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Abstract
Fitness landscapes are central in the theory of adaptation. Recent work compares global and local
properties of fitness landscapes. It has been shown that multi-peaked fitness landscapes have a
local property called reciprocal sign epistasis interactions. The converse is not true. We show that
no condition phrased in terms of reciprocal sign epistasis interactions only, implies multiple peaks.
We give a sufficient condition for multiple peaks phrased in terms of two-way interactions. This
result is surprising since it has been claimed that no sufficient local condition for multiple peaks
exist. We show that our result cannot be generalized to sufficient conditions for three or more
peaks. Our proof depends on fitness graphs, where nodes represent genotypes and where arrows
point toward more fit genotypes. We also use fitness graphs in order to give a new brief proof of
the equivalent characterizations of fitness landscapes lacking genetic constraints on accessible
mutational trajectories. We compare a recent geometric classification of fitness landscape based
on triangulations of polytopes with qualitative aspects of gene interactions. One observation is that
fitness graphs provide information not contained in the geometric classification. We argue that a
qualitative perspective may help relating theory of fitness landscapes and empirical observations.
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1. Introduction
We will study qualitative aspects of gene interactions. In particular, it is of interest to what
extent beneficial mutations combine well. This question relates to the concept epistasis.
Absence of epistasis means that the fitness effects of mutations sum, where fitness is defined
as the expected reproductive success (different definitions of these concepts occur in the
literature (Mani et. al, 2008)). It is immediate that beneficial mutations combine well if there
is no epistasis. However, it is well known that double mutants which combine beneficial
single mutations may have very low fitness. Several examples from different species are
given in Weinreich et al. (2005). Put briefly, “good+good=better” if there is no epistasis, but
sometimes “good+good=not good” in nature. By a qualitative perspective we understand
that one considers fitness ranks of genotypes, but not necessarily more fine scaled
information such as relative fitness values.
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Fitness landscapes are central in the theory of adaptation and we will focus on the qualitative
perspective. The fitness landscape was initially introduced as a metaphor for adaptation
(Wright, 1931). Informally, the surface of the landscape consists of genotypes, where similar
genotypes are close to each other, and the fitness of a genotype is represented as a height
coordinate. Adaptation can then be pictured as an uphill walk in the fitness landscape.

A qualitative analysis is sufficient for several theoretical aspects of fitness landscapes.
Coarse properties of fitness landscapes, such as the number of peaks, depend on fitness
ranks of genotypes only. The relation between global and local properties can be analyzed
from a qualitative perspective as well. From a more practical point of view, the qualitative
perspective has several advantages. Fitness ranks are usually easier to determine as
compared to relative fitness values. Fitness ranks tend to be stable under small variations in
the environment. Moreover, fitness data of qualitative nature are already available. In
particular, medical records on HIV drug resistance and antibiotic resistance provides indirect
information about fitness ranks (see Section 5). It is frequently claimed that we know
virtually nothing about fitness landscapes in nature. In our view, better methods for
interpretation of fitness data are at least as important as new fitness measurements.

The concept of a fitness landscapes has been formalized in different ways. Conventionally,
as a string in the 20, 4 or 2 letter alphabet, depending on if one considers the amino acids,
the base pairs or biallelic system. In many real systems at most two alternative alleles occur
at each position (or locus), resulting in a biallelic system. Alternatively, a biallelic
assumption may be a reasonable simplification. For simplicity, we will consider biallelic
populations throughout the paper. Let Σ = {0, 1} and let ΣL denote bit strings of length L.
The zero-string denotes the string with zero in all L positions, and the 1-string denotes the
string with 1 in all L positions. We define the fitness landscape as a function w: ΣL ↦ ℝ,
which assigns a fitness value to each genotype. The metric we use is the Hamming distance,
meaning that the distance between two genotypes equals the number of positions where the
genotypes differ. In particular, two genotypes are adjacent, or mutational neighbors, if they
differ at exactly one position.

A walk in the fitness landscape has a precise interpretation. Consider a population after a
recent change in the environment. Assume that the wild-type no longer has optimal fitness.
If we assume the strong-selection weak-mutation (SSWM) regime, then a beneficial
mutation is assumed to go to fixation in the population before the next mutation occurs
(Gilliespie, 1983, 1984). The population is monomorphic for most of the time, so that one
genotype dominates the population at a particular point in time. It follows that we can think
of a Darwinian process as an adaptive walk in the fitness landscape, where each step
represents that a beneficial mutation goes to fixation in the population. The described model
of adaptation has been widely used and relies on work by Gilliespie (1983, 1984). The
sequence-based model of adaptation was introduced by Maynard Smith (1970). For more
background and references, see also Orr (2002, 2006).

