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Abstract
Learning is proposed to occur when there is a discrepancy between reward prediction and reward
receipt. At least two separate systems are thought to exist: one in which predictions are proposed
to be based on model-free or cached values; and another in which predictions are model-based. A
basic neural circuit for model-free reinforcement learning has already been described. In the
model-free circuit the ventral striatum (VS) is thought to supply a common-currency reward
prediction to midbrain dopamine neurons that compute prediction errors and drive learning. In a
model-based system, predictions can include more information about an expected reward, such as
its sensory attributes or current, unique value. This detailed prediction allows for both behavioral
flexibility and learning driven by changes in sensory features of rewards alone. Recent evidence
from animal learning and human imaging suggests that, in addition to model-free information, the
VS also signals model-based information. Further, there is evidence that the orbitofrontal cortex
(OFC) signals model-based information. Here we review these data and suggest that the OFC
provides model-based information to this traditional model-free circuitry and offer possibilities as
to how this interaction might occur.
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Model-free learning
A basic observation from studies of learning is that animals will adjust their behavior to
reflect contingencies between events in their environment (Rescorla, 1988). Pavlovian
conditioning captures this basic observation. In a standard conditioning experiment a naïve,
hungry animal is placed in an experimental chamber in which a neutral cue predicts a
palatable food reward. As a result of this predictive relationship, the cue will acquire many
properties, including the ability to elicit anticipatory reward behavior. Many theories of
learning have been proposed to explain the behavioral change that results from such
predictive relationships. One such theory is temporal difference reinforcement learning
(TDRL).
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In TDRL (Sutton, 1988; Dayan & Sejnowski, 1994), a modern cousin of the Rescorla–
Wagner model (Rescorla & Wagner, 1972), reward prediction errors drive cue-reward
learning. TDRL is composed of three main components: actor, critic and temporal difference
(TD) module. The actor comprises a mapping between environmental cues and actions/
behavior. The critic comprises a mapping of environmental cues and their predicted values.
The value prediction made by the critic is model-free in the sense that it is made in a
common currency, devoid of referents to the specific form and features of the reward that is
predicted. Thus, a $20 bill and $20 worth of doughnuts would generate identical value
predictions by the model-free critic. The model-free critic feeds this value prediction to the
TD module, which compares this information to the ‘actual’ reward value received. A
prediction error is then computed. When the model-free critic predicts a value of 0 (which
would be the case for a neutral cue) and a palatable food reward is subsequently received
(which intrinsically has a value of, e.g. 1), the TD module generates a large, positive
prediction error to the reward. This prediction error signal is sent to the actor, strengthening
the mapping between that cue and actions/behavior; and to the model-free critic, increasing
the reward value predicted. As the model-free critic more accurately predicts reward value,
the TD module computes a smaller difference between the predicted and actual reward,
resulting in a smaller prediction error. Eventually the reward is so well predicted that little or
no error is generated on its receipt, resulting in little or no learning. When the model-free
critic predicts a value of 1 (the palatable food reward is completely predicted) and no food is
received (a value of 0), however, the TD module generates a large negative prediction error
to the reward. A negative prediction error has the opposite effect on the actor, weakening the
mapping between cue and actions/behavior, and also on the critic, decreasing the reward
value predicted.

