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Tobacco smoking results in more than 5 million deaths each year and accounts for almost
90% of all deaths from lung cancer. Nicotine, the major reinforcing component of tobacco
smoke, acts in the brain through the neuronal nicotinic acetylcholine receptors (nAChRs).
The nAChRs are allosterically regulated, ligand-gated ion channels consisting of five mem-
brane-spanning subunits. Twelve mammalian a subunits (a2–a10) and b subunits (b2–b4)
have been cloned. The predominant nAChR subtypes in mammalian brain are those con-
taining a4 and b2 subunits (denoted as a4b2� nAChRs). The a4b2� nAChRs mediate many
behaviors related to nicotine addiction and are the primary targets for currently approved
smoking cessation agents. Considering the large number of nAChR subunits in the brain, it is
likely that nAChRs containing subunits in addition to a4 and b2 also play a role in tobacco
smoking. Indeed, genetic variation in the CHRNA5-CHRNA3-CHRNB4 gene cluster, en-
coding the a5, a3, and b4 nAChR subunits, respectively, has been shown to increase vul-
nerability to tobacco dependence and smoking-associated diseases including lung cancer.
Moreover, mice in which expression ofa5 orb4 subunits has been genetically modified have
profoundlyaltered patterns of nicotine consumption. In addition to the reinforcing properties
of nicotine, the effects of nicotine on appetite, attention, and mood are also thought to
contribute to establishment and maintenance of the tobacco smoking habit. Here we
review recent insights into the behavioral actions of nicotine and the nAChRs subtypes
involved, which likely contribute to the development of tobacco dependence in smokers.

NICOTINIC RECEPTOR SUBTYPES
INVOLVED IN CONTROL OF THE
MESOLIMBIC SYSTEM AND NICOTINE
REINFORCEMENT

The mesolimbic dopamine (DA) system is a
central mediator of drug reward and rein-

forcement (Koob 1992). Lesions of the ventral
tegmental area (VTA) and its primary projec-
tion area, the nucleus accumbens (nAc), greatly

attenuate nicotine self-administration and the
psychostimulant properties of nicotine (its abil-
ity to increase locomotion [Clarke et al. 1988;
Corrigall et al. 1992, 1994]). A great deal of pro-
gress has been made in identifying the nAChR
subtypes expressed in both the dopaminergic
and GABAergic neurons of the VTA and on
neuronal terminals in the nAc (Klink et al.
2001; Zoli et al. 2002). DA neurons express
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heteromeric nAChRs containing the a4, a5, a6,
b2, and b3 subunits in various combinations,
with the predominant subtypes being a4/b2/
a5 and a4/a6/b2/b3. The a6 subunit appears
to be selectively expressed in DA neurons (Le
Novère et al. 1996; Drenan et al. 2008b), al-
though a recent report has suggested that there
may be an effect of a6-containing receptors
on GABA transmission in the VTA (Yang et al.
2011). In addition, a7 homomeric nAChRs are
expressed in DA neurons (Klink et al. 2001),
as well as on neuronal terminals on afferents to
the VTA (Mansvelder et al. 2002; Wooltorton
et al. 2003).

Electrophysiological studies have shown
that nAChRs containing the b2 subunit are es-
sential for the ability of nicotine to depolarize
DA cell bodies in the VTA and to increase their
firing rate (Picciotto et al. 1998; Zhou et al.
2001). While the predominant inward currents
owing to nicotine in these neurons involve b2�

nAChRs, nicotine can also modulate the pre-
synaptic input to DA neurons from GABAer-
gic and glutamatergic terminals impinging on
them. In a slice preparation, nicotine can po-
tentiate glutamate input to DA neurons through
a7 nAChRs, resulting in long-term potentia-
tion of those inputs (Mansvelder and McGehee
2000). In addition, nicotine can desensitize b2�

nAChRs on GABAergic inputs to DA neurons,
resulting in a shift from mixed excitation and
inhibition of DA neurons by nicotine, to a more
unmixed stimulation of nAChRs on presynap-
tic glutamatergic terminals (Mansvelder et al.
2002; Wooltorton et al. 2003).