For the qualitative perspective on fitness landscapes, one needs a refined version of the
concept epistasis. According to our definition, fitness is additive or non-epistatic if fitness
effects of mutations sum. (In the literature non-epistatic fitness is sometimes defined as
multiplicative fitness.) Suppose that

If one considers 00 as a starting point, then the fitness effect of a mutation at the first locus
is +0.04, and at the second +0.02. If fitness is additive, then w(11) = 1.06 since 0.04 + 0.02
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= 0.06, meaning that the fitness effects sum. Epistasis exists if w(11) ≠ 1.06. Sign epistasis
means that a particular mutation is beneficial or deleterious depending on genetic
background. For example, if w(11) = 1.03, then there is sign epistasis. Indeed, in this case a
mutation at the second locus is beneficial for the genotype 00 since w(01) > w(00), and
deleterious for the genotype 10 since w(11) < w(10). In contrast, if w(11) = 1.05 there is
epistasis, but no sign epistasis since fitness increases whenever a 0 at some locus is replaced
by 1. For more background about epistasis, see e.g. Weinreich et al. (2005); Beerenwinkel et
al. (2007 b); Poelwijk et al. (2007, 2011); Kryazhimskiy et al. (2011). Recent work that
considers qualitative properties of fitness landscapes includes Weinreich et al. (2005);
Poelwijk et al. (2007, 2011). A central theme is how global properties of the fitness
landscape, such as the number of peaks, relate to local properties, such as sign epistasis (see
Section 2 and 3). A related field is the study of constraints for orders in which mutations
accumulate (see e.g. Desper et al., 1999; Beerenwinkel et al., 2007 a). It is well known that a
drug resistance mutation is sometimes selected for, only if a different mutation has already
occurred. Such a phenomenon requires sign epistasis. Indeed, if a particular mutation is
beneficial regardless of background, then it can occur before or after other mutations.

We will give an overview of classical models of fitness landscapes, and then compare with
recent approaches and the qualitative perspective.

1.1. Classical models of fitness landscapes
Several models of fitness landscapes have had a broad influence in evolutionary biology,
primarily additive fitness landscapes, random fitness landscapes, the block model and
Kaufman’s NK model. Additive fitness landscapes are single peaked. In contrast, for a
random (uncorrelated or rugged) fitness landscape (see e.g. Kingman, 1978; Kauffman and
Levin, 1987; Flyvberg and Lautrup, 1992; Rokyta et al., 2006; Park and Krug, 2008) there is
no correlation between the fit-nesses of mutational neighbors, or genotypes that differ at one
locus only. Random fitness landscapes tend to have many peaks. Random fitness and
additivity can be considered as two extremes with regard to the amount of structure in the
fitness landscapes.

For the block model (Macken and Perelson, 1995; Orr, 2006) the string representing a
genotype can be subdivided into blocks, where each block makes an independent
contribution to the fitness of the string. Each block has random fitness, and the fitness of the
string is the sum of contributions from each block. In particular, if there is only one block,
then the block model coincides with a a random fitness landscape.

Kaufmann’s NK model (see e.g. Kauffman and Weinberger, 1989) is defined so that the
epistatic effects are random, whereas the fitness of a genotype is the average of the
“contributions” from each locus. More precisely, for the NK model the genotypes have
length N (in our notation L = N), and the parameter K, where 0 ≤ K ≤ N − 1, reflects
interactions between loci. The fitness contribution from a locus is determined by its state and
the states at exactly K other loci. The key assumption is that this contribution, determined by
the 2K+1 states (since we assume biallelic systems), is assigned at random from some
distribution. The fact that the fitness of the genotype is the average of these N contributions,
means that fitness effects of non-interacting mutations sum. Several important properties of
NK landscapes depend mainly on N and K, rather than the exact structure of the epistatic
interactions.

Notice that the NK model as well as the block model includes additive landscapes and
random landscapes as special cases. More importantly, the models are similar in that there is
a sharp division between effects which are completely random and effects which are
additive.
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In contrast to the models discussed, the Orr-Gillespie theory (e.g. Orr, 2002) depends on the
strategy to make minimal assumptions about the underlying fitness landscape, motivated by
the fact that our knowledge about fitness landscapes is limited. The theory focuses on
properties that hold for a broad category of fitness landscapes. Most results depend on
extreme value theory. For more background and references on fitness landscapes in
evolutionary biology, see e.g. Weinreich et al. (2005); Beerenwinkel et al. (2007 b);
Kryazhimskiy et al. (2009). Fitness landscapes have been used in chemistry, physics and
computer science, in addition to evolutionary biology. For a survey on combinatorial
landscapes in general see Reidys and Stadler (2002). In combinatorial optimization the
fitness function is referred to as the cost function.

1.2. New approaches to the theory of fitness landscapes
The classical theory of fitness landscapes has been critizised for the lack of contact with
empirical data (Kryazhimskiy et al., 2009). One sometimes encounters the misunderstanding
that the block model, or Kaufmanns NK models, would include almost all [theoretically
possible] fitness landscapes since they include the two extremes. According to this view, the
goal of empirical work would be to determine parameters; the block length in the first case,
or the “K” value in the NK model. On the contrary, these two models are equipped with very
special structures. Additive fitness and random fitness are of course even more special. The
Orr-Gillespie theory on the other hand focuses on general properties of adaptation for a
broad category of landscapes, rather than relating properties of fitness landscapes and fitness
data.

Put briefly, the theory of fitness landscapes has been developed in isolation from data, and
available fitness data have been left without systematic interpretations. We argue that
qualitative methods could be of some help. Practical methods for checking if some of the
standard models of fitness landscapes are compatible with fitness data are indicated in
Section 5, along with concepts for interpretations of fitness data (see also Crona et al.,
2012).

