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Abstract
Among the most widely used models of Parkinson’s disease (PD) are those that employ toxins,
especially 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Depending on the protocol
used, MPTP yields large variations in nigral cell loss, striatal dopamine loss and behavioral
deficits. Motor deficits do not fully replicate those seen in PD. Nonetheless, MPTP mouse models
mimic many aspects of the disease and are therefore important tools for understanding PD. In this
review, we will discuss the ability of MPTP mouse models to replicate the pathophysiology of PD,
the mechanisms of MPTP-induced neurotoxicity, strain differences in susceptibility to MPTP, and
the models’ roles in testing therapeutic approaches.
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Parkinson’s disease (PD) is a progressive neurodegenerative disease that has no cure.
Developing animal models of this disease has been challenging. Despite numerous efforts to
develop progressive toxic protocols in mice, few fully reflect the hallmarks of the disease.
Indeed, no model fully recapitulates the progressive behavioral deterioration, advancing
pathology with age, or fluctuations in motor function. The extent to which they reproduce
many hallmarks of PD and the mechanisms at work in the sporadic forms of the disease vary
greatly. Mouse models using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) are
among the most widely used. The number of original papers and reviews that have been
written on these models has steadily increased over the past 20 years (Fig. 1). MPTP mouse
models have shed light on the pathophysiology as well as some of the causes of the disease.
More importantly, they have provided investigators with model platforms for testing
symptomatic and neuroprotective drugs. This review will focus on the use of MPTP in
rodents and how these models have advanced our understanding of this debilitating disease.

MPTP and its Metabolites
Structurally, the toxin, MPTP, resembles a number of known environmental compounds,
including herbicides such as paraquat [1] and the garden insecticide/fish toxin, rotenone [2];
both have been shown to induce dopamine (DA) neuron degeneration [3-6]. MPTP was first
discovered by a chemistry student in 1976, who was trying to synthesize a synthetic heroin,
but instead produced MPTP, which kills dopaminergic (DAergic) neurons [7]. Others,
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addicted to heroin, replicated this mistake in the early 1980s and developed severe PD-like
symptoms. Dr. Langston, who treated many of these patients, recognized the potential of this
toxin for creating a valid disease model [8]. He and colleagues soon identified the effects of
MPTP administration in non-human primates and described the impairments that resembled
the motor disabilities of idiopathic PD [8]. In 1986, Sonsalla and Heikkila [9] showed that
MPTP could have many of the same effects in mice.

MPTP is highly lipophilic and easily crosses the blood brain barrier, where it binds mainly
in astrocyte lysosomes [10], and there is general agreement that astrocytes convert MPTP to
its toxic metabolite, the 1-methyl-4-phenylpyridinium (MPP+) ion (but see [11]). Systemic
administration of MPP+ does not damage central DAergic neurons, because it does not
readily cross the blood brain barrier due to its charge. However, its direct infusion into the
brain effectively destroys much of the DAergic nigrostriatal pathway [12]. MPP+ is an
excellent substrate for the dopamine transporter (DAT), which explains its selectivity for
DAergic neurons. Although the mechanisms of cell death induced by MPP+ have not been
fully characterized, it is known that MPP+ is an effective inhibitor of complex I respiration
in isolated mitochondria [13-16]. As a result, a rapid decrease in adenosine triphosphate
(ATP) content occurs in the striatum and substantia nigra pars compacta (SNpc), the brain
regions most sensitive to MPTP-induced neurotoxicity [17]. Interestingly, a significant ATP
depletion can result from as little as 25% inhibition of complex I [18]. Cell death of DA
neurons may occur through both apoptosis and necrosis, depending upon the regimen [19].
Following exposure to MPTP or MPP+, the hydropyridine or its metabolite is cleared from
the brain within 12 hours, and the depletion of ATP is no longer evident 24 hours after
administration [20-22]. However, the actual neuronal degeneration seems to take a longer
period of time [19, 23-25]. These observations raise the possibility that MPTP triggers other
events, ultimately responsible for the neurotoxicity.

