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Abstract The large conductance calcium- and voltage-activated potassium channel (BKCa) is
widely expressed at the plasma membrane. This channel is involved in a variety of fundamental
cellular functions including excitability, smooth muscle contractility, and Ca2+ homeostasis,
as well as in pathological situations like proinflammatory responses in rheumatoid arthritis,
and cancer cell proliferation. Immunochemical, biochemical and pharmacological studies from
over a decade have intermittently shown the presence of BKCa in intracellular organelles. To date,
intracellular BKCa (iBKCa) has been localized in the mitochondria, endoplasmic reticulum, nucleus
and Golgi apparatus but its functional role remains largely unknown except for the mitochondrial
BKCa whose opening is thought to play a role in protecting the heart from ischaemic injury.
In the nucleus, pharmacology suggests a role in regulating nuclear Ca2+, membrane potential
and eNOS expression. Establishing the molecular correlates of iBKCa, the mechanisms defining
iBKCa organelle-specific targeting, and their modulation are challenging questions. This review
summarizes iBKCa channels, their possible functions, and efforts to identify their molecular
correlates.
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Introduction
Ion channels are present at the plasma membrane and
in all intracellular organelles including mitochondria
(O’Rourke, 2007), nucleus (Mazzanti et al. 1990; Singh,
2010), Golgi complex (Thompson et al. 2002) and end-
oplasmic reticulum (ER) (Osman et al. 2003; Ashrafpour
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et al. 2008). In intracellular organelles, they modulate
the concentration of ions and play important roles in
physiological events such as the voltage-dependent anion
channel (VDAC) in apoptosis (Chacko et al. 2010),
Ca2+-release-activated Ca2+ channels (CRACs) in Ca2+

signalling (Yeromin et al. 2006), and mitochondrial K+
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channels in cardioprotection (Xu et al. 2002). In this
review, we will particularly address the large conductance
calcium- and voltage-activated K+ channel (BKCa) found
intracellularly but will first discuss some general properties
that may define its intracellular targeting.

BKCa channels are ubiquitously expressed at the plasma
membrane of nervous and non-nervous cells including
smooth muscle, sensory and epithelial cells where they
couple membrane potential and intracellular calcium
concentration. An interesting exception is the adult
cardiomyocyte which lacks BKCa at the cell surface but
expresses intracellular BKCa (iBKCa) particularly in the
mitochondria.

The α-subunit of BKCa channel is encoded by a single
gene Kcnma1 or Slo1 that undergoes extensive pre-mRNA
splicing (Butler et al. 1993). Four α-subunits assemble to
form a functional ion channel pore (Fig. 1). BKCa channels

Figure 1. Topology of BKCa and modulatory subunits
A, topology of BKCa α-subunit. N-terminus and C-terminus are
located in opposite sides of the membrane. At the plasma
membrane the N-terminus is extracellular and the C-terminus is
intracellular. Orientation in organelles is unknown. S0–S4
transmembrane domains are involved in voltage sensing. The S5–S6
linker lines the K+-selective pore. The C-terminus has two RCK
(regulator of potassium conductance) domains. RCK2 contains the
Ca2+-bowl. For crystallographic information see Yuan et al. (2010).
The S0–S1 linker can be palmitoylated or myristoylated (red zig-zag
line). ∗, sites of splice variation that can result in ER retention. Stars,
sites containing export signals. B, diagram of BKCa channel and
regulatory subunits. Four α-subunits are needed to form a functional
channel. β1–β4 subunits have two transmembrane domains. N- and
C-termini are facing the same side of the membrane. LRRC-subunits
have a single transmembrane domain. N- and C-termini face
opposite sides of the membrane.

can be in complex with several modulatory subunits with
one or two transmembrane domains (Fig. 1B) that greatly
modify the channel kinetics and voltage/Ca2+ sensitivities.
β1–β4 have two transmembrane domains and also affect
channel pharmacology and its response to lipids (Knaus
et al. 1994; Wallner et al. 1999; Xia et al. 1999; Brenner et al.
2000; Meera et al. 2000; Uebele et al. 2000; Vaithianathan
et al. 2008), while leucine-rich repeat-containing proteins
(LRRC) 26, LRRC38, LRRC52 and LRRC55 are single pass
membrane proteins with LRRC26 being the most potent
activator producing a negative shift of ∼140 mV of the
voltage dependence of activation (Yan & Aldrich, 2010,
2012).