The different components of a model-free learning mechanism are thought to reside in
distinct brain areas. For example, human imaging has found blood oxygen level-dependent
(BOLD) signaling in the dorsolateral striatum (DS) consistent with that of the actor
(O’Doherty et al., 2004). BOLD signal and primate electrophysiology have found activity in
the ventral striatum (VS), consistent with that of a critic (Schultz et al., 1992; O’Doherty et
al., 2004). Human imaging (D’Ardenne et al., 2008), primate electrophysiology (Schultz et
al., 1997; Fiorillo et al., 2003, 2008) and rodent electrophysiology (Roesch et al., 2007) have
all found neural activity consistent with that of TD error signaling in midbrain structures
containing dopamine (DA) neurons. Further, fast-scan cyclic voltammetry in rodents, which
can measure subsecond DA release, has uncovered DA release patterns in the VS consistent
with those predicted by a TD error signaling (Day et al., 2007). The proposed interaction of
these brain areas follows exactly as above. When an environmental cue is presented, the VS
sends information about the predicted reward value to the midbrain. Midbrain DA neurons
compare the predicted value with that actually received, and generate a prediction error. A
positive prediction error results in synchronous phasic DA release in both the DS and VS
(Day et al., 2007; Roitman et al., 2008) to modulate learning, either directly or due to co-
release of other agents (Lapish et al., 2007; Stuber et al., 2010). These results provide a
framework for understanding the neural circuits that support model-free learning, which we
will return to later.

Limitations of model-free representations
Model-free representations are of obvious benefit. They ensure value is attributed to, and
behavior driven by, cues predicting reward. Despite this, model-free representations have
significant limitations. Recall that model-free value is represented in a common currency.
This means that the predictions used to guide behavior are blind to specific features of
rewards. Viewed in this light, model-free representations share some, albeit not all, features
with habitual response mechanisms that select actions without concern for the specific
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reward to be obtained (Dickinson & Balleine, 1994). Indeed, this is why value is described
as being ‘cached’ in the cue or action representation. Yet in many or even most
circumstances, behavior is guided by a specific representation of the expected reward from
which its current, unique value is derived. To make this more concrete, imagine you are on
your way to work. You can choose between making it there on time or stopping off to get a
doughnut. Clearly this decision would be usefully informed by knowing specific information
about the different options: What time is it? Did you pack a lunch? Is your boss out of town?
And, most importantly, are the Krispy Kreme doughnuts fresh? Model-free representations
do not readily allow decisions to be influenced by such specific information about predicted
consequences.

A second limitation of model-free representations is that they do not allow for ‘new
learning’ to occur when these specific features of the predicted rewards are changed, so long
as general or cached ‘value’ is maintained. Again this reflects the fact that the predictions
contain no information about the specific features of the upcoming rewards. Because no
specific information concerning the reward is predicted, differences between predicted and
actual sensory features of rewards cannot be detected. As a result, no learning can occur.
Imagine your employer began to pay you in doughnuts instead of dollars. While this may
seem absurd, if you only had a model-free learning system, you would fail to learn from this
change, so long as the amount of doughnuts were of exactly equal value to the money
expected. Of course this is not what would happen – you would notice the change and learn
about the new compensation program! Similarly animals will learn from shifts in the identity
of an expected outcome, even when that outcome value is more or less unchanged. Again
model-free representations cannot account for such behavior. These observations suggest
that, overall, model-free representations alone are insufficient to account for even fairly
simple behaviors. Instead we must be able to make predictions about specific features of
rewards to account for behavior that is flexible and for learning to occur when there are
changes in specific features of predicted rewards. This ability is a core feature of model-
based representations.

