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Summary

Mucosal administration of an antigen eliciting bystander suppression at the
site of inflammation results in effective antigen-specific immunotherapy for
autoimmune diseases. Heat shock proteins are bystander antigens that are
effective in peptide-specific immunotherapy in both experimental and human
autoimmune disease. The efficacy of preventive peptide immunotherapy is
increased by enhancing peptide-specific immune responses with proinflam-
matory agents. Combining peptide-specific immunotherapy with general
suppression of inflammation may improve its therapeutic effect.
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Introduction

How to restore the immune balance in a deranged immune
system that attacks self tissues in autoimmune diseases is a
continuing focus of research. The current treatment of
autoimmunity still depends mainly on conventional life-
long general immune suppression. Although a step forward
has been made in clinical efficacy by the introduction of
biologics that block proinflammatory cytokines, inflamma-
tion revives as soon as therapy is discontinued. Moreover,
the considerable immune suppression evoked by cytokine
blockade has been associated with severe side effects such as
serious opportunistic infections, and even malignancies such
as lymphoma [1–6].

A more specific approach could overcome drawbacks of
non-specific immune suppressive therapy. By specific target-
ing of autoaggressive T cells in autoimmunity, side effects
can be reduced. Indeed, such antigen-specific immuno-
therapy has been shown to be effective in multiple animal
models of autoimmunity without severe side effects
(reviewed by [7]). Translation of these findings to human
therapies showed promising results, but efficacy has been less
than expected (Table 1). To improve the effect of antigen-
specific therapy in clinical autoimmune diseases, three

issues – choice of antigen, route of administration and
peptide immunogenicity – need to be addressed.

The choice of antigen in animal models is facilitated by
the fact that the disease-inducing antigen is known. The
identification of such an antigen in human autoimmunity is
more challenging, as the disease-inducing antigen in many
autoimmune diseases remains unknown. In addition, it is
doubtful whether this single disease-inducing antigen really
exists. Therefore new targets for antigen-specific therapy are
needed.

The second issue concerns the route of antigen
administration. In the majority of clinical trials the antigen is
administered by injection, while a more effective option to
restore immune tolerance would be the administration of
antigen in a tolerogenic environment, such as the gut or
nasal mucosa [7,8]. This tolerogenic presentation of the
antigen converts the antigen-specific proinflammatory
immune response to an antigen-specific regulatory response
(reviewed by [9]).

When peptides are administered via the mucosal route the
third issue may be a limited immunogenicity, indicating a
need for enhancement of peptide recognition [10,11].

When these issues can be addressed, mucosal antigen-
specific immunotherapy can be an interesting alternative to
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generalized immune-suppressive therapy with subsequent
unwanted side effects. Results of clinical trials of peptide
immunotherapy are promising, but efficiency needs to be
enhanced. In this review, we consider ways to improve future
antigen-specific immunotherapy with a special focus on heat
shock proteins (HSPs).

Heat shock proteins: candidates for immunotherapy

Bystander antigens

At time of diagnosis, human autoimmune diseases are
already characterized by a secondary non-specific inflamma-
tory process in which multiple antigens are targets of the
immune system (a process known as epitope spreading).
The antigens that are specifically up-regulated at the site
of inflammation and are immunologically dominant
(bystander antigens) are candidates for antigen-specific
immunotherapy. Induced tolerogenic immune responses
to such bystander antigens could lead to a local down-
regulation of the ongoing immune response (bystander
suppression).

Heat shock proteins as bystander antigens

HSPs, which are highly conserved intracellular molecular
chaperones that are important for cell survival under stress-
ful conditions, fulfil both the above-mentioned criteria for
bystander antigens (reviewed in [12]).

First, HSPs are up-regulated upon cell stress and are there-
fore present exclusively at sites of inflammation. HSPs are
indeed abundantly present in muscle cells of juvenile der-
matomyositis (JDM) patients [13], in synovial fluid and syn-
ovial tissue of juvenile idiopathic arthritis (JIA) [14] and RA
patients [15] and in inflamed bowel of Crohn’s disease
patients [16]. There is also supporting evidence that HSPs
are secreted from stressed cells; for example, in blood, free
HSP60 is found during various inflammatory conditions
[17].