In general, methods for revealing and interpreting properties of fitness landscapes from data,
without assumptions about the underlying fitness landscape are especially valuable in our
view. A recent contribution in this category is the geometric theory of gene interactions
(Beerenwinkel et al., 2007 b). Conventionally, the study of epistasis is restricted to two-way
interactions or average effects of mutations. A full description of the gene interactions for
multiple loci requires an entirely different theory. The geometric classification in
Beerenwinkel et al. (2007 b) uses triangulations of polytopes. For mathematical background
we refer to De Loera et al. (2010), see also Ziegler (1995) for general theory about
polytopes. Briefly, a square is an example of a polytope, and the two triangles obtained by
cutting the square along a diagonal constitute a triangulation of the square (see Section 4).
The geometric approach has revealed previously unappreciated gene interactions
(Beerenwinkel et al., 2007 b,c). This approach is relevant for the theory of recombination.
Geometric and qualitative information is compared in Section 4.

The paper is structured as follows. Section 2 and 3 consider the relation between global and
local properties of fitness landscapes. We prove our main results in Section 2, and introduce
fitness graphs. We give a new proof of the main result in Weinreich et al. (2005) using
fitness graphs in Section 3. In Section 4 we compare qualitative aspects of gene interactions
with the geometric classification of fitness landscapes in terms of triangulations of
polytopes. Section 5 is about applications, mainly the relation between models and fitness
data.
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2. A sufficient local condition for multiple peaks
2.1. A counterexample

As before, Σ = {0, 1} and w: ΣL ↦ ℝ is the fitness landscape. For simplicity we assume that
w(s) ≠ w(s′) for any two strings s and s′ which differ in one position only in this section, in
addition to the assumptions stated in the introduction.

An adaptive step in the fitness landscape corresponds to a change in exactly one position of
a string so that the fitness increases strictly. An adaptive walk is a sequence of adaptive
steps. A peak in the fitness landscape has the property that there are no adaptive steps away
from it, i.e., a genotype is at a peak if all mutational neighbors have lower fitness as
compared to the genotype.

For L ≥ 2, given a string and two positions, exactly four strings can be obtained wich
coincide with the string except at the two positions (an example of four such strings would
be 1100, 1110, 1101, 1111). Denote such a set of four strings

according to the two positions of interest, and assume that w(ab) is minimal. Sign epistasis
means that

Reciprocal sign epistasis interactions means that

See Fig. 1 for the four possibilities under our assumption that w(ab) is minimal.

For example, w′ (00) = 1, w′ (10) = 0.8, w′ (01) = 0.9, w′ (11) = 1.2 is a case of reciprocal
sign epistasis. Notice that 00 and 11 are at peaks. On the other hand, w″ (00) = 1, w″ (10) =
0.8, w″ (01) = 1.1, w″ (11) = 1.2 is a case of sign epistasis, but not reciprocal sign epistasis.
Notice that only 11 is at a peak. For more background about sign epistasis and reciprocal
sign epistasis, see Weinreich et al. (2005); Poelwijk et al. (2007, 2011).

For L ≥ 2, given a string and two positions, consider the four strings wich coincide with the
string except at the two positions. We call the strings a type 2 system if there is reciprocal
sign epistasis, a type 1 system if there is sign epistasis, but not reciprocal sign epistasis, and
a type 0 system if there is no sign epistasis. Notice that an additive fitness landscape, i.e., a
landscape where the fitness effect of changes of strings at single positions sum, has no type
1 or 2 systems.

It was shown in Poelwijk et al. (2011) that multiple fitness peaks implies that there are type
2 systems. The converse is not true, a counterexample was given in the same paper. In order
to show a stronger negative result we will define a fitness landscape f in terms of w.

Define fw: ΣL+1 ↦ ℝ as
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Lemma 1—The fitness landscape defined by the function fw is single peaked.

Proof: The 1-string is at the global maximum. For any string s where sL+1 = 0, we can
increase the fitness by changing the last position. Next the fitness increases if we keep the 1
in the last position and change any other position from 0 to 1. This is repeated until we
arrive at the 1-string.

Lemma 2—The type 2 systems for f are exactly the sets of the form

where s1, s2, s3, s4 is a type 2 system for w, and where c(s) = s0 denotes the concatenation
with zero.

Proof: If s1, s2, s3, s4 are a type 2 system, obviously the same is true for

Consider the set of strings with last position 1. Replacing 0 by 1 at any position increases the
fitness. From this property, it is easy to verify that there exist no type 2 systems where all
four strings have last position 1.

It remains to consider sets of four strings where the last positions are not all the same. For
such a system, two strings end with zero. Denote the strings a0, a1, b0, b1, where a0 and b0
end with 0, and the others with 1. We may assume that a0 has minimal fitness. By
assumption, f(b1) > f(b0) > f(a0). It follows that a0, a1, b0, b1 are not a type 2 system.

The next result follows from Lemma 1.1 and 1.2.

Theorem 1—For any fitness landscape, a single peaked landscape can be constructed from
it with exactly the corresponding type 2 systems.

2.2. Fitness graphs and the main result
Fitness graphs have been use in empirical work, in particular they are used extensively in
Goulart et al. (2012). We will use fitness graphs in some proofs, and to our knowledge
fitness graphs have not been used for theoretical purposes in biology before.