Evidence from mouse genetic models with
knockout or mutations of nAChR subunits sug-
gests that the postsynaptic depolarization of DA
neurons is essential for behaviors related to
nicotine reward and reinforcement such as nic-
otine place preference and self-administration.
Knockout of the b2 subunit abolishes nicotine-
mediated DA release (Picciotto et al. 1998;
Grady et al. 2001), nicotine-induced locomotor
activation (King et al. 2004), nicotine self-ad-
ministration (Picciotto et al. 1998; Maskos et al.
2005), and nicotine place preference (Walters
et al. 2006; Brunzell et al. 2009; Mineur et al.
2009a). Similarly, knockout of the a4 subunit

abolishes intracerebroventricular (i.c.v.) self-
administration of nicotine, consistent with evi-
dence that a4/b2� nAChRs are required for de-
polarization of DA neurons in the VTA (Exley
et al. 2011; McGranahan et al. 2011). Converse-
ly, knockin of a hypersensitive a4 subunit shifts
the dose-response curve for nicotine-induced
increases in DA neuron firing to the left, and
results in nicotine place preference at very low
doses of the drug (Tapper et al. 2004). Similarly,
expression of a hypersensitive a6 subunit in a
bacterial artificial chromosome (BAC) trans-
genic mouse line potentiates nicotine-induced
burst firing in DA neurons, and potentiates nic-
otine place preference at low doses of nicotine
(Drenan et al. 2008a, 2010).

A series of recent studies have provided
further support for the involvement of a6�

nAChRs in nicotine self-administration. Mice
lacking the a6 subunit do not acquire intrave-
nous nicotine self-administration (Pons et al.
2008). Similarly, conotoxins selective for a6/
b2� nAChRs disrupt nicotine self-administra-
tion in the rat when infused into the VTA (Gotti
et al. 2010) and following self-administration
training, these conotoxins decrease the motiva-
tion to lever press for nicotine on a progressive
ratio schedule (Brunzell et al. 2010). In contrast,
mice with constitutive knockout of the a6 sub-
unit, intra-VTA self-administration of nicotine
is not disrupted, whereas a4� nAChRs are nec-
essary and sufficient for both intra-VTA self-
administration, as well as nicotine-induced in-
creases in firing of DA neurons (Exley et al.
2011; McGranahan et al. 2011); however, a4
anda6 subunits are both required for the ability
of nicotine to gate DA transmission in the nAc,
suggesting that nAChRs in nAc may be more
important in motivation to self-administer nic-
otine (Brunzell et al. 2010; Exley et al. 2011) and
that this may affect acquisition of intravenous
self-administration behavior (Pons et al. 2008;
Gotti et al. 2010), as well as nicotine-dependent
locomotor activation (Gotti et al. 2010).

Despite its contribution to nicotine-depen-
dent plasticity in the VTA, knockout of the a7
subunit in mice does not affect nicotine place
preference (Walters et al. 2006) or acquisition of
nicotine self-administration (Pons et al. 2008);
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however, antagonizing a7-type nAChRs in the
nAc or anterior cingulate cortex in the rat in-
creases the motivation to self-administer nico-
tine, whereas infusion of a selective a7 agonist
decreases motivation, as measured using a pro-
gressive ratio schedule (Brunzell and McIntosh
2012). a7-type nAChRs may modulate, rather
than mediate, nicotine reinforcement and there-
fore the effect of a7 knockout may be more
subtle than knockout of b2� nAChRs.

