide a user-friendly estimation table for the predic-
tion of initially ingested zirconium concentrations for ex
post measurements. This impacts the estimation of intake
and radiation dose, especially the bone dose, when aiming
for personalized occupational monitoring data.

Methods
Biokinetic models for zirconium processing
We infer the biokinetics of zirconium as it is processed
in the human body. The currently used compartmen-
tal model was recommended by the ICRP in [5,10,24]
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(Figure 1A). It consists of eleven compartments and 15
transfer rates. Zirconium enters the body via the stomach
compartment y9 and is processed until it reaches any of
the two final compartments urine, y7, or feces, y8. Some
of the transfer rates and compartments of the ICRP model
are however physiologically questionable: The direct mass
transport from the two bone compartments to the urinary
bladder contents and upper large intestine compartments
or the distinction between trabecular bone surface and
cortical bone surface as such. In order to address these
shortcomings, we have recently proposed the alternative
HMGU model [6] combining the two bone compart-
ments into one single compartment and replacing these
mass flows by physiologically more plausible transfer rates
(Figure 1B). Altogether both models share eight transfer
rates, which we denoted by x1, . . . , x8. Transfers present
in just one of the models have a unique index to facilitate
distinction.

The dynamics of both models are described by a sys-
tem of coupled linear first-order ordinary differential
equations (ODEs): For each compartment yj with time-
dependent concentration yj(t), the rate of change of yj is
given by

d
dt

yj(t) =
∑

α∈A+
yj

xαy[xα](t) −
∑

β∈A−
yj

xβyj(t) (1)

where A+
yj is the set of indices of all transfer rates xα

flowing into compartment yj, A−
yj the set of indices of all

transfer rates flowing out of compartment yj and y[xα] is
the compartment which is connected to yj by the trans-
fer rate xα . For instance A+

y5 = {8, 10}, y[x8] = y10 and
y[x10] = y1 in the HMGU model. We have y9(0) = 100%
and therefore yj �=9(0) = 0%, this is, the complete amount
of zirconium is initially contained in the stomach com-
partment. The explicit model specific ODE systems can be
found in the Additional file 1 sections 1.1 and 1.2.

Experimental data

The human biokinetic data was measured in a sta-
ble tracer study executed at the Helmholtz Zentrum
München (HMGU) [6,25]. It includes 16 investigations
of 12 healthy humans with ingestion of a investigation-
specific amount of isotopically enriched stable zirconium.
The administered amount was based on the individuals
weight, aiming at a dose of 0.09mg stable tracer per kg
body weight. Tracer concentrations were determined in
blood plasma and urine. For the plasma data, samples
were taken several times during the first day in increasing
intervals, and more scarcely later on. Urine was collected
completely in 12-24h periods on several days. The last
samples were taken at 100d after tracer administration.
Tracer concentrations were normalized to the respective
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Figure 1 Models for the biokinetics of zirconium. A: ICRP model. The model consists of eleven compartments y1,. . . ,y11 and 15 time independent
transfer rates x1,. . . ,x8,x13,. . . ,x19. B: HMGU model. The model consists of ten compartments y1,. . . ,y10 and twelve transfer rates x1,. . . ,x12. In both
models zirconium enters the body in the stomach compartment y9 and diffuses through the system until it reaches either one of the two final
compartments urine, y7, or feces, y8. The gray compartments y1 and y7 are directly related to the datasets measured.
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tracer amount ingested in each investigation, such that
the total ingested amount corresponds to 100% at t = 0
in the stomach compartment y9. For model development,
the transfer compartment was taken to be identical with
blood plasma, and concentrations therein were expressed
as % per kg plasma. The plasma concentration was scaled
by the total amount of plasma in the body to get absolute
concentrations [26]. Urine data was expressed as excretion
rate in % per day.