In empirical work, the wild-type is typically represented by the zero-string and then each
non-zero position of a string corresponds to an event, i.e., that a mutation has occurred.
Roughly, under these assumptions the fitness graph for ΣL, coincides with the Hasse-
diagram of the power set of events, except that each edge in the Hasse-diagram is replaced
with an arrow toward the string with greater fitness. For a formal definition, a fitness graph
is a directed graph where each node corresponds to a string of ΣL. The fitness graphs has L +
1 levels. Each string such that Σ si = l corresponds to a node on level l in the fitness graph. In
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particular, the node representing the zero-string is at the bottom, the nodes representing
strings with exactly one non-zero position, including 10 · · · 0, are one level above, the nodes
representing strings with exactly two non-zero positions, including 110 · · · 0, are on the next
level, and the 1-string is at the top. Moreover, the nodes are ordered from left to right
according to the lexicographic order of the strings (see e.g. Fig. 3). A directed edge connects
each pair of nodes such that the corresponding strings differ in exactly one position. The
edge is directed toward the node representing the more fit of the two genotypes.

The fact that the zero-string is at the bottom is natural since the zero-string corresponds to
“no events”, meaning no mutations, in the empirical context discussed. In general, notice
that the choice of which genotype corresponds to the zero-string in principle determines the
fitness graph. Indeed, the level of a particular node coincides with the number of loci where
the corresponding genotype differs from the genotype which is represented by the zero-
string.

Remark 1—Unless otherwise states, the words “level”, “up”, “down” “above” and “below”
refer to fitness graphs in the proofs. In particular, notice that a higher level does not imply
greater fitness.

For interpretations of general fitness graphs, it may be helpful to first analyze the two-loci
case in some detail. There exist exactly 14 fitness graphs for biallelic two-loci systems (see
Fig. 2), where 4 are type 0 systems, 8 type 1 systems, and 2 type 2 systems. One verifies the
following result.

Remark 2—For two-loci, type 0, 1, and 2 systems have the following properties.

1. A type 0 system can be rotated so that all arrows point up.

2. A type 1 system differs from a cycle by exactly one arrow.

3. A type 2 system have two nodes such that all edges are directed toward them, and
two nodes such that no edges are directed toward them.

These observations can be used for identifying type 0, 1 and 2 systems in any fitness graph.
In particular, it is immediate that the graph on the left in Fig. 3 has type 0 systems only,
whereas the graph on the right has type 0 and 2 systems, but no type 1 systems.

Theorem 1 shows that no local property phrased in terms of type 2 systems (reciprocal sign
epistasis) only, implies multiple peaks. However, we will phrase a condition in terms of type
1 and 2 systems, which is our main result.

Theorem 2—If a fitness landscape has type 2 systems and no type 1 systems, then it has
multiple peaks.

Proof: Assume that the landscape is single peaked and that there exists a type 2 system in
the landscape. It is sufficient to show that there exists a type 1 system. We may assume that
the 1-string has optimal fitness, and this choice determines the levels of the fitness graph. If
all arrows would point up, there would be no type 2 (or type 1) systems. Consequently some
arrows point down. It follows that there exist adaptive walks which start with one step down
and where the remaining steps to the 1-string are up, since the fitness landscape is single
peaked.

Among such walks, pick one so that the step down starts from a level which is as high as
possible. We will refer to the string corresponding to the starting point as the initial string.
Consider the first two steps of the walk.
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Step 1 The step corresponds to that the 1 at some position of the initial string is
replaced by 0, since the step is down.

Step 2 The step corresponds to that the 0 at some position of the new string is
replaced by 1, since the step is up.

There are exactly four strings which coincide with the initial string in all positions except the
two mentioned in Step 1 and 2. Denote the strings 10, 00, 01, 11, where 10 is the initial
string, 00 the string obtained after Step 1 and 01 the string obtained after Step 2 (formally
the labels of the strings have no meaning, but one should associate to the two positions
where the strings differ). Notice that the fourth string 11 is one level above 10 and 01 in the
fitness graph.

By assumption,

since fitness increases by each step of the walk. It is not possible that w(11) < w(01), since
then there would exist a walk where the step down (from 11 to 01) was from a higher level
as compared to the walk we picked. Consequently, w(01) < w(11) and we conclude that

Moreover, it is not possible that w(11) < w(10) since then one would get a cycle. It follows
that

is a type 1 system.

Remark 3—This result is surprising since Poelwijk et al. (2011) claims that no sufficient
local condition for multiple peaks exist. However, the discussion related to this claim in
Poelwijk et al. (2011) is somewhat unclear to us.

One can ask if a lower bound for the number of peaks of a fitness landscape can be
expressed in terms of type 2 and 1 systems. The next example shows that no such
generalization of the previous result is possible.

Example 1—The fitness landscapes w̃ has exactly two peaks, 2L−2 type 2 systems and no
type 1 systems, where

for s ∈ ΣL−2. One verifies that 11s, 10s, 01s, 00s are a type 2 system for any s ∈ ΣL−2 and
that there are no type 1 systems. The fitness landscape has exactly two peaks, at the 1-string
and the string 001 · · · 1.
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3. Fitness landscapes with no constraints
We will demonstrate the efficiency of fitness graphs by providing a brief proof of a result
from Weinreich et al. (2005). For simplicity we assume that w(s) ≠ w(s′) if s ≠ s′ in this
section, in addition to the assumptions stated in the introduction. We refer to the global
maximum of the landscape as “the fitness peak”. Moreover, define a general step similar to
“adaptive step”, except that the fitness may decrease. A general walk, as opposed to
“adaptive walk” is a sequence of general steps. If a general walk between two nodes has
minimal length, we call it a shortest walk.