An important role for nAChRs in the VTA in
nicotine reinforcement has been shown using
both molecular genetic and pharmacological
techniques. Selective viral reexpression of b2�

(Maskos et al. 2005; Pons et al. 2008) or a4�

nAChRs in the VTA is sufficient to support
both intra-VTA (Maskos et al. 2005) and sys-
temic nicotine self-administration (Pons et al.
2008), identifying the nAChR subtypes neces-
sary for nicotine reinforcement, as well as dem-
onstrating the importance of nAChRs within
the VTA itself for this behavior. This is consis-
tent with previous studies suggesting that
nAChRs within the VTA are critical for nicotine
reward, because local infusion of a nicotinic ag-
onist into the VTA, but not the nAc, is sufficient
for nicotine place preference in the rat (Museo
and Wise 1994).

Thus, molecular genetic studies support the
idea thata4/a6/b2� nAChRs on DA neurons in
the VTA are essential for nicotine reinforce-
ment. These experiments in mice are supported
by pharmacological studies in rats, and provide
a consistent molecular subtype and neuroana-
tomical locus for the rewarding and reinforcing
effects of nicotine.

NICOTINIC RECEPTORS AND CIRCUITS
INVOLVED IN AVERSION AND NICOTINE
WITHDRAWAL: FOCUS ON THE HABENULA-
INTERPEDUNCULAR PATHWAY

The habenula is a diencephalic structure locat-
ed on the dorsomedial surface of the caudal
thalamus that is segregated into medial (MHb)
and lateral (LHb) domains (Lecourtier and
Kelly 2007; Hikosaka 2010). The MHb and
LHb are anatomically, chemically, and function-
ally distinct subnuclei, each with different com-

plements of afferent and efferent connections.
LHb receives afferent inputs from, and projects
extensively to, midbrain and hindbrain sites. In
particular, the LHb projects densely to the ros-
tromedial tegmental nucleus (RMTg) (Jhou
et al. 2009), and has a well-established inhibito-
ry effect on the firing of midbrain dopamine
neurons (Lecourtier and Kelly 2007; Matsu-
moto and Hikosaka 2009; Hikosaka 2010;
Bromberg-Martin and Hikosaka 2011). LHb
neurons are excited by omission of anticipated
rewards or exposure to aversive stimuli (Le-
courtier and Kelly 2007; Matsumoto and Hiko-
saka 2009; Hikosaka 2010; Bromberg-Martin
and Hikosaka 2011). This has prompted con-
siderable interest in the role for LHb neurons in
encoding negative motivational states. Unlike
the LHb, the MHb projects almost exclusively
to the interpeduncular nucleus (IPN) via the
fasciculus retroflexus (Fr) (Lecourtier and Kel-
ly 2007; Hikosaka 2010). MHb is comprised
of neurons that produce the neurotransmitters
acetylcholine or substance P (Cuello et al. 1978;
Eckenrode et al. 1987), and a small population
that produce the cytokine interleukin-18 (IL-
18) (Sugama et al. 2002). However, it is believed
that most MHb neurons also produce and co-
release glutamate, with this excitatory neuro-
transmitter considered the major functional
transmitter at the MHb-IPN synapse (Mata
et al. 1977; Vincent et al. 1980; Girod et al.
2000; Ren et al. 2011). The MHb contains
some of the highest densities of nicotine-bind-
ing sites in brain (Mugnaini et al. 2002). In par-
ticular, the highest density of a5, a3, and b4
nAChR subunit expression in brain is detected
in MHb and/or IPN (De Biasi and Salas 2008).
Indeed, approximately 90%–100% of MHb
neurons express a3, a4, a5, b2, and b4 nAChR
subunits (Sheffield et al. 2000), and in mouse
brain slices through the MHb, .85% of neurons
respond to nicotine with an inward current, and
these currents are not altered in mice lacking the
b2 nAChR subunit (Picciotto et al. 1995). It is
also hypothesized that �20% of functional
nAChRs in rat MHb neurons that project to
IPN contain a5 subunits (Grady et al. 2009).