Secondly, in autoimmune disease, HSP-specific responses
are immunologically dominant [12,18,19]. For example,
HSP60 peptide-specific T cell clones play a significant role in
the perpetuation of Crohn’s disease and tissue-specific T cell
clones from diabetic children recognize human HSP60 as an
autoantigen [16,20,21]. Humoral responses to HSPs have
also been observed in autoimmune diseases, as antibody
responses to multiple HSP families were detected in sera
from RA and JIA patients [22,23].

Altogether, HSPs seem to be suitable candidates for the
induction of bystander suppression by antigen-specific
immunotherapy.

Immunoregulatory properties of HSPs

HSPs are known for their strong evolutionary conservation,
resulting in a high level of homology between bacterial and

mammalian HSPs [24]. Theoretically, this high homology in
combination with their up-regulation during stress and
immunodominancy could be dangerous, putting the host at
risk for autoimmunity through antigenic mimicry [25].
However, T and B cell responses to self-HSP are present in
healthy individuals (and even in cord blood) without wide-
spread inflammation or autoimmunity [26–28]. This could
be due to the presence of regulatory immune responses.
HSP-specific immune responses have been suggested to have
a driving force in the generation of regulatory action via
innate and adaptive pathways [12,26,29].

Innate effects of HSP. The innate immune system was thought
originally to recognize only pathogen-associated molecular
patterns (PAMPs) via their pathogen recognition receptors
(PRR), also known as the ‘infectious non-self model’ [30].
Matzinger proposed rather that the innate immune system
responds to endogenous danger signals (danger-associated
molecular patterns, DAMPs), released by damaged or stressed
cells with the tissue playing an important role in determining
the quality of the immune response [31,32]. As HSPs are
up-regulated and excreted during stress, these proteins have
long been implicated in triggering innate immune responses.
There has been a debate as to whether these innate effects of
HSP (reviewed in [17]) could have been the result of contami-
nation by other Toll-like receptor (TLR) agonists (reviewed in
[33]). Although the use of contaminated HSP has been a
problem in several studies, considerable evidence now exists
to support the innate effects of HSP. Properly controlled
research revealed that self-HSP60 (and not microbial HSP60)
has a direct, lipopolysaccharide (LPS)-independent innate
effect on T cells mediated through TLR-2 and on monocytes
and macrophages through TLR-4 [34].

Adaptive effects of HSP. The induction of regulation by HSPs
has also been described via adaptive immune responses. Pre-
sumably as a result of stimulation by homologous HSPs
from commensal bacteria in the gut, self-HSP-specific T and
B cell responses are present in healthy individuals [18]. To
contain these autoreactive T cells that escaped central toler-
ance safely, peripheral tolerance mechanisms are needed. It
has been shown that self-HSP reactive T cells evoke regula-
tory immune responses. Data from animal models indicate
that cross-reactive immunoregulatory T cell responses to
self-HSP play a role in disease protection [29,35–37]. In line
with these findings, the presence of self-HSP60-specific T
cell responses in JIA patients correlates with a benign disease
course [38–40]. Self-HSP-specific T cell responses have also
been reported to be immunoregulatory in various other
autoimmune diseases, such as RA [41] and JDM [13], by the
production of anti-inflammatory cytokines such as interleu-
kin (IL)-10, IL-4 and transforming growth factor (TGF)-b
[38,42]. A recent study revealed that self-HSP60 could
directly induce highly suppressive forkhead box protein 3
(FoxP3+) Treg in vitro [43]. Finally, low concentrations of
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human HSP60 or p277 (a synthetic human HSP60-derived
peptide) have been shown to be able to enhance the regula-
tory function of CD25+ Treg from human peripheral blood
mononuclear cells (PBMC) [19,44].

In conclusion, HSPs are bystander antigens that can
elicit regulatory responses in human autoimmune disease,
and are therefore interesting targets for antigen-specific
immunotherapy.

Peptide immunotherapy

The development of antigen-specific immunotherapy
with proteins has been hampered by side effects such as
mast cell activation or cytotoxic T cell responses [45–47].
Peptide immunotherapy can be an attractive alternative, as
it increases specificity and thereby reduces side effects. More-
over, synthetic peptides are free of microbial products.

Peptide selection. In human disease, selection of appropriate
peptides for immunotherapy is a major challenge. The selec-

tion process is helped by focusing on desirable characteristics
of the peptide.