Model likelihood
Technical limitations, such as missing in vivo measure-
ment techniques for all involved compartments as well
as noisy data introduce model uncertainties to biolog-
ical systems [27]. Comparing different kinds of models
based on single parameter estimates as done in maximum-
likelihood approaches is thus very critical. For statistical
model evaluation we here applied a Bayesian approach,
taking into account the full parameter distribution: For
each investigation i we assume that the data

Di = (yi,1
1 , yi,2

1 , . . . , yi,nb
i

1 , ẏi,1
7 , ẏi,2

7 , . . . , ẏi,nu
i

7 )

follows the solution cxk (t) of the differential equation
given in (1) for any of the two models Mk and some corre-
sponding parameter vector xk , where the model index k ∈
{H , I}. Here, MI is the ICRP model and MH the HMGU
model. Corresponding to the notation in Figure 1A and
1B, xI = (x1, . . . , x8, x13, . . . , x19) and xH = (x1, . . . , x12).
While yi,·

1 indicates measurements in plasma, i.e. in the
transfer compartment y1, ẏi,·

7 designates measurements of
the excretion rate in the urine compartment y7. There
are nb

i measurements in plasma and nu
i measurements

in urine for investigation i. Assuming furthermore that
all data points contain normally distributed measurement
errors, the investigation i and model k specific likelihood
function has the form

Li(xk , k|Di) =
nb

i∏
α=1

�

(
yi,α

1 |cb
xk (tα), σ b

i

)
︸ ︷︷ ︸

Lb
i (xk ,k|Di)

×
nu

i∏
β=1

�

(
ẏi,β

7 | d
dt

cu
xk (tβ), σ u

i

)
︸ ︷︷ ︸

Lu
i (xk ,k|Di)

,

where cb
xk (tα) denotes the solution to Equation (1) for the

transfer compartment y1 at time point tα , corresponding
to the measurement at yi,α

1 , for the parameter vector xk .
Furthermore, d

dt cu
xk (tβ) is the derivative of the solution for

the urine compartment y7 at time point tβ , corresponding

to the measurement ẏi,β
7 , while �(·|μ, σ) is the univari-

ate probability density function of the normal distribution
with mean μ and standard deviation σ .

The standard deviations for plasma, σ b
i , and for

urine, σ u
i , are fitted investigation-specifically by simulated

annealing [28] before starting the MCMC sampling pro-
cess. They correspond to the combined strength of all
deviations from the ODE, e.g. to the size of the measure-
ment error as well as to the magnitude of the difference
between the ODE solution and the data points that is due
to natural internal fluctuations not considered by an ODE
approach. The biological variability between the individ-
ual investigations is accounted for by the fact that we fit
different σ b

i and σ u
i for each investigation i and thus get

investigation-specific likelihoods. This leads to individual
credible intervals for each parameter in each investigation
in the MCMC sampling procedure later on.

The complete data (i.e. concatenated data) likelihood is
given by LALL(xk , k|D) = ∏16

i=1 Li(xk , k|Di) for the com-
plete data D = {D1, . . . ,D16} where in all Li(xk , k|Di)
the same fitted investigation independent σ b

i = σ b and
σ u

i = σ u are used.
For the calculation of Li(xk , k|Di) Equation (1) has to

be solved based on xk . Since (1) is of first order, it can be
written as

dyxk (t)
dt

= A(xk) · yxk (t), (2)

where yxk (t) is the vector of all the compartments of
model k and the time independent matrix A(xk) repre-
sents all the interactions between these compartments,
depending on the transfer rate values xk . The analytical
solution is then given by

yxk (t) = eA(xk)t · yxk (t = 0). (3)

The matrix exponential eA(xk)t was computed by eigen-
value decomposition using MATLAB’s eig function (see
Additional file 1 section 1.3).

Bayes factors
Specifying model specific, investigation indepen-
dent prior distributions p(xk|k) based on combined
human/animal data yields the posterior distributions of
the parameters for model k according to Bayes’ theorem:

p(xk|Di, k) = Li(xk , k|Di)p(xk|k)

p(Di|k)
, (4)

where p(Di|k) denotes the marginal density obtained by
integrating over the according parameter space Xk , i.e.

p(Di|k) =
∫

Xk
Li(xk , k|Di)p(xk|k) dxk . (5)