Model-based representations
Using model-based representations, humans and animals form a sort of ‘cognitive map’ of
their environment (Tolman, 1948). This map contains information about how specific
environmental events relate to one another. When an animal is confronted with one event, it
can use this map to look forward and predict specific features of the upcoming event, such
as its timing, probability, sensory aspects and any unique value it may have. Note that is in
contrast to a model-free representation that would only predict the common-currency value
of an upcoming event. Predicting specific features of upcoming events is a defining feature
of a model-based representation. The ability of model-based task representations to predict
specific features of upcoming events allows for greater behavioral flexibility. In the
aforementioned examples, this would allow you to use relevant information, such as the type
of doughnuts or your bosses’ travel plans in deciding whether to stop off on your way to
work. Experimentally, this ability is well-captured by reinforcer devaluation (Holland &
Straub, 1979). In reinforcer devaluation, a hungry animal learns that a cue predicts a
palatable reward, such as sugar. Once the cue–sugar relationship is well-learned, the value
of sugar is reduced, either by pairing its consumption with nausea or selective satiation
through unlimited sugar consumption. The crucial test comes when the cue is later presented
without being reinforced. When this is done there is a spontaneous decrease in cue
responding. This decrease could not be observed if animals were only using a model-free
representation. To decrease cue responding using a model-free system, the devalued food
would have to be encountered and consumed, in order to generate a negative prediction error
and modify the cue–behavior mapping of the actor. This would require a number of trials –
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all the while the animal would be consuming a devalued food. The spontaneous decrease
observed is consistent with the availability and use of a model-based representation.
Drawing from their cue–sugar mapping, animals look forward from the cue and predict
delivery of the sugar reward. This information, combined with knowledge of sugar’s current
value, allows cue responding to be spontaneously decreased without need for consuming or
even encountering the sugar reward.

Similarly, model-based representations also allow learning to be sensitive to changes in the
specific features of the expected reward, for example when your employer began to pay you
in doughnuts. Expecting money but receiving doughnuts would produce a model-based
prediction error signal; no matter if the dollar value of the doughnuts exactly matched your
salary. This error signal would in turn drive new learning. This is because money and
doughnuts are quite different, physical events. In this way a model-based prediction error
signal allows for learning even in situations in which predicted value and actual value are
identical. Experimentally, this learning can be isolated using Pavlovian unblocking
procedures (Holland, 1984; Rescorla, 1999). In unblocking, animals are first trained that
different cues predict a different reward identity or value. Once these associations are
established new cues are added and the reward identity or value selectively changed. In a
final test responding to the added cues signaling a selective change in reward identity or
reward value is assessed. Normal animals show evidence of learning to the cues signaling a
change in either identity or value. Learning in value unblocking may be purely driven by a
common currency, model-free representation. A small value of reward is predicted, yet a
large reward is received. It should be noted that a model-based representation could also
support value unblocking, to the extent that a larger reward is a different physical event.
Thus, value unblocking, by itself, may not fully distinguish model-based from model-free
learning mechanisms. By contrast, learning in identity unblocking requires access to a
model-based representation – because the two identities to be learned about are of equivalent
value. Predictions of specific reward identity and the resulting model-based prediction errors
are sufficient to drive new learning.

At this point we hope to have made clear that both model-free and model-based
representations are necessary in order for flexible, goal-directed behavior to be
implemented, and for learning to be driven by changes in specific properties of rewards.
Next we will discuss emerging evidence that the VS, the critic in the model-free TDRL
system, may also function as the model-based critic. We then discuss evidence suggesting
that model-based information from the orbito-frontal cortex (OFC) influences processing in
the model-free TDRL circuit described above. We end by suggesting possible neural circuits
by which model-based information from the OFC might influence information processing in
the VS, providing a common circuit for the integration of model-free and model-based
systems.

VS, model-free and model-based representations
The neural mechanisms supporting model-based representations are only beginning to be
understood. Comparing predictions of model-based and model-free computational models to
behavioral and functional magnetic resonance imaging BOLD data for subjects performing
similar sequential Markov decision tasks, recent studies have found differential localization
of prediction errors (Gläscher et al., 2010; Daw et al., 2011). Gläscher et al. (2010) found
dissociation, with a model-based prediction error signal in the lateral prefrontal cortex and a
model-free prediction error signal in the VS. The model-based prediction error was observed
following a transition into an unexpected state, defined by the task structure, and occurred
regardless of whether the state was rewarded unexpectedly. Interestingly, Daw et al. (2011)
demonstrated an integration of neural signatures for model-based and model-free prediction
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errors in both the medial prefrontal cortex and VS. Notably the Daw et al. (2011) paradigm
required subjects to constantly update knowledge of the optimal state–action pair and state
transitions, thus both model-free and model-based learning were required to make optimal
choices. By contrast, in the Gläscher et al. (2010) paradigm, subjects were primarily using
model-based predictions to guide behavior. This critical difference may explain the
dissociation of the two types of signals in the former but not the latter study. Indeed, Daw et
al. (2011) found that the extent to which ventral striatal BOLD signals associated with
model-based computation was correlated with the extent to which subjects’ choice behavior
was model-based.