The fact that the MHb-IPN pathway is en-
riched in a5, a3, and b4 nAChR subunits is of
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particular interest in the context of recent hu-
man genetics findings. It has been shown that
allelic variation in the a5/a3/b4 nAChR sub-
unit gene cluster located in chromosome region
15q25 significantly increases the risk of tobacco
addiction (Saccone et al. 2007; Berrettini et al.
2008; Lips et al. 2010). For example, a single
nucleotide polymorphism (SNP) in CHRNA5
(rs16969968) that is very common in those of
European descent (minor allele frequency ¼
0.42) increases the risk of tobacco dependence
by �30% in individuals carrying a single copy
of the variant, and more than doubles the risk
in those carrying two risk alleles (Bierut et al.
2008; Wang et al. 2009); a finding that has been
consistently replicated (Berrettini et al. 2008;
Bierut et al. 2008; Grucza et al. 2008; Stevens
et al. 2008). The rs16969968 risk variant is asso-
ciated with heavy smoking (Berrettini et al.
2008; Bierut et al. 2008; Grucza et al. 2008; Ste-
vens et al. 2008), earlyonset of smoking behavior
(Weiss et al. 2008), and with “pleasurable buzz”
from tobacco (Sherva et al. 2008). In addi-
tion, the same genetic variability in CHRNA5 is
also a major risk factor for lung cancer and
chronic obstructive pulmonary disease (COPD)
in smokers (Amos et al. 2008; Hung et al. 2008;
Wang et al. 2010), likely reflecting higher levels
of tobacco dependence in individuals carrying
risk alleles and consequently greater exposure to
carcinogens and toxins contained in tobacco
smoke (Le Marchand et al. 2008; Thorgeirsson
et al. 2008). In addition to the rs16969968 SNP
in CHRNA5, there is also increased risk of to-
bacco dependence in individuals carrying the
rs6495308, rs578776, or rs1051730 SNPs in
CHRNA3 (Berrettini et al. 2008; Saccone et al.
2009), and rs1948 in CHRNB4 (Schlaepfer et al.
2008).

The above findings suggest that nAChRs
containing a5, a3, and/or b4 nAChR subunits,
densely expressed in the MHb-IPN pathway,
regulate addiction-related actions of nico-
tine. Consistent with an important role for
a5� nAChRs in regulating nicotine intake, it
was recently shown that mice with a null muta-
tion for this subunit intravenously self-admin-
istered far more nicotine than their wild-type
littermates (Fowler et al. 2011). Interestingly,

the knockout mice consumed more nicotine
only when higher unit doses of the drug were
available (Fowler et al. 2011). By using Fos im-
munoreactivity as a measure of neuronal acti-
vation, it was shown that the MHb-IPN path-
way of the knockout mice was far less sensitive
to nicotine-induced activation than wild-type
mice (Fowler et al. 2011). Moreover, chemical
inactivation of the MHb or the IPN using the
local anesthetic lidocaine, or disruption of
NMDA receptor-mediated glutamatergic trans-
mission in these sites using the competitive
antagonist LY2358959, increased nicotine self-
administration behavior in rats in a manner
similar to what was observed in a5 nAChR sub-
unit knockout mice (Fowler et al. 2011). Virus-
mediated reexpression of thea5 nAChR subunit
in the MHb-IPN pathway of knockout mice
abolished the increased nicotine intake seen at
higher doses of nicotine (Fowler et al. 2011).
Conversely, RNA interference-mediated knock-
down of a5 nAChR subunits in the MHb-IPN
pathway in rats resulted in increased nicotine
intake at higher unit doses of the drug, very
similar to the same behavioral profile detected
in the knockout mice (Fowler et al. 2011). Fi-
nally, knockdown of a5 nAChR subunits in
the MHb-IPN pathway in rats decreased their
sensitivity to the reward-inhibiting (i.e., aver-
sive) actions of higher nicotine doses compared
with control rats, as measured by nicotine-in-
duced elevations of intracranial self-stimulation
(ICSS) reward thresholds (Fowler et al. 2011).
Taken together, these findings suggest that nic-
otine activates the MHb-IPN pathway through
stimulatory effects on a5� nAChRs. Nicotine-
induced activation of the MHb-IPN pathway
results in a negative motivational signal that
serves to limit further nicotine intake. Hence,
disruption of a5� nAChR signaling diminishes
the stimulatory effects of nicotine on MHb-IPN
activity, and thereby permits consumption of
greater quantities of nicotine.