Increasing evidence suggests that splicing of BKCa α
or β-subunits can govern the ‘normal’ traffic of the
channel to the plasma membrane, consequently defining
its subcellular distribution at a given time. BKCa variants
originating from N- and C-terminal alternative splicing
as well as C-terminal exon skipping are retained in the
ER serving as repressors of BKCa channel expression at
the plasmalemma (Zarei et al. 2004; Chen et al. 2005; Ma
et al. 2007). On the other hand, β1– and β2-subunits can
increase removal from the plasma membrane via end-
ocytosis to a prelysosomal compartment (Toro et al. 2006;
Zarei et al. 2007), while β4-subunits retain BKCa channels
in the ER reducing its plasmalemmal localization (Shruti
et al. 2012). Consistent with these findings, in hair cells,
β1 and β4 expression reduce BKCa channels at the cell
surface (Bai et al. 2011). Post-translational modifications
can also affect the targeting of BKCa channels to the
plasma membrane. Palmitoylation of intracellular loop 1
promotes cell surface expression (Jeffries et al. 2010),
whereas internal myristoylation of loops 1 or 3 has the
opposite effect (Alioua et al. 2011). Palmitoylation favours
the exit of the channel from the ER and the trans-Golgi
network (Tian et al. 2012) while myristoylation seems
to favour endocytosis via clathrin-rich compartments
(Alioua et al. 2011).

Most of the above studies have been performed
in heterologous expression systems, which have been
valuable in allowing the dissection of molecular
mechanisms regulating the targeting of BKCa channels to
the plasma membrane but only a few have been carried
out in native cells. In astrocytes, transportation to the
plasma membrane involves the microtubule network as
fully assembled BKCa was found to be intracellularly
associated with this cytoskeletal structure. When the
Ca2+ concentration of the cytosol was elevated either
pharmacologically or with thromboxane A2, iBKCa was
translocated to the plasma membrane implying that
microtubule-associated iBKCa was a readily available
pool for astrocytes (Ou et al. 2009). In smooth muscle
cells from pregnant mouse myometrium, iBKCa was
found in the perinuclear region resulting in diminished
plasma membrane expression. Possible explanations for
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this phenomenon are that retention in the perinuclear
region and decreased plasma membrane expression is
a mechanism preparing the uterine muscle for effective
contractions during delivery (Eghbali et al. 2003), or that
in addition, iBKCa within the perinuclear region serves an
unknown functional role. In fibroblast-like synoviocytes
from patients with rheumatoid arthritis, BKCa is observed
at the plasma membrane but also in the nucleus (Hu et al.
2012) opening the intriguing question of whether BKCa

localized to the nucleus may play a role in diseased states. In
line with the view that iBKCa channels are also targeted to
intracellular organelles for a specific function – unrelated
to the overall regulation of cell surface expression – in
neonatal cardiomyocytes, iBKCa has been visualized in
the mitochondria (mitoBKCa) coincident with VDAC1
signals (Redel et al. 2008), and pharmacological
evidence supports its role in protecting the heart from
ischaemic insult as will be discussed in the following
section.

Thus, it appears that there are at least three types
of iBKCa channels present inside the cells: (1) a pool
related to the normal traffic to the plasma membrane
and its regulation, (2) a pool awaiting to be trans-
located to the plasma membrane, and (3) another set
specifically targeted to organelles. In this regard, several
groups have shown the functional activity of iBKCa

channels in the mitochondria and nucleus (Table 1).
Mechanisms that may define iBKCa localization could
include splice variation, β-subunit association, and/or
cell-specific mechanisms.

Mitochondrial BKCa channels (mitoBKCa)

mitoBKCa channels were first identified by patch clamping
of mitoplasts prepared from human glioma cells LN229
(Siemen et al. 1999) and later they were shown by
several groups to be involved in cardioprotection against
ischaemic injury by using pharmacological agents to open
and block the channel. Preconditioning hearts with BKCa

openers like NS1619 or NS11021 reduced myocardial
infarction or heart function and these beneficial effects
could be antagonized by coadministration with paxilline, a
commonly used BKCa inhibitor (Xu et al. 2002; Wang et al.
2004; Stowe et al. 2006; Bentzen et al. 2009, 2010). Also,
stimulating mitoBKCa activity with β-oestradiol resulted
in decreased cardiomyocyte death due to ischaemic insult
(Ohya et al. 2005). mitoBKCa has also been proposed
to mediate the cardioprotective effects of the anaesthetic
desflurane, the peptide adrenomedullin, and the tumour
necrosis factor-α (Gao et al. 2005; Nishida et al. 2008; Redel
et al. 2008). However, recent studies using BKCa knockout
(Slo1−/− or Kcnma1−/−) mice have challenged the role of
mitoBKCa in isoflurane-mediated cardioprotection from
ischaemia/reperfusion injury, and proposed a role for a