We can now state the main result in Weinreich et al. (2005) and give a new brief proof.

1. (Weinreich et al., 2005)
1. The following conditions are equivalent for a fitness landscape.

i. Each general step toward the fitness peak, i.e., a step that decreases the
graph distance to the peak, is an adaptive step.

ii. Each shortest general walk to the fitness peak is an adpative walk.

iii. The fitness landscape has no type 1 or 2 systems.

2. If the equivalent conditions in (1) are satisfied, then each adaptive walk to the
fitness peak is a shortest general walk.

New proof
Proof: Represent the fitness landscape with a fitness graph where the 1-string corresponds
to maximal fitness. Notice that a general walk from any node to the 1-string is a shortest
general walk if and only if each step is up. From this observation we will verify that each
condition (i)–(iii) is equivalent to all arrows in the fitness graph pointing up. It is immediate
that (i)–(iii) hold if all arrows in the fitness graph point up. Assume (i). For any arrow, a
general step through the arrow toward the fitness peak is a step up. By assumption, such a
step is adaptive, so that the arrow points up. It follows that all arrows in the fitness graph
point up. Assume (ii). A shortest general walk consists of general steps toward the fitness
peak, so that the argument for (i) gives the result. Assume (iii). Since the 1-string (at level L
in the fitness graph) is at the peak, all arrows starting from the nodes on level L − 1 point up.
Then condition (iii) implies that all arrows from nodes on level L − 2 point up, and so forth.

Part 2 is immediate, since we may assume that all arrows in the fitness graph point up.

A fitness landscape satisfying the equivalent conditions (i)–(iii) above is referred to as a
fitness landscape lacking genetic constraints on accessible mutational trajectories in
Weinreich et al. (2005). It is important to notice that this concept is biologically meaningful.
Type 1 systems may cause the adaptation process to be slower since not all shortest general
walks to the peak are adaptive walks, even if the landscape is single peaked.

4. Fitness graphs and the shapes of fitness landscapes
We will compare information derived from fitness graphs with the geometric classification
of fitness landscapes. For the reader’s convenience, we will give a brief description of the
geometric theory of gene interactions introduced in Beerenwinkel et al. (2007 b). Our
discussion is somewhat informal, and we refer to the original article for concepts and theory
about the geometric classification of fitness landscapes, and to De Loera et al. (2010) for
theory about polytopes and triangulations.
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As before, we restrict to biallelic systems in our presentation. We will use some concepts
which are defined in terms of populations. If one groups individuals into classes of identical
genotypes, a population can be described as the frequencies of the genotypes. The fitness of
a population is defined as the average fitness of all individuals.

We first describe the geometric classification in the case L = 2. Then the genotope is the
square with vertices 00, 01, 10, 11. We denote this genotope [0, 1]2, and interpret a point v =
(v1, v2) ∈ [0, 1]2 as the allele frequencies of the population, where v1 denotes the frequency
of 1’s at the first locus, and v2 the frequency of 1’s at the second locus.

Let

denote the population simplex. A population is given as a point in Δ.

Example 2
Consider v = (0.4, 0.8) ∈ [0, 1]2. The populations p1 = (0.2, 0.4, 0, 0.4) ∈ Δ and p2 = (0, 0.6,
0.2, 0.2) ∈ Δ both have the allele frequencies described by v.

In general, a triangulation of a polygon is a subdivision of the polygon into triangles. A
fitness landscape w will almost always induce a triangulation of the genotope [0, 1]2. We
will first describe the triangulations, and then provide some explanation. Notice that fitness
is additive exactly if

Case 1—If

then the triangulation induced by the fitness landscape has 00 − 11 diagonal, meaning that
the triangles are {00, 01, 11} and {00, 10, 11} (Fig. 3).

Case 2—If

then the induced triangulation of the genotope has 10 − 01 diagonal meaning that the
triangles are {00, 01, 10} and {01, 10, 11} (Fig. 3).

Having described the two possible triangulations (Case 1 and 2) we will explain how w
induces a triangulation in some detail. Let ρ denote the map from the population simplex Δ
to the genotope [0, 1]2.
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Notice that ρ maps a point of the population simplex to the allele frequencies. Indeed, p10 +
p11 equals the frequency of 1’s at the first locus and p01 + p11 equals the frequency of 1’s at
the second locus. (Notice that ρ (p1) = ρ(p2) = v in Example 2.) For a fixed v ∈ [0, 1]2,
consider the linear programming problem

A solution gives the maximal population fitness, i.e., the maximum of p · w, given the allele
frequency vector v (since ρ (p) = v). If we let v vary, we get the following parametric linear
programming problem

From the theory of triangulations (De Loera et al., 2010, chap. 2), the domains of linearity of
w̃ are exactly the triangles of the triangulation induced by w (Case 1 or 2 depending on w),
which completes the explanation. We will refer to Case 1 as “positive epistasis”, and Case 2
as “negative epistasis”.

For a geometric interpretation, consider the genotope [0, 1]2 and the four points above the
vertices of [0, 1]2, such that the height coordinates corresponds to fitness. The four points
are vertices of a tetrahedron (Fig. 3). The upper sides of the tetrahedron (marked with
different patterns) project onto two triangles of [0, 1]2. The projections describe the
triangulation induced by w. The left picture corresponds to positive epistasis, and the right to
negative epistasis.