These recent human imaging studies implicate the VS in the use of both model-free and
model-based representation. A review of the animal behavior literature supports a role for
the VS in both as well. The VS contributes to a host of behaviors that to varying degrees are
consistent with a role in using model-free representations, including second-order
conditioning (Setlow et al., 2002), conditioned place preference (Everitt et al., 1991),
general-affective conditioned reinforcement (Ito et al., 2004), and general-affective
Pavlovian to instrumental transfer (Corbit et al., 2001; Hall et al., 2001; de Borchgrave et al.,
2002; Corbit & Balleine, 2011; Saddoris et al., 2011). In all of these behaviors animals need
not represent the sensory aspects of the predicted reward – a representation of value in
common currency would suffice. For example, in second-order conditioning (Holland &
Rescorla, 1975) animals are first trained that a primary cue predicts reward. Once this is
well-learned, a secondary cue now predicts the occurrence of the primary cue. When this is
done the secondary cue is found to control considerable reward behavior. Notably, second-
order responding is not sensitive to the current value of the reward, a hallmark of model-free
representations. This suggests that the secondary cue does not signal any specific features of
reward but instead may be signaling a common currency value. The critical involvement of
the VS in second-order conditioning strongly suggests it normally contributes to the use of
model-free representations.

In line with the expanded role for the VS, findings from animal behavior also implicate the
VS in the use of model-based representations. Behaviors reflecting model-based
representations would be those in which specific information about upcoming rewards is
necessary to guide behavior. Reinforcer devaluation, which is affected by VS lesions, falls
into this category (Lex & Hauber, 2010; Singh et al., 2010). Pavlovian to instrumental
transfer based on the specific features of rewards would also require a model-based
representation. In this task, three cues are first trained to predict three different kinds of
reward. Next, two different responses are trained to produce two of these rewards. In a final
test each of the three cues are presented while animals are responding on one of the two
responses in extinction. Specific transfer is found when the cue facilitates responding for the
action leading to the same reward, relative to the response leading to the different reward.
The specificity of transfer could only be observed if animals had formed specific predictions
to both the cue and response in initial learning. This effect is dependent on the shell
subregion of the VS (Corbit et al., 2001; Corbit & Balleine, 2011). Thus, there is evidence
the VS contributes to behaviors potentially tapping into both model-free and model-based
representations.

Critical contributions of the VS to model-free and model-based learning
Recently we have also examined the role of the VS in learning driven by model-free and
model-based representations (McDannald et al., 2011). This work utilized unblocking
procedures (Holland, 1984; Rescorla, 1999) to demonstrate that violations of either
predicted reward identity (model-based) or predicted reward value (model-free) are
sufficient to drive new learning. As described earlier, three cues were first trained to predict
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different quantities and flavors of reward. Once these reward predictions had been well-
formed, new cues were added in compound with each of the originally trained cues and
properties of the reward were changed. In the identity condition the quantity of reward was
held constant but the flavor was changed, selectively violating the expected reward identity.
Because the two flavors were equally preferred, and thus any value difference was minimal
or non-existent, it is difficult for a model-free mechanism to support learning in this
situation. In the value condition the flavor of the reward was held constant but the quantity
was increased, selectively violating the predicted reward value. Because a prediction of
common currency value would suffice, a model-free mechanism would support learning in
this situation. These were contrasted with a ‘blocked’ condition in which the flavor and
quantity of reward were held constant, no prediction was violated. Normal animals
demonstrated learning to the added cues signaling changes in either reward identity or value,
suggesting that normal animals use both model-based and model-free learning processes.
VS-lesioned animals failed to show either identity or value unblocking, suggesting a failure
to employ either model-free or model-based learning. This finding supports the view that the
VS is necessary for using model-free and model-based representations to drive new learning.