The quantity p(Di|k) is called data evidence and is the
basis for the model selection process. For comparing two
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models k and k′, we can view the model index as a ran-
dom variable, apply Bayes’ theorem again and take ratios
to cancel the denominator, yielding

p(k|Di)

p(k′|Di)
= p(Di|k)

p(Di|k′)
· p(k)

p(k′)
. (6)

The ratio of the two likelihoods in Equation (6) is known
as the Bayes factor

Bi
k,k′ = p(Di|k)

p(Di|k′)
. (7)

We had no initial preference for any of the models and
thus chose a uniform model prior. The Bayes factor in
Equation (7) then coincides with the posterior odds ratio
between the models k and k′ conditioned on the data Di
[18,29].

The Bayes factor compares the posterior probability
p(k|Di) that the data Di have arisen according to model k
versus the probability p(k′|Di) = 1 − p(k|Di) that Di have
arisen according to model k′, in contrast to single param-
eter measures such as the AIC or the likelihood ratio test
[16]. The models may be non-nested. Due to the eval-
uation of each model on its whole parameter space Xk

(cf. Equation (5)), the Bayes factor naturally penalizes
model complexity and thus prevents overfitting issues [30-
32]. An interpretation of the likelihood ratio in the Bayes
factor was given by Jeffreys [15], which can also be found
in the Additional file 1 section 3. Most importantly, a
Bayes factor Bi

k,k′ > 3 substantially favors model k, while
Bi

k,k′ > 100 decisively favors model k. Clearly, for Bi
k,k′ < 1,

model k′ is favored with evidence Bi
k′,k = 1/Bi

k,k′ .

Prior information
Since the problem of radiation protection has been exten-
sively researched, quite a large number of animal stud-
ies have been conducted. These yielded excessive prior
knowledge for the Bayesian modeling approach. As the
ICRP model is the recommended model used for dose
estimation, there naturally exists information on the dis-
tribution types of the parameters involved in the model
together with confidence intervals [7]. Four parameters
have a lognormal distribution, five a triangular distribu-
tion and six have a normal distribution (see Additional
file 1 section 2.3 for details). From the confidence inter-
vals, the parameters of the normal and lognormal distri-
butions were calculated. For the HMGU model detailed
prior information is also available from previous studies
[7,8]. Here, eight parameters have a lognormal distribu-
tion and four a triangular one (see Additional file 1 section
2.3 for details). It is noteworthy that of the eight parame-
ters shared in both models, x8 is the only one having dif-
ferent distributions in the ICRP and HMGU model. Due
to a lack of prior knowledge of the dependency structure

between the parameters, the multivariate prior distribu-
tion p(xk|k) of model k was taken to be the product of
the univariate prior distributions p(xk

r |k) for each param-
eter xk

r , i.e. p(xk|k) = ∏
r p(xk

r |k). Each univariate prior
distribution was truncated at zero. While Bayes factors
were computed inter alia for each investigation separately
(see Results and discussion), the same prior information
was applied throughout all investigations. This is reason-
able since the priors contain information from a huge
variety of preceding experiments.

Thermodynamic integration
Computing the marginal of Equation (5) by numerical
integration generally turns out to be a daunting task.
There exist a variety of approaches to tackle this problem.
Popular choices include Chib’s method, which is based
on a Gibbs sampling scheme and therefore not always
easily applicable [33] or the Reversible Jump MCMC algo-
rithm proposed by Green [34], based on an across model
search. Since the latter involves sampling of an additional
model parameter, the sampling generally takes longer than
sampling within the different models only. We therefore
applied a within model sampling technique called ther-
modynamic integration (TI). It was proposed by Lartillot
and Philippe [35] and Friel and Pettitt [36] and success-
fully applied e.g. in Xu et al. [37]. The method splits apart
the computation into several intermediate steps by intro-
ducing an auxiliary “temperature” parameter τ ∈[ 0, 1]
that governs the influence of the parameter likelihood.
The basis of this approach is the power posterior, which
is the usual posterior modified such that the likelihood
is exponentiated by the temperature parameter and then
normalized accordingly to obtain a probability density:

pτ (Di|k) = Li(xk , k|Di)τ p(xk|k)

z(Di|k, τ)
. (8)