In addition to a5� nAChRs, evidence sug-
gests that b4� nAChRs in the MHb-IPN path-
way also play an important role in regulating
nicotine consumption. Specifically, overexpres-
sion of b4� nAChRs in mice using BAC trans-
genic technology resulted in greatly diminished
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sensitivity to the reinforcing properties of orally
consumed nicotine solutions and far less con-
sumption of the drug than wild-type mice
(Frahm et al. 2011). This finding suggests that,
similar to a5� nAChRs, b4� nAChRs in the
MHb-IPN pathway also regulate sensitivity to
the aversive effects of nicotine that control the
quantities of the drug consumed.

Dependence on tobacco smoking depends
not only on the balance between the rewarding
and aversive action of nicotine described above,
but also on escape from the aversive conse-
quences of nicotine withdrawal (Doherty et al.
1995; Kenny and Markou 2001). Indeed, with-
drawal duration and severity predicts relapse in
abstinent human smokers (Piasecki et al. 1998,
2000, 2003). The nicotine withdrawal syndrome
in abstinent smokers is composed of “physical”
or somatic components, and “affective” compo-
nents. The most common somatic symptoms
include bradycardia, gastrointestinal discom-
fort, and increased appetite. Affective symp-
toms primarily include depressed mood includ-
ing anhedonia, dysphoria, anxiety, irritability,
difficulty concentrating, and craving (Parrott
1993; Doherty et al. 1995; Kenny and Markou
2001). Similar to a5 subunits, a2 subunits are
highly enriched in the IPN (Grady et al. 2009).
Recently, it was shown that a5 and a2 subunit
knockout mice that were dependent on nicotine
(delivered through subcutaneously implanted
osmotic minipumps) did not show somatic
signs of nicotine withdrawal when withdrawal
was precipitated with the nAChR antagonist
mecamylamine (Salas et al. 2009). Moreover, di-
rect infusion of mecamylamine into the IPN, but
not the VTA, of nicotine-dependent wild-type
mice precipitated the expression of somatic
withdrawal signs (Salas et al. 2009). This sug-
gests that a5� and a2� nAChRs in the MHb-
IPN pathway, and perhaps other nAChR sub-
types enriched in this pathway, regulate the
expression of somatic signs of nicotine with-
drawal. However, little is known concerning
the role for nAChRs in the MHb-IPN tract in
regulating affective aspects of nicotine with-
drawal, and in particular, withdrawal-associated
reward deficits that may motivate relapse during
periods of abstinence in human smokers.

Taken together, the above findings support
a key role for a5 and b4, and perhaps also a2
and a3 nAChRs, which are enriched in the
MHb-IPN pathway in regulating nicotine rein-
forcement and the expression of the nicotine
withdrawal syndrome in nicotine-dependent
rodents. As such, nAChRs containing these sub-
units may be important targets for the devel-
opment of novel therapeutics for smoking ces-
sation.

NICOTINIC INVOLVEMENT IN
BEHAVIORS RELATED TO
ONGOING SMOKING: EFFECTS OF
NICOTINE ON DEPRESSION,
APPETITE, AND ATTENTION

Nicotine reinforcement and avoidance of the
aversive effects of nicotine withdrawal are clearly
fundamental for ongoing smoking, but a num-
ber of other factors are also likely to contribute
to smoking behavior in humans. nAChRs are
expressed throughout the brain on both excit-
atory and inhibitory neurons, with the ability to
increase inhibition of circuits when excitation is
high and to increase excitation when circuits are
less active (Picciotto 2003). The result of this
circuit-level integration is that nicotine can
modulate behavioral function bidirectionally,
acting as a stimulant and increasing anxiety un-
der some conditions and decreasing activity and
anxiety in others (Picciotto 2003).