Notice that for any v ∈ [0, 1]2, there is a unique fittest population p with ρ (p) = v. The
genotypes that occur in the fittest population are the vertices of the triangle which contains
v. For positive epistasis (Case 1), notice that p1 in Example 2 is a fittest population.

In general, the genotope of a biallelic L-loci system is the L-cube, where the vertices
represent the genotypes. The fitness landscape will almost always induce a triangulation of
the genotope. A triangulation of the L-cube is a subdivision of the cube into simplices
(triangles if L = 2, tetrahedra if L =3, pentachora for L = 4, and so on). The shape of the
fitness landscape is the triangulation induced by w. Moreover, in general there is a unique
fittest population, as in the case L = 2. For a fittest population, one cannot increase the
fitness by shuffling around alleles. The biological significance is immediate, since such
allele shuffling relates to recombination.

In the case with positive epistasis for L = 2, the genotypes 10 and 01 are not on the same
triangle. A recombination of 10 and 01 resulting in the genotypes 00 and 11, implies
increased average fitness of the population.

Remark 4—Our description was restricted to the case where the genotope is an L-cube.
The theory in Beerenwinkel et al. (2007 b) defines the genotope for any set of genotypes
found in the population under consideration, and the shape is defined accordingly. The
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authors stress that the genotope is never an L-cube for binary data and many loci (≥ 20).
This observation is important for complexity reasons.

We will compare the geometric classification with fitness graphs. Consider the case with
positive epistasis where the 1-string has optimal fitness. This case is compatible with three
different fitness graphs (no arrows down, exactly one arrow down, or two arrows down).
This example shows that fitness graphs provide some information that cannot be obtained
from the geometric classification. On the other hand, consider the fitness graphs with all
arrows up. It is easily seen that there exist fitness landscapes having this fitness graph with
positive, negative and no epistasis.

Since the case L = 2 is rather special, we will proceed with L =3. The 3-cube has 74
triangulations. For a complete list, see Beerenwinkel et al. (2007 b, Table 5.1), where each
shape has a number between 1 and 74. Shapes of the same interaction types, differ only in
the labeling of the vertices of the cube. There are six interaction types for the 3-cube in total.

Shape 74 is defined by the following inequalities:

The six tetrahedra of the induced triangulation are:

Shape 2 is defined by the following inequalities:

Each inequality of Shape 74 can be described in terms of epistasis (in the usual sense), since
each inequality keeps one locus fixed. In contrast, the inequalities of Shape 2 considers
three-way interactions. For Shape 74, notice that 100 and 010 are not on the same
tetrahedron. The recombination of 100 and 010 resulting in 110 and 000, implies increased
average fitness. This observation is analogous to what we found for the square, and a similar
result holds in any dimension.

Example 3
The following fitness landscape is of shape 74.
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For the corresponding fitness graph, all arrows point up.

Example 4
The following fitness landscape is of shape 74.

Notice that the corresponding fitness graph has exactly 3 arrows down, and that 000 and 111
are at peaks.

It is easily seen that there exist fitness landscapes of shape 74 with several different fitness
graphs, in addition to our two examples. Consider shapes for a fixed fitness graph. For each
interaction type, Table 1 gives a shape specified by its number in Beerenwinkel et al. (2007
b, Table 5.1), as well as an example of a fitness landscape of this shape. Notice that the
corresponding fitness graphs are the same in all 6 cases (all arrows point up).

Summarizing, the fitness graph provides information about the adaptive potential, and the
shape of a landscape reflects all gene interactions. Graphs and shapes provide
complementary information about fitness landscapes. We will compare information from
fitness graphs and the geometric theory for empirical data as well. For a detailed
understanding of the next example, as well as terminology, the reader may consult
Beerenwinkel et al. (2007 b). Alternatively, one can proceed to the next section without
consequences for the further reading.

Using standard notation, consider the three-loci biallelic system with the HIV-1 mutations
PRO L90M, RT M184V and RT T215Y (Segal et al., 2004). This system associated with
HIV drug resistance was analyzed in Beerenwinkel et al. (2007 b), see also Bonhoeffer et al.
(2004). We determined the fitness graph, as well as the shape from the mean fitness values
(Beerenwinkel et al., 2007 b, Table 6.2) of the genotypes, since these data are sufficient for
comparing geometric and qualitative information. From the fitness graph, one concludes that
there are two peaks, 3 type 2 systems, 2 type 1 systems, and 1 type 0 system. Moreover, 010
and 001 have lower fitness as compared to their mutational neighbors. Notice that 4 out of
12 arrows point up, which shows that we are far from the most simple pattern one could
expect from combinations of three deleterious mutations, i.e., that all arrows point down.
The geometric classification for biallelic three-loci systems depends on the signs of in total
20 circuits. (Briefly, the circuits are linear forms including the 10 which occur in the
description of Shapes 2 and 74.) The fitness graph provides some information about the
circuits. For example, from the fitness graph, one can conclude that

since w000 > w100 and w110 > w010. This is an example of conditional epistasis, since the
last position is zero for all strings. However, from the fitness graph one cannot determine the
sign of the following circuit which considers three-way interactions:

The fitness landscape is of shape 7 (Beerenwinkel et al., 2007 b, Table 5.1), and this shape
slices off the genotypes 010 and 001. The interpretation is that the two genotypes have low
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fitness values. Compare with the two-loci case where the shape slices off the 11 genotype in
Case 2, since this genotype has lower fitness as compared to an additive expectation (see
Fig. 4). We conclude that the shape and the fitness graph agree that 010 and 001 have low
fitness. Clearly there is some overlap in information from the fitness graph and the
geometric theory. However, the geometric theory is more fine-scaled since it takes 20
circuits into consideration.