More precisely, the quantity of interest is the normaliza-
tion constant

z(Di|k, τ) =
∫

Xk
Li(xk , k|Di)

τ p(xk|k) dxk (9)

since it yields a way to compute the terms of the Bayes
factor (cf. Equation (7)) by differentiating its logarithm

d
dτ

log z(Di|k, τ) =
∫

Xk
logLi(xk , k|Di)

× Li(xk , k|Di)τ p(xk|k)

z(Di|k, τ)
dxk

= Epτ

[
logLi(xk , k|Di)

]
(10)

and then integrating both sides with respect to τ

log(p(Di|k)) =
∫ 1

0
Epτ

[
logLi(xk , k|Di)

]
dτ , (11)
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according to Calderhead and Girolami [38]. This means
that the natural logarithm of the marginal likelihood
can be computed as the integral over the expectation of
the logarithmized data likelihood within the model with
respect to the power posterior. The parameter τ governs
the flatness of the power posterior surface and, much as
in the concept of path sampling [39], stabilizes the com-
putation of Equation (5) [36]: choosing a discretization
0 = τ1 < τ2 < . . . < τN−1 < τN = 1, we can compute the
natural logarithm of the marginal likelihood p(Di|k) by
numerically approximating the integral in Equation (11)
by

log(p(Di|k)) ≈
N−1∑
n=1

1
2 (τn+1 − τn)

{
Epτn+1

[
logLi(xk , k|Di)

]

+Epτn

[
logLi(xk , k|Di)

] }
.

(12)

Also, the expectation with respect to the power poste-
rior in Equation (12) is approximated in the usual way by
substituting it with the Monte Carlo estimate

Epτn

[
logLi(xk , k|Di)

]
≈ 1

M

M∑
m=1

logLi
(

xk
(m), k|Di

)
,

(13)

where xk
(m) denotes a sample drawn from pτn(Di|k). For

all our applications we chose a temperature schedule with
N = 30 steps according to τn =

(
n−1
N−1

)5
, n = 1, . . . , N

to estimate log(p(Di|k)) for each k and i as suggested by
Calderhead and Girolami [38].

Copula-based Monte Carlo sampling
The model, investigation, and temperature specific under-
lying Markov chain Monte Carlo (MCMC) samples
were drawn using the recently introduced copula-based
Metropolis-Hastings (MH) algorithm [23]. Copulas are
constructs from probability theory for assessing and sam-
pling from multivariate distributions. They are widely
used in finance and ecology [40,41]. For any absolutely
continuous multivariate cumulative distribution function
(cdf) F(x1, . . . , xd) with marginal cdf ’s Fi(xi), i = 1, . . . , d,
joint density function f (x1, . . . , xd) and marginal density
functions fi(xi), i = 1, . . . , d, we decompose

f (x1, . . . , xd) = c (F1(x1), . . . , Fd(xd))·f1(x1)·. . .·fd(xd),
(14)

where c (u1, . . . , ud) is a unique copula density function
defined on [ 0, 1]d with uniformly distributed marginals
on [ 0, 1]. This copula function covers the full dependency
structure of the variables. In other words, every joint dis-
tribution function can be decomposed into the marginal

behavior of its individual variables and a function covering
its dependency structure [42]. The MH proposal function
then generates problem specific proposals with an accord-
ing dependence structure drawn from a pair copula distri-
bution. Fitting the copula distribution was done in preruns
containing 1,000,000 unthinned samples each. They were
generated for each investigation and model separately.
For back-and-forth conversion of the prerun samples and
proposals [23], we naturally applied the according prior
distributions of the models at hand. Choosing different
conversion functions is possible, but affects the sampling
performance. Before starting the final MCMC sampling
procedure, the maximum a posteriori parameter esti-
mates were computed by simulated annealing and used
as initial MCMC sampling values. This makes a burn-in
period dispensable. For thinning the Markov chains, i.e.
for drawing approximately independent samples in the
MCMC procedure, we applied the autocorrelation-based
Effective Sample Size (ESS) proposed by Kass [43]. The
ESS holds the number of samples left when the Markov
chain is thinned such that two consecutive samples can be
considered approximately independent. The copula-based
MH approach is able to deal with the dependence struc-
ture in the high dimensional sampling space and allows
for high proposal acceptance rates at simultaneously high
ESS’s. Finally, all Bayes factors were computed based on
30,000 proposals of the copula-based MH algorithm at
each τn throughout all applications.