OFC as model-based critic
In addition to an extensive literature on the VS, there is a great deal known about the
function of the OFC. Unlike the evidence implicating the VS, there is little evidence that the
OFC is necessary for behaviors requiring only general or cached information about value.
For example, the OFC is not necessary for general conditioned reinforcement (Burke et al.,
2008), tracking value during discrimination learning (Walton et al., 2010), or cue-
potentiated feeding (McDannald et al., 2005). However, OFC function is necessary for a
host of behaviors requiring specific information of rewards and their unique value
(Delamater, 2007). One such example is differential outcome expectancy (Trapold &
Overmier, 1972). In this task animals must discriminate specific cue–response–outcome
chains. For example, when one cue is present only a left response is reinforced, but when
another cue is present only a right response is reinforced. Normally this discrimination is
difficult, but if the rewards produced by the two chains differ, learning proceeds much more
rapidly. This facilitation is thought to result from the use of outcome-specific expectancies.
Interestingly, OFC lesions abolish this facilitation (McDannald et al., 2005; Ramirez &
Savage, 2007). Similarly the OFC has been shown to be necessary for outcome-specific
Pavlovian to instrumental transfer (Ostlund & Balleine, 2007), outcome-specific conditioned
reinforcement (Burke et al., 2008) and reinforcer devaluation (Gallagher et al., 1999;
Pickens et al., 2003, 2005; Izquierdo et al., 2004). These findings are each consistent with a
critical role for the OFC in using model-based representations to guide behavior.

However, the role of the OFC is not limited to guiding behavior, it is also critical when this
information is necessary to drive learning. This is evident in the performance of OFC-
lesioned animals in the same unblocking task above (Burke et al., 2008; McDannald et al.,
2011). Lesions had no effect on initial conditioning or compound training. However,
lesioned animals were significantly impaired in identity unblocking. When the quantity of
reward was held constant but the specific features of the predicted reward changed, learning
did not occur. These findings are consistent with the OFC being necessary for the use of
model-based representations. Interestingly, OFC-lesioned animals showed normal value
unblocking, demonstrating an intact ability to learn when there was a greater than predicted
quantity of reward. Thus, while VS was generally important for unblocking, OFC appears to
be specifically involved in unblocking that requires model-based information.
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Interaction of model-free and model-based learning systems
The results described above suggest that model-based information in the prefrontal cortex,
particularly the OFC, can impact model-free learning in the VS and downstream midbrain
regions. Such a functional interaction is consistent with anatomical studies that demonstrate
strong, unilateral projections from the OFC to the VS (Brog et al., 1993; Haber et al., 1995).
Notably, the results above leave open a number of interpretations for how model-based
information from the OFC might be integrated both within VS and downstream in the TD
module (Fig. 1, all circuits). Distinct populations of neurons within the VS may function as
model-free and model-based critics (Fig. 1, circuits 1–3), or information from both sources
may be integrated within a single population of neurons (Fig. 1, circuit 4). While model-
based information is likely to be supplied to the VS by the OFC, model-free information is
likely either a product of the VS itself or is supplied by another brain region. Likewise,
model-free and model-based information may be output separately from the VS, with
model-free information being sent to dopaminergic midbrain neurons serving as the model-
free module and a yet-to-be-identified structure serving as the model-based module (Fig. 1,
circuit 1) or, alternatively, DA midbrain neurons may contain separate neuronal populations
that serve as the model-based and model-free TD modules (Fig. 1, circuit 2) or may contain
only a single TD module, responsible for calculating model-based and model-free prediction
errors (Fig. 1, circuits 3 and 4).