Some individuals report that they smoke
to improve attention (Rusted and Warburton
1992; Warburton et al. 1992), and the ability
of smoking to improve attentional function in
individuals with schizophrenia (George et al.
2002) is likely to contribute to their extremely
high rates of smoking. Similarly, a large propor-
tion of smokers report that they smoke to con-
trol symptoms of anxiety and depression (Pic-
ciotto et al. 2002), and the rate of smoking in
individuals with affective disorders is more than
double the rate in the general population (Kal-
man et al. 2005). The idea that some individuals
smoke to self-medicate psychiatric symptoms
is thought to underlie the high rate of smoking
in individuals with psychiatric illness, and some
estimates suggest that �44% of cigarettes are
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sold to individuals with a current psychiatric
condition (Lasser et al. 2000).

Effects of nAChRs on Anxiety- and
Depression-Like Behaviors

Studies in mouse genetic models have helped
identify the nAChR subtypes involved in a num-
ber of behavioral effects of nicotine that may
affect human smoking. Nicotine is known to
have both anxiolytic and anxiogenic effects in
rodents (File et al. 2000), and these effects are
likely to depend on different nAChR subtypes.
For example, chronic administration of nicotine
increased anxiety-like behavior in female, but
not male, mice (Caldarone et al. 2008), whereas
knockout mice lacking the b4 subunit show less
anxiety-like behaviors at baseline (Salas et al.
2003) and no difference in anxiety-like behav-
iors were seen at baseline or following nicotine
administration in mice lacking the b2 subunit
(Caldarone et al. 2008). Similarly, female, but
not male, knockout mice lacking the a5 sub-
unit showed reduced anxiety-like behavior, and
this may be related to progesterone effects on
a5 subunit expression (Gangitano et al. 2009).
These data suggest that stimulation of a5b4�

nAChRs is important for the anxiogenic effects
of nicotine.

The effects of nicotine on depression-like
behavior are also complex. Studies in the Flin-
ders sensitive line of rats have shown that acute
nicotine administration is antidepressant-like
in the forced swim test and that this effect can
be blocked by the nicotinic antagonist meca-
mylamine, suggesting that activation of nAChRs
decreases depression-like behavior in this mod-
el (Tizabi et al. 2000). In contrast, the nicotinic
antagonist mecamylamine has antidepressant-
like effects in mice (Caldarone et al. 2004; Ra-
benstein et al. 2006; Andreasen et al. 2009), and
can be effective as an add-on medication in de-
pressed human subjects who are nonresponsive
to an SSRI (George et al. 2008). Similarly, nic-
otinic partial agonists, that would be expected
to decrease activity of acetylcholine at endog-
enous nAChRs when cholinergic tone is high
but increase activity of nAChRs when choliner-
gic tone is low, are effective in mouse models

of antidepressant efficacy (Mineur et al. 2007,
2009b, 2011b; Rollema et al. 2009; Caldarone
et al. 2011) and in human smokers (Philip
et al. 2009). These data suggest that inhibition
of nAChRs in some neuronal subtypes or brain
areas and activation in others may contribute to
an antidepressant-like effect of nicotinic drugs,
so the cycles of nAChR activation and desensi-
tization experienced by smokers may result in
fluctuations in depressive symptoms through-
out the day. Both the antagonist mecamylamine
(Rabenstein et al. 2006) and the partial agonist
sazetidine (Caldarone et al. 2011), as well as the
classical antidepressant amitriptyline (Calda-
rone et al. 2004), are ineffective in mice lacking
the b2 subunit, and these knockout mice show
decreased depression-like behavior at baseline,
suggesting that b2� nAChRs are critical for the
antidepressant-like effects of nicotinic drugs;
however, mice lacking the a7 subunit are also
resistant to the antidepressant-like effects of
mecamylamine (Rabenstein et al. 2006), and
the effects of the partial agonist sazetidine could
be blocked with mecamylamine (Caldarone
et al. 2011), suggesting that other nAChR sub-
types may also contribute to the antidepressant-
like effects of nicotinic drugs, and that activa-
tion as well as inhibition of nAChRs can result
in antidepressant-like effects.