5. Applications
Qualitative aspects of gene interactions are interesting for practical reasons. Suppose that
two single mutants which confer resistance to a particular drug have been found frequently,
but never the corresponding double mutant. From this observation one concludes that there
is sign epistasis. Indeed, “good+good=not good”, since the combination of two beneficial
single mutations was never found. This information is intrinsic, whereas fitness
measurements tend to be sensitive to the environment or laboratory conditions. Qualitative
observations of the type described are central for understanding adaptation in nature. We
will indicate how one can check if qualitative data are compatible with standard models of
fitness landscapes such as additive landscapes, random landscapes and the block model.

Recall that for the block model, the fitness of a genotype is the sum of contributions from
each block. The rationale behind this assumption is that the effect of two changes in
different blocks should be independent if the blocks have completely different functions. A
falcon benefits from a strong heart and good vision. Most likely these factors are
independent, so that simultaneous adaptation of heart and eyes are not problematic. We will
consider block independence, or rather candidates for independent blocks. Block
independence relates to the problem of finding “units of evolution”. From a conceptual and
computational point of view, it is of interest to what extent nature can be subdivided into
parts that act as independent units of evolution. A systematic approach to the topic of
finding units of evolution is given in Shpak et al. (2004). In principle, one can model
evolution of a population as a dynamical system determined by the fitness landscape and the
mutation rates, provided that the population is asexual. The authors analyze aggregation of
variables and decomposability of dynamical systems with applications to units of evolution.
Different approaches to the problem of finding units of evolution above or below the
genotype level are discussed. Following our philosophy, we will focus on qualitative
aspects. The next two examples compare block independence and fitness graphs.

Example 5
Let L = 3 and assume that fitness differences

is the same for all i, j. For the corresponding fitness graphs there are 4 arrows up, from any
node 0* * to the node 1 * *.

Example 6
Assume that
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but that the difference depends on the background. For the corresponding fitness graphs
there are 4 arrows up, from any node 0 * * to 1 * *, as in the previous example.

Notice that the first locus constitutes an independent block in the first example, but not in
the second example. However, the fitness graphs in the two examples may coincide. Fitness
graphs cannot detect independence, but they reveal if the sign of the effect of a particular
locus, or a particular block, is independent of background. We suggest as a definition that a
block is sign independent if each state of the block determines if the fitness contribution is
positive or negative. However, the magnitude of the effect may depend on the background.
Sign independence of fitness effects could be used for finding candidates for independent
blocks.

We will introduce some concepts of relevance for mutation records. The main application is
drug resistance mutations. From a record of clinically found mutants one wants to draw
conclusion about the fitness landscape. The presence of the drug constitutes a new
environment where the wild-type is no longer of optimal fitness. However, it is realistic to
assume that the wild-type is much more fit in the new environment as compared to a
randomly chosen string. *

It follows that most single and double mutants are not more fit than the wild type. However,
if the fitness landscape is additive, then the double mutant corresponding to two beneficial
single mutations is more fit than the single mutants. It is thus of interest whether beneficial
single mutations tend to combine well or not for a fitness landscape. We define B and Bp as
follows.

The set Bp consist of all double mutants such that both corresponding single mutations are
beneficial.

The set B ⊆ Bp consists of all double mutants in Bp which are more fit than at least one of
the corresponding single mutants.

Notice that  for a landscape lacking genetic constraints on accessible mutational

trajectories, in particular for an additive landscape. In contrast, one expects  to be very
small for a random landscape under the assumption *. The value one would expect for a
random landscape depends on the circumstances, but 1% could be a realistic value.

For a quantitative measure of the degree of additivity, we refer to the concept “roughness”

(Carnerio and Hartl, 2010; Aita et al., 2001). We suggest using  as a qualitative measure
of the degree of additivity for a fitness landscape. This measure is coarse. However, we have

all reason to believe that a fitness landscape where  differs from a landscape where
the ratio is 96% in biologically interesting ways. For example, one could ask if there is a
relation between this ratio and recombination strategies. The condition that double mutants
in B ⊆ Bp are more fit than at least one of the corresponding single mutants is practical.
Indeed, if the double mutant is more fit than at least one of the corresponding single
mutants, then we have a good chance to find the double mutant in nature.

For an empirical example, consider the TEM family of beta-lactamases associated with
antibiotic resistance, where the TEM-1 enzyme is considered the wild-type. The 4-loci
biallelic system with the mutations L21F, R164S, T265M and E240K were studied in
Goulart et al. (2012). Fitness ranks were determined for the genotypes in 15 selective
environments corresponding to different antibiotics. However, fitness was not measured, so

that only qualitative information is available. The mean value of  for the 15 fitness
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landscapes was 0.61. Briefly, from knowledge about the TEM family, the expected  value
for a random fitness landscape in this context is less than 1% (Goulart et al., 2012; Crona et
al., 2012). The value 0.61 indicates substantially more additivity as compared to random
fitness, and at the same time the landscapes deviates considerably from additive fitness
landscapes.