While these ideas are speculative, there is currently some evidence supporting a strong
integration between these two systems. The finding of BOLD signal consistent with both
model-based and model-free prediction errors in the VS suggests that dopaminergic input to
this region may reflect both types of information. Further neural correlates with action
sequences, inferred values and impending actions evident in recent DA recording studies
could also reflect model-based input (Morris et al., 2006; Bromberg-Martin et al., 2010; Xin
& Costa, 2010).

Consistent with this, we have recently found that the OFC provides a critical source of
information about predicted rewards used by dopaminergic error signaling mechanisms.
Neural activity was recorded from putative DA neurons in the ventral tegmental area (VTA)
in animals with ipsilateral sham or neurotoxic lesions of the OFC (Takahashi et al., 2011).
Recordings were made in a simple odor-guided choice task in which different odor cues
indicated that a sucrose reward was available in one of two nearby fluid wells. During
recording, we manipulated the timing or size of reward across blocks of trials to induce
discrepancies between predicted and actual rewards. Firing in DA neurons in sham animals
was greater for an unpredicted reward and declined with learning. After learning, these same
neurons also suppressed firing upon omission of a predicted reward. Ipsilateral OFC lesions
did not affect animals’ performance on the task and also did not change phasic firing of DA
neurons to reward. However, DA neurons in OFC-lesioned animals failed to reduce firing to
reward with learning, and also failed to suppress firing on reward omission after learning.
While this study does not specify the type of prediction error induced (model-free vs. model-
based), these results suggest that output from the OFC regarding predicted rewards
contributes to error signaling by DA neurons in the VTA.

Conclusion
Here we have reviewed evidence that the VS contributes to both model-free and model-
based learning systems, while the OFC appears to selectively contribute to model-based
learning. Future studies will provide a more detailed account of the OFC–VS interactions
that give rise to model-based learning and how this is integrated with the existing model-free
system. Determining whether similar or different VS and DA neural populations process
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model-free and model-based information will be critical in understanding how these two
kinds of information are used to guide behavior and drive learning. Further, model-free and
model-based learning mechanisms appear to be differentially affected by drugs of abuse –
impairing model-based (Schoenbaum et al., 2004; Schoenbaum & Setlow, 2005) but
enhancing model-free representations (Wyvell & Berridge, 2001; Saddoris et al., 2011).
Studies of behavioral neuroscience have greatly benefited from theoretical distinctions as
acquisition vs. expression (Lazaro-Munoz et al., 2010), appetitive vs. aversive (Balleine &
Killcross, 2006), motivational vs. cognitive (Holland & Gallagher, 2004), etc. We feel as
though the distinction between model-free and model-based representations is equally
important. Describing the neural circuits that give rise to model-free and model-based
learning will further our understanding of how these systems support adaptive behavior/
learning, and will facilitate the development of new therapies to ameliorate their dysfunction
in addiction and other disorders.
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BOLD blood oxygen level-dependent

DA dopamine

OFC orbitofrontal cortex

TD temporal difference

TDRL temporal difference reinforcement learning

VS ventral striatum

VTA ventral tegmental area
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Fig. 1.
Possible neural circuits for model-free and model-based learning. Each row corresponds to a
different component of the model/brain area of the circuit: model-based critic; model-based/
model-free critic; and temporal difference (TD) module. The final input of each of the four
proposed neural circuits to the TD module is labeled 1–4. The orbitofrontal cortex (OFC) is
represented by a dashed, rounded rectangle; the ventral striatum (VS) by a dashed, squared
rectangle; midbrain dopamine neurons (DA) by a dashed, triangle, and a yet-to-be-identified
brain area by a dashed, circle. The color of the circles within each of these brain areas
represents the kind of information processed: black – model-based; white – model-free; and
gray – model-free/model-based. The arrows represent the kind of information sent,
respecting the same color distinctions as above. For the sake of simplicity, arrows indicating
information sent from the TD module to the critics have been omitted.
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