Effects of nAChRs on Behaviors Related
to Attention

In addition to effects on anxiety and depression,
nicotine and nicotinic drugs can improve at-
tention in control subjects (Rusted and Warbur-
ton 1992) and individuals with schizophrenia
(Sacco et al. 2004). Interestingly, after control
subjects quit smoking and transition past the
acute withdrawal period, their working memo-
ry function improves compared with when they
were smoking (George et al. 2002). In contrast,
individuals with schizophrenia show impaired
attentional performance once they quit smok-
ing (George et al. 2002). Genetic and functional
studies have implicated a7 nAChRs in prepulse
inhibition, a physiological marker associated
with schizophrenia (Leonard et al. 2000; Freed-
man et al. 2003). Mice lacking the a7 subunit
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have been shown to have impaired trace eye-
blink conditioning (Brown et al. 2010). These
data suggest that optimal nAChR stimulation
is achieved at baseline in control subjects or
wild-type mice with normal a7 nAChR levels,
whereas nicotine from tobacco smoke can
further improve attention in individuals with
schizophrenia.

Studies using knockout mice with lentivi-
ral-mediated reexpression have shown that
b2� nAChRs in the prelimbic medial prefrontal
cortex (mPFC) are important for normal per-
formance of the five-choice serial reaction time
task measuring visual attention. Similarly, rapid
acetylcholine transients in the mPFC are cor-
related with attention to brief cues, and mice
lacking the b2, but not the a7, subunit show
impaired performance in an attentional task
(Parikh et al. 2007, 2008). Studies in rodents
have also implicated nAChRs on glutamatergic
thalamocortical neurons impinging on layer
five pyramidal neurons in the prefrontal cortex
as an important site for nAChR control of at-
tention (Lambe et al. 2005; Bailey et al. 2010).
Overall, it appears that nAChRs in thalamo-cor-
ticothalamic loops are important for regulating
glutamate release in this circuit, and for medi-
ating the effects of acetylcholine on attentional
function (Heath and Picciotto 2009).

In addition to effects of nicotine on atten-
tional function in adulthood, many studies have
shown a role for nAChRs in maturation of cir-
cuits important for attention during develop-
ment (reviewed in Heath and Picciotto 2009).
Mice administered nicotine during the adoles-
cent period show deficits in the five-choice se-
rial reaction time task that are associated with
decreased expression of mGluR2 receptors, and
that are rescued by administration of mGluR2
agonists (Counotte et al. 2011). Similarly, a5/
b2� nAChRs on layer six cortical glutamatergic
projection neurons to the thalamus are essential
in maturation of this circuit and for normal
adult performance in passive avoidance, a so-
matosensory aversive learning task (King et al.
2003; Heath et al. 2010). Electrophysiological
studies have shown that currents mediated
through a5/b2� nAChRs are maximal in the
early postnatal period (Kassam et al. 2008). Nic-

otine administration during this same period
alters performance in the passive avoidance
task in normal mice as well as in mice with
expression of b2� nAChRs exclusively in corti-
cothalamic neurons (Heath et al. 2010), sug-
gesting that disrupting normal acetylcholine
signaling through these nAChRs during a criti-
cal period has lasting effects on function of the
corticothalamic circuit in passive avoidance be-
havior. Interestingly, modulation of nicotinic
function through the lynx1 protein is also im-
portant for regulating the critical period for ac-
tivity-dependent visual system development
(Morishita et al. 2010).