First, the peptide should be recognized by the human
immune system and thus be able to bind disease-associated
human leucocyte antigen (HLA) molecules. For this
purpose, multiple prediction models of peptide binding to
HLA have been shown to be helpful [48–51]. Secondly, the
peptide should mimic the naturally processed epitope, as
altered peptides may behave unpredictably [52,53]. To fulfil
this criterion, selection can be based on elution studies
of HLA-peptide complexes. Thirdly, as self-cross-reactive
responses have been shown to be important for the disease-
protective effect of peptides [29], a peptide needs to have
high homology to self and still be immunogenic.

HSP-peptide immunotherapy. HSP-peptides prevent auto-
immune disease in multiple experimental animal models
(Table 2). However, most peptides used in these models
were not selected primarily on their binding capacity
of disease-associated human HLA molecules, a feature

Table 2. Protective heat shock protein (HSP) peptide treatment in experimental models of autoimmunity.

Model Route Adjuvant Regimen Peptides HSP References

Arthritis DIA i.d. IFA p Mixture of 120–134 and 213–277 Self Moudgil, J Immunol 2005

PIA i.p. None p and t 261–271 Non-self Thompson, J Immunol 1998;

Francis, Immunology 2000

AA and

CPIA

i.d. DDA p 256–270 Non-self Anderton, J Exp Med 1995

AA and

AIA

i.n. None p 176–190 Non-self Prakken, Proc Natl Acad Sci 1997

AA i.d. IFA p 180–188 Non-self Golden, Agents Actions 1991

AA i.n. None t 180–188 Non-self Roord, PLoS ONE 2006

AA i.d. IFA p 234–252 Non-self Tanaka, J Immunol 1999

AA i.n. None p 111–125 Non-self Wendling, J Immunol 2000

AA i.p. None p 61–80 (mHSP65), 31–46, 37–52

(self)HSP60

Both Ulmansky, J Immunol 2002

AA i.n. None p 254–268 Non-self Zonneveld-Huijssoon, Ann

Rheum Dis 2011

AA s.c. DDA p Mixture of 417–431, 441–455,

465–479, 513–527, 521–535

(BCTD)

Non-self Moudgil, J Exp Med 1997; Durai,

J Immunol 2004

AA s.c. IFA p 177–191 Non-self Durai, J Rheumatol 2007

DM NOD s.c. IFA t 437–460 (p277) Self Cohen, Lancet 1994

NOD i.p. IFA p and t 437–460 (p277) Self Elias, Diabetes 1995, 1997;

Ablamunits, J Autoimmun

1998; Tian, J Immunol 1998;

Elia, Proc Natl Acad Sci 1991

STZ i.p. Mineral oil t 437–460 (p277) Self Elias, Diabetes 1996

NOD s.c. IFA p 166–185 (p12) Self Elias, J Autoimmun 1997

BB-DP p.o. None p Peptide analogue of p277

(Diapep277)

Self Brugman, Diabetologia 2004

Sjögren SS s.c. IFA p 437–460 Self Delaleu, Arthritis Rheum 2008

Adapted from [12] and [22]. AA: adjuvant arthritis; DIA: dimethyl dioctadecyl ammoniumbromide-induced arthritis; PIA: pristine-induced

arthritis; AIA: avridine-induced arthritis; CPIA: CP20961-induced arthritis; STZ: STZ toxin-induced diabetes; BB-DP: BioBreeding-Diabetes Prone rat;

SS: spontaneous Sjögren syndrome; i.d.: intradermal; i.p.: intraperitoneal; i.n.: intranasal; s.c.: subcutaneous; p.o.: per os, oral; IFA: incomplete Freund’s

adjuvant; DDA: dimethyl dioctadecyl ammoniumbromide; p: preventive regimen; t: therapeutic regimen.
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desired for translation of the experimental results into
humans.

In two recent studies, HSP60-derived HLA-binding pep-
tides were tested in an experimental arthritis model [54,55].
In one of the two studies, the identified human HSP60
epitope was modified artificially to increase the HLA binding
affinity and to skew towards a regulatory T cell response
[54]. Intradermal administration of this altered peptide sup-
pressed experimental arthritis (AA) in vivo by the induction
of regulatory T cells (Treg) and increased Treg frequency in
ex-vivo assays with PBMC from RA patients in contrast to
the native peptide [54]. However, as mentioned previously,
native peptides that mimic the naturally processed epitope
are preferred for safe antigen-specific immunotherapy, and
intradermal administration is not the optimal route for tol-
erance induction.