large conductance K+ channel that is activated by Na+

(Slo2). Importantly, the reduction in infarct size by iso-
flurane preconditioning was abolished by paxilline in
wild-type as well as in Slo1−/− hearts (Wojtovich et al.
2011) raising serious concerns about the usage of this
drug as a specific blocker of BKCa. It would be interesting
to test whether different anaesthetics use distinct cardio-
protective pathways.

Mechanisms triggered by the putative opening of
mitoBKCa by NS1619 include regulation of reactive
oxygen species (ROS) production and calcium retention
capacity (CRC). In isolated mitochondria from brain and
heart, mitoBKCa is known to reduce ROS production on
activation with NS1619 and CGS7184 (Heinen et al. 2007;
Kulawiak et al. 2008), while in brain mitochondria the
opening of the mitochondrial permeability transition pore
(mPTP) by Ca2+ (indirectly measured as mitochondrial
depolarization in response to Ca2+ pulses) is accelerated
by blocking mitoBKCa with iberiotoxin (Cheng et al. 2008).
Moreover, in isolated hearts, preconditioning with NS1619
reduces ROS and mitochondrial Ca2+ (Stowe et al. 2006).
Thus, it is tempting to hypothesize that reduced mitoBKCa

channel activity favours the opening of mPTP and vice
versa. Consistent with this idea, the putative inhibition
of mitoBKCa with paxilline, induced the release of cyto-
chrome c, a signature of mPTP opening and initiation
of apoptosis. That inhibition of mitoBKCa favours mPTP
opening and apoptosis is further substantiated by the fact
that the proapoptopic protein Bax can directly inhibit
mitoBKCa single channel activity recorded in astrocyte
mitoplasts (Cheng et al. 2011). Conversely, the opening of
mitoBKCa with NS11021 improves cardiac mitochondria
function by enhancing K+ uptake without a significant
change in mitochondrial membrane potential (��m)
and improving its energetic performance (Aon et al.
2010).

In addition to pharmacological evidence, immuno-
chemistry and immunogold electron microscopy have also
placed BKCa in the mitochondria. Western blot analysis
using antibodies raised against the C-terminus of BKCa

channel showed a signal at ∼55 kDa (Xu et al. 2002)
or at ∼125 kDa (Shi et al. 2007) in isolated cardiac
mitochondria. Double immunostaining and confocal
microscopy showed that in the cerebellum, neuronal
BKCa signals coincide with signals of mitochondrial
proteins, OP4–1, ANT, IMM, the heat shock protein
60 (hsp60) and TIM23 (Douglas et al. 2006). mitoBKCa

signals have also been reported in rat neonatal cardio-
myocytes together with VDAC1 (Redel et al. 2008),
and data from our lab shows that it colocalizes with
mitotracker in the rat embryonic heart cell line H9c2
(Fig. 2). Note that in this embryonic cell line, the
majority of BKCa signals are localized to mitochondria
and fewer but clear signals are also observed at the cell
periphery.
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Table 1. iBKCa biophysical properties in mitochondria and nucleus

Conductance Recording solution
Organelle and Cell type/ and [K+] (mM), V1/2 or open EC50 for
method used organ pharmacology [Ca2+] (μM) probability (Po) Ca2+ Reference

Mitochondria
Patch clamp
(mitoplast)

Human glioma
cell line
(LN229)

295 pS
ChTx-sensitive

Pipette/bath
150 K+/150 K+

Nominal or no Ca2+/
variable Ca2+

V1/2 = −33 ±
19 mV at 8.7 μM

Ca2+;
V1/2 = 41 ± 23 mV

at 1 μM Ca2+

6.9 μM at
−20 mV

Siemen et al.
(1999)

Mitochondria
Patch clamp
(mitoplast)

Guinea-pig
ventricular
myocytes

307 pS
ChTx-sensitive

150 K+/150 K+

0.512 Ca2+/0.512
and 40 Ca2+

Po ∼0.9 at +60 mV
and 0.512 μM

Ca2+ ∗

N/A Xu et al. (2002)

Mitochondria
Patch clamp
(mitoplast)