Effects of nAChRs on Food Intake

The anorexic effects of smoking have been well-
documented in human subjects, and the prin-
cipal reason cited by female teenagers for why
they smoke is weight control (Voorhees et al.
2002). On average, smokers weigh �5 kg less
than nonsmokers and have significantly lower
body mass index than nonsmokers (Albanes
et al. 1987). Similarly, nicotine decreases feeding
in animal models (Grunberg et al. 1987), sug-
gesting that the nicotine in tobacco is important
for the effects of smoking on appetite. Whereas
b2a4a6� nAChRs are critical for nicotine re-
ward and reinforcement, b4� nAChRs on pro-
opiomelanocortin (POMC) neurons in the
arcuate nucleus of the hypothalamus are neces-
sary for the appetite-suppressing effects of nic-
otine (Mineur et al. 2011a). There are a number
of nAChR subtypes expressed in the hypothala-
mus (Jo et al. 2002, 2005), and nicotine can stim-
ulate the firing of both POMC neurons, which
signal satiety, and neuropeptide Y (NPY) neu-
rons, which stimulate food seeking (Huang et al.
2011). Interestingly, in a slice preparation, the
effects of nicotine on firing of POMC neurons
persist longer than firing of NPY neurons,
showing that at the circuit level, stimulation of
nAChRs shifts the balance toward neuronal pat-
terns that signal satiety (Huang et al. 2011).

Although b4� nAChRs on POMC neurons
can signal satiety, nAChRs in the mesolimbic
dopamine system may be more important for
the motivation to work for food. The DA system
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is important for the hedonic value of both drugs
of abuse, like nicotine, and palatable foods
(Kenny 2011). Food or sugar intake can increase
acetylcholine release in the VTA (Hajnal et al.
1998; Rada et al. 2000), and withdrawal from
binge eating increases acetylcholine release in
the nAc (Avena et al. 2008). Interestingly, block-
ing a7 nicotinic AChRs in the VTA can decrease
food seeking (Schilstrom et al. 1998). In con-
trast, previous nicotine exposure increases the
motivation of mice to work for food, and this is
attributable to non-b2� nAChRs (Brunzell et al.
2006). Taken together, these data show that, in
addition to its effects on satiety mediated
through POMC neuron signaling, acetylcholine
in the mesolimbic system is also likely to affect
motivation to seek palatable foods and to mod-
ulate their hedonic value through distinct
nAChR subtypes.

CONCLUSIONS

The high-affinity a4b2� nAChRs play a key role
in the behavioral actions of nicotine that con-
tribute to the development of tobacco depen-
dence, including its effects on brain circuitries
involved in reinforcement, mood, attention,
and food consumption. Recent evidence has
shed important light on other nAChR subunits
that may also be incorporated into the a4b2�

nAChRs that regulate these processes. For ex-
ample, incorporation of a6 and b3 nAChR
subunits in a4b2� nAChRs in the mesoaccum-
bens pathway gives rise to a nAChR subtype
(a4a6b2b3�) that appears to play a particularly
important role in nicotine reinforcement. In
addition, nAChR subtypes containing a5, a3,
and/or b4 nAChR subunits have been impli-
cated in regulating the aversive properties of
nicotine that control the quantities of the drug
consumed and in the development of tobacco
dependence. In addition, b4� nAChRs also play
an important role in appetite regulation, partic-
ularly the inhibitory effects of nicotine on ap-
petite that underlie the anorectic effects of to-
bacco smoke. A more refined understanding of
the precise contribution of discrete nAChR sub-
types to these addiction-relevant properties of
nicotine may reveal important new targets for

the development of novel therapeutics for to-
bacco dependence. Moreover, such novel thera-
peutics could also have utility for the treatment
of mood and attention disorders and the con-
trol of body weight.
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