Results and discussion
In this section, we present the results of our analysis. We
address the question which model is superiorly fitting the
data. First, several general results, such as investigation
dependency of the Bayes factor and effects of parameter
correlations are shown, before turning to the results of the
model selection, and their consequences for the HMGU
and ICRP models.

Investigation specificity of transfer rates
In radiation protection the transfer rates for the biokinet-
ics of radionuclides in the human body are derived from
data collected in various independent experiments [5]. We
measured plasma and urine levels in 16 different investiga-
tions. This poses the question whether the models should
be compared based on the complete dataset, or whether
statistical evaluation should be done for each investiga-
tion individually. While the former approach results in
one overall Bayes factor, the latter yields 16 investiga-
tion specific, not directly comparable Bayes factors. All
investigations follow the same pulse-like time courses in
the transfer compartment y1 while the excretion rates in
the urine compartment y7 exhibit an exponential decay
behavior (Figure 2). However, zirconium tracer concentra-
tions showed up to a 50-fold difference between maximal
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Figure 2 The experimental data. Plasma and urine data for investigations 1-16 on log-log-timescale.

plasma concentrations, i.e. for investigation 10 (1.616%)

and 6 (0.033%).
To test the hypothesis whether the diversity in concen-

tration also effects transfer rates and therefore the esti-
mated Bayes factors, we pairwise compared the posterior
sample marginals of the MCMC run (corresponding to the
samples of τ = 1) for parameter x7 of the ICRP model
between all investigations by means of a Kolmogorov-
Smirnov test. Here x7 was chosen as it directly affects
the observed plasma levels [8]. Except for one pair, all
p-values were < 6 · 10−8, meaning that the chance of
falsely rejecting the hypothesis of comparable marginals
is negligible. Therefore, as the posterior marginal distri-
butions are quite different, it can be deduced that the
basis for the Bayes factor, the joint posterior distribution,
can differ quite strongly w.r.t. the individuals. This indi-
cated that each investigation should be treated separately.
Nevertheless, in order to infer the transfer rates of an
average subject, as currently used by the ICRP, the con-
catenated data had to be used. We therefore compared the
HMGU and ICRP model based on both the concatenated
data D = {D1, . . . ,D16} and, in order to account for the
biological diversity, the individual investigation specific
datasets Di (i = 1, . . . , 16). This could also be the basis
for further analysis of influence factors such as weight
or gender.

MCMC-based parameter estimation
Throughout, the analysis was based on 30,000 propos-
als for each of the 30 temperature levels in all 17 cases
(one for each investigation and one for D). For the HMGU
model the average ESS including one standard error, i.e.
taken over all temperature levels and investigations, is
5832 ± 405. In case of the ICRP model we obtained
in average 5808 ± 252 (approximately independent)

samples from the Markov chains. This naturally implied
high acceptance rates for both models. The sampling
procedure thus captured the power posteriors very
well.

From the posterior samples, we could derive new cred-
ible intervals for the parameters at hand as well as a
new MAP estimate for an average subject which can
be used if single parameter values are required (see
Additional file 1 section 4.1). As can be seen in Figure 3,
the fit of the time courses covered the data, indicat-
ing that both models are in principle able to fit the
data. This justifies our ODE approach with additive
noise. However, from the fits alone it is not obvious
which model is superior. Note that the credible inter-
vals in Figure 3 represent only the uncertainty based on
the parameters, in contrast to measurement uncertain-
ties accounted for by the σ b

i s and σ u
i s, which are not

shown. Clearly, this uncertainty in the parameters is spe-
cific to the individual investigations or the complete data,
respectively.