Rat ventricular
myocytes

270 pS
Paxilline-sensitive

140 K+/140 K+

0.5 Ca2+/0.5 Ca2+
Po = 0.0087 at

+40 mV and
0.5 μM Ca2+

N/A Ohya et al.
(2005)

Mitochondria
Patch clamp
(mitoplast)

Human glioma
cell line
(LN229 and
LN405)

276 pS
ChTx-sensitive

150 K+/150 K+

0 Ca2+/100–400 Ca2+
V1/2 ∼ −42 mV at

200 μM Ca2+ ∗
N/A Gu et al. (2007)

Mitochondria
Patch clamp
(mitoplast)

Rat astrocytes 295–296 pS
IbTx-sensitive;
Bax-sensitive

150 K+/150 K+

200 Ca2+/200 Ca2+
V1/2 ∼ −50 mV at

200 μM Ca2+ ∗
N/A Cheng et al.

(2008, 2011)

Mitochondria
Lipid bilayers

Rat whole brain 265 pS
ChTx sensitive

(cis/trans)
50 K+/450 K+

300–500 Ca2+/
300–500 Ca2+

Po = 0.50 at 0 Ca2+

Po = 0.77 at +70
mV and 300 μM

Ca2+

N/A Skalska et al.
(2009)

Mitochondria
Lipid bilayers

Rat whole brain 211 pS
IbTx-, 4-AP-

sensitive;
ChTx-insensitive

200 K+/50 K+

‘Contaminant’ Ca2+
Po = 0.9 ± 0.01 at

+40 mV
V1/2 = 11 ± 1 mV

N/A Fahanik-Babaei
et al. (2011a)

Mitochondria
Lipid bilayers

Rat whole brain 565 pS
ChTx-, IbTx-,
4-AP-sensitive

200 K+/50 K+

100 Ca2+/100 Ca2+

10 Ca2+/10 Ca2+

‘Ca2+-free’/
‘Ca2+-free’

At 100 μM Ca2+,
Po = 0.9 ± 0.05 at
−40 to +40 mV

At 0 Ca2+, Po = 0.8
at +20 mV and
Po = 0.07 at
−40 mV

N/A Fahanik-Babaei
et al. (2011b)

Nucleus
Patch clamp

Rat pancreatic
acinar cells

200 pS Pipette/bath
148 K+/148 K+

200 Ca2+/0.1,
200 Ca2+

Po = ∼0.5 at
+40 mV∗ at
200 μM Ca2+

N/A Maruyama
et al. (1995)

∗Calculated from published figure. Abbreviations: V1/2, half-activation potential or potential where an open probability of 0.5
is achieved; EC50, concentration of half-maximal effect; ChTx, charybdotoxin; IbTx, iberiotoxin; 4-AP, 4-aminopyridine; N/A, not
available.

Efforts to identify the molecular correlate of mitoBKCa

have been carried out by several groups but with limited
success. A full length mRNA was cloned from mouse
cardiomyocytes but the protein failed to localize to the
mitochondria (Ko et al. 2009). Since BKCa is coded by a
single gene, it is possible that a splice variant is responsible
for its mitochondrial localization. In fact, in mouse cochlea
where BKCa was found in the mitochondria (in addition
to the cytoplasm and plasma membrane), a BKCa isoform
containing four splice sequences along the C-terminus
was cloned (IYF, 27 amino acids, ATRMTRMGQ, which

is upstream of 50 C-terminal amino acids ending in
VEDEC) (GenBank accession no. FJ872117). This cochlea
clone when expressed in Chinese hamster ovary cells was
observed in mitochondria with some expression at the
plasma membrane (Kathiresan et al. 2009). However, it
is not clear whether any of these splice inserts can target
BKCa to the mitochondria. In silico analysis of the cochlea
variant using MitoProt (Claros & Vincens, 1996) indicate
a probability of 0.0175 for mitochondrial targeting.
However, this engine searches for classical N-terminal
mitochondrial signal peptides (‘presequences’). It is now
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known that mitochondrial targeted proteins may possess
internal signals at multiple sites within the protein
including the C-terminus and that inner membrane
proteins may contain an internal ‘presequence-like’ signal.
Scrutinizing the role of each of the cochlea BKCa splice
sequences in their ability to target mitoBKCa to the
mitochondria is an open topic of research.