In general, if  it is of interest if the block model or some related condition holds. In
particular, one can ask if it is possible to partition the single mutations so that members of
different subsets in the partition combine well. This question motivates us to suggest the
next concept.

The qualitative decomposition property holds if there exists a partition of the beneficial
single mutations satisfying the condition: For each double mutant in Bp such that the
corresponding single mutations belongs to different subsets of the partition, the double
mutant is a member of B.

Notice that a fitness landscape satisfying the block model has the qualitative decomposition
property. Moreover, the qualitative decomposition property holds also for a generalized
block model, where the fitness contributions of blocks sum (but where block fitness need not
be random). The next example illustrates the qualitative decomposition property.

Example 7
Assume that the qualitative decomposition property holds and that the partition is as follows.

In this case m1 combines well with at least 7 elements, whereas m4 combines well with at
least 3 elements.

If we assume the block model, then very few pairs from the same set in the partition will
combine well under the assumption *. The following observations are immediate from our
definitions and from considering Example 7.

Remark 5—Assume that a fitness landscape has the qualitative decomposition property.
Let B be the set of beneficial single mutations. Assume that no member of B combines well
with all other members of B. Consider the set of the greatest combiners in B. One expects
such great combiners not to combine well with each other, in comparison with randomly
chosen pairs of single beneficial mutations.

Remark 6—Sign independence of blocks implies the qualitative decomposition property.

Remark 5 and 6 were used in an empirical study of antibiotic resistance (Crona et al., 2012).
The conclusion was that the fitness data under consideration were not compatible with the
block model. For real fitness data, one needs to consider complications such as incomplete

records and multiple environments. However, in principle one can use , Remark 6 and
other patterns indicated here, for checking if fitness data are compatible with additive,
random or block models of fitness landscapes. This theme is developed in Crona et al.
(2012).
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6. Discussion
Fitness landscapes are central in the theory of adaptation, and we have studied them from a
qualitative perspective. Our main result relates global and local properties of fitness
landscapes. The qualitative perspective has contributed to our understanding of coarse
properties of fitness landscapes. Moreover, there are practical reasons for the qualitative
perspective. We have indicated simple tests for checking if fitness data are compatible with
some of the classical models of fitness landscapes, along with concepts for interpretations of
fitness data.

It goes without saying that relative fitness values are more interesting than fitness ranks of
genotypes. However, most of the available fitness data are qualitative, especially if one
considers data of central relevance for adaptation in nature. It is equally obvious that one
needs more than fitness ranks for a complete understanding of adaptation. In particular, the
theory of recombination depends on quantitative aspects of gene interactions (Otto and
Lenormand, 2002). The most fine-scaled theory of gene interactions is the geometric theory.
However, as we have seen the shape alone does not provide all information of relevance for
adaptation. A qualitative analysis could serve as a complement.

Classical theory of fitness landscapes has been developed without much contact with
empirical results. In general, it would be valuable with methods for revealing and
interpreting properties of fitness landscapes from fitness data without assumptions, or with
minimal assumptions, about the underlying fitness landscapes. Sufficiently independent
methods for analyzing data may be as important as new fitness measurements. The
geometric classification of fitness landscapes, which falls under non-parametric statistics, as
well as some of the qualitative approaches discussed here, are contributions in this category.

6.1. Conclusions
If a fitness landscape has type 2 systems but no type 1 systems, then the landscape has
multiple peaks. Moreover, one cannot find a sufficient local condition for multiple peaks
expressed in terms of type 2 systems only. (Recall that a type 2 system corresponds to
reciprocal sign epistasis, whereas a type 1 system corresponds to sign epistasis but not
reciprocal sign epistasis.)

Fitness graphs provide information not contained in the geometric classification of fitness
landscapes. (Recall that fitness graphs are determined by fitness ranks of genotypes.)
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• We study qualitative aspects of gene interactions and fitness landscapes.

• A sufficient local condition for multiple peaks is given.

• The fitness graph reveals sign epistasis and other coarse properties.

• The shape, as defined in the geometric theory, reveals all gene interactions.

• Fitness graphs and shapes provide complementary information.
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Figure 1.
The arrows point toward the more fit genotype. The graphs represent no sign epistasis (a
type 0 system), two cases with sign epistasis but not reciprocal sign epistasis (type 1
systems), and one case with reciprocal sign epistasis (a type 2 system).
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Figure 2.
There exist exactly 14 fitness graphs for biallelic two-loci systems, where the type 0 systems
are on the first row, the type 1 systems on the second row, and the type 2 systems on the
third row.
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Figure 3.
The fitness graph on the left has type 0 systems only and the corresponding fitness landscape
is single peaked. The fitness graph on the right has 3 type 0 system, 3 type 2 systems and no
type 1 systems. The corresponding fitness landscape has two peaks.
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Figure 4.
The upper pictures shows the triangulations of the genotopes (the squares) in Case 1 and 2,
corresponding to positive and negative epistasis. The lower left picture shows the
tetrahedron above the genotope in Case 1, where the height coordinates correspond to the
fitness of the four genotypes under consideration. The projections of the upper sides of the
tetrahedron describe the triangulations. The lower right picture shows how the triangulation
is induced in Case 2.
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Figure 5.
From HIV data we obtained this fitness graph with 3 type 2 systems, 2 type 1 systems and 1
type 0 system. There are exactly two peaks.
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