Parameter correlations and model identifiability
The posterior probabilities of both the HMGU and ICRP
model showed strong correlation between the parame-
ters x7 and x8 throughout all investigations. The esti-
mated Kendall’s τ ’s based on the preruns were τ̂HMGU =
0.8027 ± 0.01 and τ̂ICRP = 0.3452 ± 0.02. This can be
explained as follows: At time point t = 0 the stomach
compartment y9 is the only compartment with non-zero
Zr concentration. It is exclusively connected to the small
intestines y10 in all models. Therefore, all Zr compounds
have to pass through y10, which further on distributes
them to the observed transfer compartment y1 via x7 or
to the upper large intestines y5 via x8. Aberrations in one
of the parameters x7 or x8 thus have a direct effect on



Schmidl et al. BMC Systems Biology 2012, 6:95 Page 8 of 12
http://www.biomedcentral.com/1752-0509/6/95

A

DC

B

Figure 3 Posterior time courses. Sample median (solid line) and 90% credible interval (CI, shaded area) for the numerical solution of the time
courses based on the τ = 1 HMGU (blue) and ICRP (red) MCMC samples for the complete plasma data (A), urinary excretion rate over time of the
complete data (B), plasma data of exemplary investigation 15 (C), and urinary excretion rate over time of exemplary investigation 15 (D) on a log-log
scale. The median and CI represent the uncertainty in the parameters, in contrast to measurement uncertainty (not shown). Colored markers are the
data points. The median and the 90% credible interval were computed pointwisely at each time point over all MCMC-based solutions. For
readability we truncated plasma plots at 1 · 10−5[ %] and urine plots at 1 · 10−6[ %/d].

the amount of zirconium predicted for y1. This affects the
according posterior distributions. The same effect is found
for the complete data D (compare pairwise scatterplots in
Additional file 1 section 4.2). Despite the parameter
dependencies, the posterior distributions of the ICRP and
HMGU model are identifiable for all 16 investigations, this
is, the investigation specific maximum a posteriori esti-
mates are well defined and inferable (cf. Additional file 1
section 4.3).

Bayesian model comparison
Using the concept of thermodynamic integration we com-
pared the HMGU and the ICRP model based on (i) the
concatenated data D = {D1, . . . ,D16} and (ii) the indi-
vidual investigation specific datasets Di (i = 1, . . . , 16).
This results in a total of 17 Bayes factors. We found that
all Bayes factors favored the HMGU model; in 14 out of
the 17 cases even decisively (cf. Table 1, second column, of
this section and section 4 of Additional file 1).

In order to take a closer look at the contribution
of the plasma and urine data to the above results, we
computed additional Bayes factors based on the likeli-
hoods Lb

i (xk , k|Di) and Lu
i (xk , k|Di) individually. Here,

i = 1, . . . , 16, ALL and k ∈ {I, H}, where I repre-
sents the ICRP and H the HMGU model. The time

courses already suggested better coverage of plasma data
by the HMGU model (Figure 3 above and section 4.4 of
Additional file 1); for urine the situation is not that clear.
This was confirmed by the Bayes factors (see Additional
file 1 section 4 for sampling details): all 17 Bayes fac-
tors based on plasma data favored the HMGU model;
in ten cases even decisively (Table 1, third column). For
the urine data, three investigations slightly favored the
ICRP model (Table 1, fourth column). In summary, all
decisive Bayes factors are in favor of the HMGU model.
While the HMGU model was never decisively rejected,
the ICRP model was decisively rejected in the major-
ity of cases. Hence, in depth analysis showed that the
HMGU model is superior to the ICRP model with respect
to zirconium processing in the human body. This not
only holds investigation-specifically, but also based on the
complete data. We additionally considered an extension
of the HMGU model (see Additional file 1 section 1.2
and 4) which, however, did not show any significant
improvements.