From the functional point of view, mitoBKCa

conductance ranges from ∼211 pS to 565 pS depending
on the biological system and experimental conditions
(Table 1). Typically mitoBKCa is inhibited by blockers
iberiotoxin, charybdotoxin and paxilline. However, in
brain mitochondrial inner membranes, mitoBKCa with
distinct pharmacological profiles have been detected after
reconstitution into lipid bilayers, a voltage-dependent
211 pS channel that is insensitive to charybdotoxin but
sensitive to iberiotoxin, and a 565 pS channel that is
sensitive to both toxins. Notably, both conductances were
sensitive to 10 mM 4-aminopyridine (Fahanik-Babaei et al.
2011a,b), a drug that does not affect cloned BKCa channels
(Wallner et al. 1995). At a high Ca2+ concentration
(100 μM Ca2+), the open probability of the channel is
maintained near ∼0.9 from −40 to +40 mV; however,
under Ca2+-free solutions the voltage dependency of the
channel becomes evident as the channel open probability
changes from 0.8 at 0 mV to 0.07 at −40 mV. It is known
that splice variation as well as β-subunits can confer

Figure 2. BKCa localization in mitochondria
Cardiac H9c2 cells (rat embryonic heart cell line) were labelled with a
specific BKCa antibody raised against plasma membrane BKCa

channels and mitotracker. A, signals of BKCa were readily observed
inside the cell and at the cell periphery indicating plasma membrane
expression (arrows). Note that in contrast to adult cardiomyocytes
where BKCa is absent at the plasma membrane, embryonic heart cells
are known to express BKCa at the plasma membrane. B, mitotracker
labelling. C, overlay showing a high coincidence between BKCa and
mitotracker signals. D, square in C at higher magnification.

different voltage/Ca2+ sensitivities to the BKCa channel.
For example, in the presence of the β1-subunit and
Ca2+ near 25 μM, the open probability of the channel is
around 0.9 from −50 mV onwards with a half-activation
potential, V 1/2, around −100 mV (Meera et al. 1996). Also,
β-subunits can change BKCa pharmacology, for example
the β4-subunit that makes BKCa channels resistant to
iberiotoxin (Meera et al. 2000). These factors could
explain the variability in the single channel properties
of the reported mitoBKCa. Whether mitoBKCa iso-
forms with different pore properties, pharmacology and
voltage sensitivities originate from splice variation and/or
association with known or unknown β-subunits are
relevant problems to solve.

An important question is how does K+ flux via
mitoBKCa affect mitochondrial function? In other words
what is the physiological role of mitoBKCa? Attempts to
answer this question have been carried out with BKCa

openers like NS1619 and the higher affinity analogue
NS11021 using isolated cardiac mitochondria. Low doses
of NS11021 (e.g. 50 nM) increase charybdotoxin-sensitive
K+ influx and swelling in the presence of permeable anions
like acetate (passively diffused) and dihydrogen phosphate
(carrier-mediated transport) but with very limited change
(5–10 mV) in mitochondrial membrane potential (��m).
Moreover, this K+ influx is accompanied by a better
mitochondrial respiratory control due to a decrease in
state 4 respiration without a change in state 3 respiration
(Aon et al. 2010). These properties may explain how
the specific opening of mitoBKCa may promote cardio-
protection. Paradoxically, micromolar concentrations of
NS11021 that protect the heart from ischemia and
reperfusion (Bentzen et al. 2009) cause non-specific
deleterious effects on mitochondria such as decreased
respiratory control that is insensitive to charybdotoxin
and a large drop in membrane potential of near 30 mV
even in the absence of K+ (Aon et al. 2010). Similarly,
concentrations of NS1619 that cause cardioprotection
(∼10 μM) (Shi et al. 2007) have been reported to decrease
light scattering in K+-free medium accompanied by
respiration uncoupling in liver mitochondria (Bednarczyk
et al. 2008). One possible explanation is that in whole
heart experiments the effective concentration of NS1619 is
actually lower due to limited diffusion of the drug to its site
of action, and thus, it promotes cardioprotection instead
of mitochondrial damage and heart stress. Experiments
using BKCa knockout animals should shed some light on
these questions.