The other study performed by our group used a native
HLA-binding T cell epitope of mycobacterial HSP60 that
evoked a tolerogenic immune response in PBMCs of arthri-
tis patients [41,42]. Nasal administration of this peptide was
effective in experimental arthritis and induced a CD4+ T cell
population with reduced tumour necrosis factor (TNF)-a
production at the site of inflammation. This induced T cell
population also expressed FoxP3 and had potent suppressive
capacity which, upon transfer, protected against arthritis
[55].

These specific experimental results have not yet been trans-
lated into clinical trials. So far, clinical trials have been per-
formed with two other interesting HSP-epitopes (Table 3).

DnaJP1. The first clinical trial with an HSP-peptide in
human arthritis was performed with dnaJP1. DnaJP1 is a
peptide derived from Escherichia coli HSP40, containing a
sequence of five amino acids found in the majority of
HLA-DR alleles linked with RA (‘shared epitope’). In a Phase
I trial, patients with early active RA received oral dnaJP1
during 6 months. After treatment, in-vitro responses
to dnaJP1 changed from proinflammatory to anti-
inflammatory, with increased IL-10 production and aug-
mented FoxP3 expression in Treg cells [56].

In a following Phase II trial, patients with active RA with
proven immunological reactivity to dnaJP1 received the
same mucosal dnaJ treatment. Clinical improvement was
achieved at multiple time-points and was accompanied
again by anti-inflammatory in-vitro responses to dnaJP1
with reduced production of TNF-a and a trend towards
increased production of IL-10 [57].

Diapep277. A vaccination strategy based on HSP60 as a dia-
betes autoantigen was performed with p277 (DiaPep277), a
24-amino-acid peptide of mouse HSP60 (437–460) that has
been shown to have preventive and therapeutic effects in
experimental diabetes [58,59].

Multiple Phase II trials have been performed with subcu-
taneous p277 [60–63]. In adults newly diagnosed with type 1 Ta
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diabetes (T1D), residual C-peptide levels (reflecting the
amount of insulin production) could be preserved [63,64]. A
recent immunological study revealed that the preservation of
C-peptide was associated with peptide specific tolerance
[61]. Phase II trials are currently ongoing [65].

Good candidates for immunotherapy have now been
proved to be effective in multiple animal models of autoim-
mune diseases, and translation into humans has provided
encouraging results; the next step will be to improve thera-
peutic efficiency in human autoimmune disease. Enhance-
ment of peptide immunogenicity when delivered via the
mucosal route and combination of peptide therapy with
immune modulating agents could be interesting options.

Improving antigen-specific therapy

Enhancing peptide immunogenicity

As regulation of effector T cells is an active process, immune
activation is needed for optimal control [32]. A peptide
signal delivered via the tolerogenic mucosal route may be too
small to induce the desired immune deviation due to the
intrinsic weakness of the peptide signal alone, triggering
only the adaptive immune system [10,11]. In a healthy
immune system, activation of the innate immune system
leads to better presentation of the peptide and thereby
enhances peptide-triggered adaptive immune responses. The
combination of enhancing both adaptive and innate immu-
nity may therefore be an attractive option for the enhance-
ment of mucosal immunotherapy in autoimmune disease.

Adjuvant. Combination of an adjuvant triggering innate
immunity with a T cell-epitope triggering adaptive immu-
nity could also enhance peptide immunogenicity. Although
adjuvants have been used in non-mucosal vaccination strat-
egies in autoimmunity, the concept of enhancing mucosal
vaccination with an adjuvant for preventive peptide therapy
in autoimmune disease is somewhat new (Fig. 1). Prerequi-
sites for such an innate triggering mucosal adjuvant would
be applicability at mucosal sites, activation of antigen-
presenting cells (APCs) and skewing towards Treg cell
responses. Co-administration of such an adjuvant would
result in more efficient antigen presentation by mucosal
APCs and enlarge the beneficial effect of mucosal peptide
treatment.

In clinical diabetes, alum as an adjuvant for subcutaneous
antigen-specific immunotherapy led to preservation of
residual insulin secretion in adults and children with early-
onset T1D [66–69]. The increased effectiveness of alum-
adjuvanted peptide immunotherapy has been shown to
depend on the activation of innate immunity by DNA
released from dying cells [70]. However, alum as an adjuvant
could not restore euglycaemia in T1D patients and was
not tested mucosally, indicating a need to explore other
adjuvants.