Differences in radioactive 95Zr retention in bone predicted
by the HMGU and ICRP models
In internal exposure monitoring, biokinetic models were
used to predict the organ retention or daily excretion
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Table 1 Bayes factors

Inv. BA
H,I Bp

H,I Bu
H,I

1 7.17 · 101 7.12 · 101 1.05

2 1.15 · 102 2.93 · 102 3.94 · 103

3 5.95 · 104 5.23 · 104 1.34

4 1.07 · 103 2.64 · 103 3.47 · 101

5 2.19 · 102 4.73 · 102 1.34 · 102

6 4.64 · 103 3.93 · 103 2.38 · 103

7 2.18 · 102 2.30 · 102 1.34 · 103

8 3.75 · 101 1.28 · 102 0.22

9 4.62 · 102 2.32 · 102 0.18

10 8.62 · 102 1.16 · 102 0.20

11 1.17 · 105 1.81 · 101 2.94 · 103

12 1.78 · 102 5.48 1.14 · 101

13 7.19 · 102 1.41 · 101 4.41

14 3.58 · 101 7.43 9.77

15 6.29 · 103 2.17 · 101 1.60 · 102

16 6.22 · 102 1.34 · 101 1.20 · 104

ALL 1.20 · 1011 3.43 · 104 4.73 · 107

Bayes factors for the HMGU versus the ICRP model (BA
H,I) for investigation 1, . . . , 16 and the complete data model (ALL) as well as the according Bayes factors for the

plasma (Bp
H,I) and urine (Bu

H,I) data. The HMGU model is favored substantially, when B·
H,I > 3 and decisively, when B·

H,I > 100. Also, 1/B·
H,I = B·

I,H .

of incorporated radionuclides [44]. With an interval of
120 days the radioactivity of 95Zr possibly incorporated
by occupational workers was routinely monitored by
whole body counters. Depending on the intake route, the
radiation dose of bone surfaces or colon was taken as reg-
ulatory limit for a decision if an individual is requested
for person-specific monitoring [45]. In this monitoring
procedure, the biokinetic model structure and parame-
ters are used implicitly in the background. The organ
retention function is the solution of the model in each
compartment; the organ doses are directly related to
the integral of radioactivity of 95Zr in source organs
over 50 years.

In order to compare the retention of 95Zr as pre-
dicted by the ICRP and HMGU models, the 90% credible
intervals for the time courses in the bone compartments
were calculated based on the posterior samples. It is
found that there is a significant difference between the
two models (Figure 4), where for the ICRP model we
added the concentrations in the two bone compartments.
The time courses were derived for stable isotopes of Zr
and thus had to take the radioactive decay of 95Zr with
half-life of 64.032 d [46] into account. The decrease of
retention in bone using the HMGU model consequently
reduces the radiation dose estimate in bone in com-
parison to the ICRP bone dose which is currently used
in monitoring.

Retrospective dose assessment
Internal doses due to incorporated radionuclides have to
be estimated with the help of biokinetic models based
on indirect measurements, using for example bioassays
for blood or urinary excretion. Normally, bioassay or
in vivo data (e.g. radioactivity accumulated in skull or
knee detected by a partial body counter) are measured
after an accidental intake of radionuclides. Uncertain-
ties of estimated doses are significant and have a large
impact on the remediation and thus action costs. In con-
trast to conventional uncertainty analysis as performed
in [7], our Bayesian approach naturally integrates the
uncertainties of measured data and parameters simulta-
neously. This trait of the Bayesian approach is useful as
it provides an estimate for the intake and its credible
intervals.

For example, if the urinary excretion after accidental
exposure is measured, we can compute credible intervals
for the initial intake of radionuclide 95Zr by exploiting
the posterior distribution together with the linearity of
the HMGU model. In order to be as general as possi-
ble we used the posterior samples based on the complete
data. Given a posterior sample xH , a measurement ẏt

7
in [μg/d] for the urinary excretion rate of zirconium
at time point t corresponds to a unique solution cxH (t)
of the HMGU ODE system. Due to the linearity of the
ODE’s, the initial concentration cxH (0) is by definition
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Figure 4 Zirconium retention in bones. Median (solid lines) as well as 90% credible intervals (shaded areas) for the retention of 95Zr in the bone
compartment(s) as predicted by the HMGU and ICRP models, taking into account radioactive decay.