BKCa channels in the nucleus

The nuclear genome and the molecular machinery
required for DNA replication as well as transcription
are present in the nucleus, which is sheathed by a

C© 2012 The Authors. The Journal of Physiology C© 2012 The Physiological Society
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nuclear envelope. There are two membranes in the nuclear
envelope: the inner nuclear membrane (INM) interacting
with the nuclear skeleton, and the outer nuclear membrane
(ONM), continuous with the ER and also studded with
ribosomes. The perinuclear space between ONM and in
INM is continuous with the ER lumen, so it is likely to
be rich in Ca2+ ions. Proteins made in the ER and in the
perinuclear space are transported to the lumen of ER for
further trafficking in the cell. INM and ONM fuse together
to form large nuclear pore complexes (NPCs) which allow
bidirectional flow of large molecules. Several fundamental
processes such as cell replication and differentiation,
ageing, regeneration, cell cycles, and enzyme activity are
governed by nuclear ionic concentrations.

K+ channels with conductances of 55 pS and 200 pS
were first recorded on the nuclear envelope from murine
zygotes (Mazzanti et al. 1990). BKCa currents were
recorded later in the ONM of rat pancreatic acinar cells
(Maruyama et al. 1995) and observed with immuno-
cytochemistry in chick retinal nuclei (Yamashita et al.
2006), the perinuclear region of isolated nuclei of
brain endothelial cells (Gobeil et al. 2002), and in
nuclei of fibroblast-like synoviocytes from patients with
rheumatoid arthritis (Hu et al. 2012). Consistent with
the electrophysiological recordings, analysis of the plasma
membrane BKCa constitutive sequence by ‘Nucleo’, a
nuclear protein localization predictor (Hawkins et al.
2007), yielded a score of 0.72 (1 being the perfect signal),
while NucPred gave a score of 0.65 (Brameier et al. 2007).
These in silico analyses suggest that BKCa might carry an
intrinsic nuclear localization signal, which can target it to
the nuclear membrane. However, since the same BKCa gene
is present in all cells, there must be additional mechanisms
targeting it to the nucleus that are cell-type specific or cell
physiological-status specific.

Experiments in the nuclei of brain endothelial cells
utilizing 100 nM NS1619 as BKCa opener and 100 nM

iberiotoxin as a specific channel blocker indicate that
nuclear iBKCa is coupled to the activity of perinuclear
prostaglandin receptors (EP3) regulating nuclear Ca2+,
membrane potential and eNOS expression. Specifically in
isolated nuclei, Ca2+ transients, K+-dependent membrane
potential changes and eNOS transcript expression induced
by the activation of EP3 agonist M&B28767 were
all abolished by iberiotoxin; while NS1619 produced
Ca2+ transients and changes in membrane potential in
100 mM K+ but not in 1 mM K+ that were iberiotoxin
sensitive. Further, the EP3 agonist-induced increase of
eNOS expression was completely abolished by iberiotoxin
mimicking the effect of Ca2+ chelators (Gobeil et al. 2002).
Whether nuclear voltage-dependent R-type Ca2+ channels
(Bkaily et al. 2012) are functionally coupled to iBKCa,
whether iBKCa plays a role in regulating nuclear Ca2+

transients that occur in other cell types such as contracting
chick embryonic cardiomyocytes (Bkaily et al. 2009), or

what is the orientation and molecular nature of iBKCa in
the nucleus, are open questions.

iBKCa channels in other organelles

Endoplasmic reticulum. Proteins present in the
membrane of the endoplasmic reticulum (ER) are
involved in protein synthesis, protein processing, protein
folding, and ionic homeostasis. Enzymes working in
protein synthesis and processing also require ionic
homeostasis which is maintained by ion channels
and transporters. Disruption in homeostasis results
in accumulation of misfolded or unfolded proteins in
the ER lumen. This results in ER stress which can be
restored by the unfolded protein response but when this
mechanism fails to remove unfolded or misfolded proteins
it can result in apoptosis (Kaufman, 1999; Jing et al.
2012).

Similar to other proteins encoded by nuclear DNA,
BKCa channels are also synthesized in the ER. Whether
the iBKCa channel is active in the ER is not yet established.
However, the α-subunit protein can be retained in the ER
if it includes splice sequences SV1 (Zarei et al. 2001, 2004)
or DEC (Ma et al. 2007). SV1 contains the ER retention
motif CVLF at its first intracellular loop. This motif found
in rat myometrium retains/retrieves the channel in/to
the ER and also prevents BKCa surface expression. The
surface expression of the protein is controlled by multiple
signals in the C-terminus including an acidic cluster-like
motif present in the RCK1 and RCK2 linker region
DDXXDXXXI that accelerates exit from the ER (Chen
et al. 2010) as well as six amino acids DLIFCL located near
the C-terminal end (Kwon & Guggino, 2004) (Fig. 1).
However, the presence of these sequences cannot override
the ER-retention signal CVLF (Zarei et al. 2004). Inter-
estingly, a human splice variant (hSlo�579–664) where the
DDXXDXXXI motif is excluded is expressed in multiple
tissues and in heterologous expression fails to form a
functional ion channel at the surface and localizes the
channel protein to the ER. These data strongly support
the idea that one molecular mechanism defining iBKCa