An adjuvant with promising results in non-obese diabetic
(NOD) mice is the non-toxic B subunit of the cholera
enterotoxin (CTB). Oral administration of islet autoantigens
linked to CTB improved significantly suppression of hyper-
glycaemia and pancreatic inflammation [71,72]. CTB has
been shown more recently to induce enhanced antigen
capture by dendritic cells and migration of the dendritic cells
towards the site of antigen administration (the Peyer’s
patches) [73,74]. Another agent that can be considered an
innate-activating adjuvant for mucosal peptide therapy is
HSP itself. HSP can up-regulate adaptive immune responses

Self-(HSP)

antigens

Teff

Treg

Treg

T cell

T cell

Mucosal toleranceHome to site of

inflammation

Anti-inflammatory environment

Inflammation

Perpetuation

of inflammation

Mucosal adjuvant

+

Immune suppression Proinflammatory environment

APC

APC

Fig. 1. The dual role of heat shock proteins (HSPs), inducing

proinflammatory effector T cells (Teff) or tolerogenic/regulatory T

cells (Treg), is influenced by the inflammation status of the tissues. At

the site of inflammation, self-HSP antigens are released from damaged

cells. These antigens are presented by activated antigen-presenting

cells (APC) to T cells. In a proinflammatory environment this

results in predominantly Teff cells, contributing to perpetuation of

inflammation. T cells induced via the mucosal route are directed by

the anti-inflammatory environment towards a predominantly

tolerogenic response (Treg) (mucosal tolerance induction). The

mucosally induced antigen-specific T cells consist of multiple kinds

of regulatory cells and which are thought to migrate to the site of

inflammation as their cognate antigen (e.g. HSP) is expressed there.

At the site of inflammation, these antigen-specific Tregs skew the

proinflammatory T cell response towards an anti-inflammatory

phenotype by cytokine release-like interleukin (IL)-10 or cell–cell

contact. Mucosal adjuvant can enhance peptide presentation by APCs

at the site of tolerance induction, enlarging the pool of Treg formed

after mucosal tolerance induction. The inflammatory environment

hampers the development of (self-HSP-specific) T cells. Generalized

immune suppressive therapy reduces inflammation, creating a more

favourable environment for the development of Treg. Combination

therapy of antigen-specific mucosal tolerance induction with immune

suppressive therapy could therefore enhance efficacy of peptide

specific immunotherapy.
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by stimulating innate receptors such as TLR-2 and TLR-4
[34]. Indeed, HSP60 enhanced immunogenicity of CMV
peptide vaccines [75] and increased the efficacy of p277
therapy in diabetic mice [76]. HSP60 seems to function as
the body’s natural adjuvant as a result of its ability to activate
both the innate and adaptive responses [19].

Adjuvants of particular interest that have been
administered mucosally are cytosine–guanine–
oligodeoxynucleotides (CpG-ODN), which consist of a
nucleotide sequence common in bacterial DNA. CpG-ODN
stimulate TLR-9 on antigen-presenting cells and have been
used successfully as nasal vaccine adjuvant in anthrax (AVA)
vaccination in mice [77–79]. Data from our group indicate
that CpG-ODN enhance antigen-specific immunotherapy in
an experimental arthritis model (ARD, in press).

In conclusion, enhancing immunogenicity of a peptide in
a preventive regimen seems very efficient in improving
peptide-specific immunotherapy. However, caution should
be taken in the addition of proinflammatory agents to a
peptide in a therapeutic setting as it could, in theory, lead to
over-activation of an already deranged immune system.

Combination therapy with general
immune modulators

Although boosting the antigen-specific immune response
seems effective in a preventive regimen, the ongoing wide-
spread inflammation present in established autoimmune
disease probably hampers antigen-specific immune modu-
lation in a therapeutic setting. Short-term non-specific
dampening of inflammation before administration of
antigen could create an environment in which the antigen-
specific response can be detected and modulated, thereby
improving therapeutic efficacy of antigen-specific immuno-
therapy (Fig. 1).