zero for all except the stomach compartment y9. The lat-
ter reads y9(0) = ẏt

7 · 100%/c9
xH (t) where c9

xH (t) denotes
the value of cxH (t) in the stomach compartment at time
point t. Now, assuming that for arbitrary posterior sam-
ples xH the measurement ẏt

7 is contained in the 90%
credible interval of the solution cxH (t) with initial con-
dition y9(0) as given above, lower and upper bounds for
credible regions of the initial amount of zirconium taken
in at t0 = 0 emerge. These are based on the posterior
samples. The estimated extrapolation factors for multipli-
cation with a urine measurement (in [μg/d]) after time
t (in [h]) are contained in Table 2 and yield the initial
amount of zirconium contained in the stomach at t0 = 0.
For example, if an amount of ẏ2d

7 = 50μg/d was mea-
sured after two days, we find from Table 2 that the 90%
credible interval for the ingested amount lies between
0.029g and 0.059g. Since the above calculations are based
on non-radioactive Zr isotopes, the results have to be
corrected for dose assessment with respect to radioac-
tive decay of the radionuclide in question, i.e. in many
cases 95Zr.

Table 2 Urine predictions for the HMGU model

Time t 6h 12h 18h 24h 30h

lbf for IC 1233.91 1820.44 2614.48 3369.70 4100.16

mf for IC 1763.73 2225.90 3153.70 4228.19 5340.23

ubf for IC 2512.54 2832.49 3978.27 5650.86 7516.00

Time t 36h 42h 48h 54h 60h

lbf for IC 4778.27 5352.64 5800.77 6153.80 6450.74

mf for IC 6364.76 7250.67 7977.31 8557.87 9006.97

ubf for IC 9122.11 10655.01 11878.81 12960.61 13903.07

Shown are the lower bound factor (lbf), median factor (mf), and upper bound
factor (ubf) for multiplication with a urine measurement (in [μg/d]) after time t
(in [h]) on a 60h grid yielding the initial intake concentration (IC) at t0 = 0.

Conclusions
We were the first to evaluate two competing biokinetic
ODE models for zirconium processing in the human body
after ingestion. These models were the current model
recommended by the International Commission on Radi-
ological Protection (ICRP) and a model developed by
the Helmholtz Zentrum München (HMGU). The anal-
ysis was based on a Bayesian approach, i.e. individual
Bayes factors for 16 investigations as well as a Bayes
factor based on the concatenated dataset. In order to
obtain reliable Monte Carlo sampling results, we com-
bined the numerically stable thermodynamic integration
with an efficient copula-based Metropolis-Hastings algo-
rithm. In summary, the HMGU model was unequivocally
superior with 14 of 17 Bayes factors being even decisive
when compared to the well-established ICRP model. Also,
when restricting the data on plasma and urine measure-
ments only, we found that the HMGU model was clearly
favored. The HMGU model thus best covers human
data.

In contrast to the ICRP model, the HMGU model pre-
dicted a delayed accumulation of zirconium in bones
which might be experimentally tested in animals in the
future. Furthermore, we showed that the HMGU model
can be applied for retrospective dose assessment, where
the initially ingested amount of zirconium can be recon-
structed including credible intervals from ex post urine
measurements. This provides a simple hands-on tool
that facilitates the decision if measures have to be taken
in case of accidental exposure. In future applications
the superior HMGU model together with its posterior
samples can readily be used as the basis for dose esti-
mation in internal dosimetry. The Bayesian framework
for the compartmental model analysis developed in the
present work is directly applicable to a personalized
dose assessment and the uncertainty quantification if a
person-specific monitoring is requested. More generally,
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the presented methodology is suitable for any ODE-based
model selection task, such as the modeling of protein
signaling, gene regulation, or drug processing [47], nowa-
days frequently put forward in systems biology [48,49] or
pharmacogenetics [50].

Additional file

Additional file 1: Supplementary information. Supplementary
information, including the detailed ODE systems for both models, the prior
information used for the inference and more detailed evaluation of the
sampling results, among them additional time course plots for the single
investigations and scatterplots for the evaluation of parameter
dependencies. Furthermore, we provide an identifiability analysis for all
models and a model variant of the HMGU model including its evaluation
via Bayes factors.
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