fate and localization to the ER (or any other organelle) is
splice variation. Another mechanism contributing to BKCa

localization to the ER is the presence of the β4-subunit
that possesses the ER retention signal KKRKFS at its
C-terminus (Shruti et al. 2012). Further work is needed
to determine whether iBKCa localized to the ER plays a
functional role.

Golgi apparatus. During protein synthesis, proteins
refold and pass through the Golgi apparatus where they
undergo post-translational modifications. Proteins and
lipids are sorted as they exit the Golgi apparatus and are
sent to their final destinations. The Golgi apparatus has

C© 2012 The Authors. The Journal of Physiology C© 2012 The Physiological Society
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an acidic environment inside the lumen which increases
from the cis (entry face) to the trans (exit face) (Anderson
& Pathak, 1985); the pH in the Golgi cisternae has been
estimated at 6.45 and in the trans-Golgi at 5.91–5.95
(Demaurex et al. 1998; Paroutis et al. 2004). The acidic
environment inside the Golgi apparatus is maintained
by the vacuolar-type H+-ATPase (V-ATPase), and is
essential for post-translational modifications of proteins
and disruption in pH results in improperly glycosylated
and unsorted proteins (Maeda & Kinoshita, 2010).

Although the V-ATPase is electrogenic in nature and
would generate a positive potential inside the Golgi
(Paroutis et al. 2004), experiments making the Golgi
membrane mainly permeable to K+ (with valinomycin)
revealed that the Golgi membrane potential must be near
zero under physiological conditions. This conclusion was
reached after finding that valinomycin failed to change

Golgi pH indicating that the Golgi membrane potential
was already near the potential expected by clamping the
potential with valinomycin (equilibrium potential, EK =
−59log[K+]cytosol/[K+]Golgi = −59log140/107 = −6.9 mV)
(Schapiro & Grinstein, 2000). Thus, to neutralize the
membrane potential generated by the V-ATPase, H+ or
K+ ions would need to flow out of the lumen or Cl−

ions to flow into the lumen (Paroutis et al. 2004). In
fact, several Cl− channels have been shown to be active
in the Golgi apparatus (Nordeen et al. 2000; Thompson
et al. 2002; Maeda et al. 2008) but so far no functional
K+ channel has been identified even though K+ channels
pass through the Golgi apparatus en route to the plasma
membrane.

BKCa also traffics to the plasma membrane via
the cis- and trans-Golgi networks where it may
undergo palmitoylation/depalmitoylation cycles with

Figure 3. Intracellular organelles and potassium flow
A schematic diagram depicting the major intracellular organelles with their inner K+ concentrations [K+]. [K+]
inside the mitochondrion (Mito) is ∼15 mM (Zoeteweij et al. 1994), in the nucleus (Nu) is estimated as ∼214 mM

(Nagy et al. 1981), and in the Golgi apparatus (Ga) is estimated as ∼107 mM (Schapiro & Grinstein, 2000). [K+] in
the ER is assumed to be similar to that in the cytoplasm, in analogy to the concentrations found in toadfish (Somlyo
et al. 1977). Extracellular K+ is 5 mM and cytosolic K+ is 150 mM. BKCa channels are also shown at the plasma
membrane and associated with microtubules. Red arrows show translocation to clathrin reach compartments
(CRC), lysosomes (Ly), and plasma membrane. Black arrow indicates the direction of K+ ion flux upon channel
opening as predicted by calculating the Gibbs free energy, �G, for mitochondria:
�G = �GK + �GV,
where �GK is the free energy dependent on free K+ ions and �GV is the free energy dependent on the
mitochondrial potential, according to:
�GK = –RT ln([K+

cytosol]/[K+
matrix]) = −5609 J mol−1

where, R is the gas constant = 8.314 J (◦K mol)−1, and T is the absolute temperature = 293◦K at 20◦C,
[K+