In addition to the reduction of inflammatory background
‘noise’, dampening inflammation is crucial for adequate
functioning of Treg (reviewed by [80]). For example, a
chronic inflammatory environment causes local dysfunction
of Treg or converts them into proinflammatory T helper type
17 (Th17) cells [81–86]. In line with these observations,
generalized immune suppression by TNF-a blockade
[87,88] or immune modulation by anti-CD3 [89–91]
favours the development of Treg cells. However, it is conceiv-
able that due to non-antigen-specific immune therapies only
a small number of induced Treg will be specific for antigens
expressed in the target autoimmune organ. Combining gen-
eralized immune suppression with antigen-specific peptide
therapy could therefore expand antigen-specific Treg that are
able to migrate to the tissue where their cognate antigen is
expressed: the site of inflammation.

Some successful combination therapy strategies in auto-
immune diseases have been reported in the literature.
For example, combination therapy of anti-CD3 with
disease-related peptides has been shown to be effective in

experimental models of new-onset diabetes. The combined
approach was more efficient than peptide or anti-CD3 alone
and induced antigen-specific Treg that could transfer protec-
tion [92,93]. Combined anti-CD3 therapy with disease-
related peptides has not been tested so far in human T1D, but
perhaps such a combined approach could improve recent
results of anti-CD3 monotherapy in human T1D [91].

Another proven effective strategy in experimental models
is the combination of antigen-specific immunotherapy
with TNF-a blockade. In the rat adjuvant arthritis model,
low-dose anti-TNF-a (Etanercept) combined with nasally
administered HSP60 peptide induced clinical control in a
therapeutic setting to a larger extent than peptide treatment
alone. The clinical response was accompanied by an increase
in peptide-specific FoxP3-expressing T cells to a degree com-
parable to full-dose Etanercept. Finally, the combination
treatment induced more peptide-specific IL-10 production
than did Etanercept alone [94].

An interesting finding regarding combination therapy of a
peptide with immune modulation in humans has been
reported in the earlier-described dnaJP1 clinical trial in RA.
Post-hoc analysis revealed that the best clinical results were
obtained in a subgroup of patients taking hydroxychloro-
quine (HCQ), an immune modulating agent [95]. In addi-
tion to the earlier-mentioned combination strategies in
animal models, this finding indicates the potential therapeu-
tic efficacy of combination treatment in humans as well [57].

In summary, boosting the peptide-specific immune
response, on one hand, and short-term dampening of the
ongoing systemic inflammation, on the other hand, could
improve the therapeutic efficiency of antigen-specific
immunotherapy. Combination therapy shows promising
results in experimental autoimmunity, but evidence is
limited as yet for human autoimmune disease. Enlarging the
efficacy of antigen-specific therapy is worth exploring, while
the possibility of lowering the dose of immune-suppressive
medication reduces side effects associated with life-long
drug administration.

Conclusion

In this review, we have discussed strategies to improve the
clinical outcome of antigen-specific immunotherapy in
human autoimmune disease. Three major issues concerning
the choice of antigen, route of administration and peptide
immunogenicity were dealt with.

Some issues remain to further optimize antigen-specific
immunotherapy for human autoimmune disease. In this
regard, dosing is important for mucosal tolerance induction
to be effective [8] and dose-finding studies are needed to
improve therapeutic results further.

Furthermore, the selection of patients in clinical trials of
peptide-specific immunotherapy is crucial. Some prerequi-
sites for treatment response have been identified in experi-
mental and human studies. First, genetic factors play a role as
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the availability of beneficial antigen-specific T cells varies
between different genetic backgrounds in mice models of
diabetes and correlates with treatment outcome [93]. Sec-
ondly, a high representation of tolerogenic and anergic
immune pathways at baseline is associated with clinical
responsiveness to peptide immunotherapy [57]. Thirdly, the
presence and quality of peptide-specific responses before
start of treatment play a role in the eventual efficacy of
peptide immunotherapy [57,61]. Selecting patients on these
criteria could be of help in further optimization of antigen-
specific immunotherapy.

In conclusion, peptide immunotherapy with bystander
antigens such as HSPs shows promising results in experi-
mental models, and the first positive results from clinical
trials are currently emerging. New approaches aiming for
enhanced peptide recognition in a controlled immune envi-
ronment by the use of adjuvant and/or combining peptide
treatment with short-term immune suppressive medication
may hold promise for a successful future for peptide-specific
immunotherapy in autoimmune diseases.
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