cytosol] = 150 mM, [K+
matrix] = 15 mM

and,
�GV = F��m = –17367 J mol−1

where, F is the Faraday constant = 96485 J (mol V)−1 and ��m is the mitochondrial membrane potential, which
is typically −180 mV (Kamo et al. 1979).
Thus, �G = �GK + �GV = −22976 J mol−1 and K+ influx to the mitochondrial matrix is thermodynamically
favoured. These equations can also be used to calculate ionic movements in other organelles.
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palmitoylation favouring forward traffic to the plasma
membrane of HEK293 cells (Tian et al. 2012). In native
systems, accumulation of iBKCa in perinuclear organelles
(that might include the Golgi apparatus) can be observed
in myometrial cells of pregnant mouse (Eghbali et al. 2003)
where the channel may be localized until it is needed at
the plasma membrane or else playing an unknown physio-
logical role. It is known that lowering pH can block BKCa

channel unitary currents (Brelidze & Magleby, 2004) and
this could indicate that if iBKCa channels are present in
the Golgi, they should be most active at the trans-Golgi as
compared to the cis-Golgi.

Role of iBKCa channels

In neurons, plasma membrane BKCa channels act as
Ca2+ sensors participating in the regulation of cellular
excitability and neurotransmitter release (Gribkoff et al.
2001). Similarly, we predict that iBKCa channels could also
be working as Ca2+ sensors in intracellular organelles.
Possibilities for iBKCa channels to get activated are either
via an increase in Ca2+ ion concentration or by a
positive shift in the membrane potential. Additionally and
resembling plasma membrane channels, iBKCa could also
be modulated by β-subunits (Piwonska et al. 2008) or
G-protein-coupled receptors such as angiotensin II type 2
receptors which are present in mitochondria (Abadir et al.
2011) or the angiotensin II type 1 receptor present in
nuclear membranes (Bkaily et al. 2012).

BKCa channels have a large conductance and can
ideally transport ∼108 ions per second (assuming an
open probability of 1, and 25 pA at 100 mV for a
250 pS channel). The electrochemical driving force for
ion movement across membranes varies with intracellular
organelles; according to the calculated Gibbs free energy
it is high in mitochondria (see legend of Fig. 3). The K+

concentration in the nucleus is higher than in the cyto-
plasm but in all other organelles either it is equal (ER),
or lower (mitochondria, Golgi) (Fig. 3). The flow of K+

via potassium channels like iBKCa is essential to maintain
this ionic homeostasis for cellular functions. Since the
opening of iBKCa can result in a significant change in [K+]
within organelles, in organelles with a sizeable driving
force for K+ they would be expected to be present in
low abundance and/or not to fully open upon activation
so organelle ionic homeostasis is not greatly disturbed
during channel activation. On the other hand, if these
channels were highly expressed and/or fully opened upon
activation, to avoid damage they would need to be tightly
modulated to bring them back to baseline or organelles
would need to have alternative mechanisms to regulate
their ionic homeostasis. For example in mitochondria, if
BKCa were fully activated, K+ influx could depolarize its
membrane potential unless the channel open probability

is tightly regulated along with coupling to other ions. In
fact, a recent report indicates that the opening of BKCa

does not significantly modify mitochondrial membrane
potential but improves mitochondria respiratory function
depending on anion usage (KH2PO4 vs. KCl) (Aon
et al. 2010). A more complete understanding of the
direct relationship between iBKCa and the modulation
of membrane potential is required. In addition, iBKCa

could be playing a role as a signalling molecule. It is
known that BKCa interacts directly or indirectly with
other proteins which can either affect the channel activity
or participate in cell signalling (Lu et al. 2006). In
line with this view, several mitochondrial, nuclear, ER,
Golgi, ribosomal and peroxisomal-related proteins were
also reported to be interacting with BKCa (Kathiresan
et al. 2009). These intracellular proteins associated
with iBKCa channels may be participating in organelle
signalling much like those associated with its membrane
counterpart.

Concluding remarks

iBKCa channels have been functionally and
pharmacologically characterized by several independent
groups. The variability in electrophysiological properties
(Table 1) of iBKCa indicates that these channels are
either splice variant isoforms and/or they are associated
with modulatory subunits which can alter their
biophysical properties. The presence of BKCa channels
in the mitochondria is best established amongst the
iBKCa channels. They are involved in physiological
cellular functions such as cardioprotection. If the
protection mechanism against ischaemic injury is
via the opening of mitoBKCa, it could also serve as a
promising pharmacological target for transplant medicine
where various transplantable organs are continuously
susceptible to ischaemic injury. The main challenge now
is to define the molecular identity of these iBKCa channels,
and their regulation and functional roles in distinct cell
types.
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