One mechanism of MPTP-induced neurotoxicity involves oxidative stress [26]. The
conversion of MPTP to MPP+ by monoamine oxidase-B (MOA-B) in astrocytes is followed
by the accumulation of MPP+ in SNpc DAergic neurons via the activity of DAT. Such
accumulation in DAergic neurons results in the generation of reactive oxygen species (ROS)
by the mitochondria, including nitric oxide (NO), superoxide anion (O2

−), hydrogen
peroxide (H2O2), and hydroxyl radicals (•OH) [27, 28]. MPP+ also stimulates the release of
DA [29]. Excessive auto-oxidation of both intracellular and extracellular DA results in the
formation of cytotoxic quinones and highly reactive •OH. Excessive formation of •OH,
which has a very short half-life and interacts close to their site of generation in vivo [30],
can cause cell damage through chain reactions leading to membrane lipid peroxidation,
alterations in membrane fluidity [31, 32], protein cross-linking, and DNA damage, which is
mediated by base pair mutations [33]. Thus, excessive formation of •OH, which might
overwhelm cellular antioxidant defense mechanisms, likely contributes to the death of
DAergic neurons [34].

The mitochondrial apoptotic cascade has been suggested to play an important role in MPTP-
induced DAergic neurotoxicity [35, 36]. In support of this idea, MPTP treatment
upregulated components of the mitochondrial apoptotic cascade, including cytochrome c and
caspase-9 in the substantia nigra (SN) [36]. In addition, the neuronal expression of p35, a
potent and irreversible caspase inhibitor, and overexpression of the anti-apoptotic protein,
Bcl-2, conferred a resistance to MPTP-induced neurotoxicity [36, 37]. The mitochondrial
apoptotic pathway requires the release of cytochrome c from mitochondria in connection
with opening of the mitochondrial transition pore. Importantly, MPP+ induces the opening
of the mitochondrial transition pore through the inhibition of complex I and the production
of ROS [38]. After cytochrome c is released, it then forms a complex with apoptosis
protease activating factor 1 and pro-caspase-9, which results in caspase-9 activation
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followed by activation of downstream caspases [39]. The expression of the apoptosis-
associated molecule, Nucling, is essential for the release of cytochrome c, the expression of
apoptosis protease activating factor 1, and the induction of caspase-9 following a pro-
apoptotic event. Following MPTP treatment in Nucling null mice, the release of cytochrome
c was suppressed and DAergic neuron cell death in the SNpc was reduced [40].

There is evidence that supports the idea of excitotoxicity contributing to MPTP-induced
DAergic neuron death [41-43]. In this scenario, the depletion of cellular ATP caused by
inhibition of complex I of the electron transport chain in mitochondria results in
depolarization of the membrane potential of SNpc neurons and an increase in extracellular
glutamate levels [41, 44] which, in turn, stimulates N-methyl-D-aspartate (NMDA)
receptors on the DAergic neurons [45]. A three-fold increase in extracellular glutamate has
been measured with microdialysis, in vivo, following chronic MPTP treatment [41]. In
addition the toxin treatment leads to an increase in the affinity for glutamate by glutamate
transporters in the SNpc [41]. The glutamatergic sources contributing to these enhanced
levels are not known, but could include glia in the vicinity, enhanced cortical or subthalamic
release from axon terminals on DAergic neurons and/or arise from an exchange with the
glutamate/cystine antiporter, which is calcium (Ca2+) insensitive but exchanges glutamate
from the cytoplasm of the nerve terminal, although the latter remains controversial [41].

The stimulation of NMDA receptors by extracellular glutamate results in an elevation of
intracellular Ca2+ via the opening of Ca2+ channels due to an inability of the cell to
sequester and pump out Ca2+ [45]. Elevation of intracellular Ca2+ in SNpc neurons activates
neuronal nitric oxide synthase (nNOS) and NO is synthesized. NO plays a key role in
MPTP-induced neurotoxicity [46, 47]. NO reacts with O2

− to form peroxynitrite (ONOO−).
Once formed, ONOO- can diffuse over several cell diameters where it can oxidize lipids,
proteins, and damage DNA [48, 49]. DNA damage, in turn, activates the DNA damage-
sensing enzyme poly(ADP-ribose) polymerase (PARP) [50, 51]. PARP activation induces
PAR polymers and depletes nicotinamide adenine dinucleotide (NAD+) and ATP [52, 53].
The generation of PAR polymers, the ribosylation of proteins, and the loss of NAD+ and
ATP signal to the mitochondria induce apoptosis inducing factor (AIF) release and
translocation [54]. AIF, a mitochondrial flavoprotein that mediates caspase-independent cell
death [55], translocates from the mitochondria to the nucleus to induce DNA fragmentation
and nuclear condensation [56, 57]. The dismantling of the nuclear structure ultimately leads
to cell death.

Inflammation also plays an important role in MPTP-induced neurotoxicity. MPTP treatment
causes an inflammatory reaction characterized by infiltration of T cells into the SN and
striatum, activation of the resident brain macrophages, microglia, and increased gene
expression of the proinflammatory cytokines interleukin-1 β (IL-1β), tumor necrosis factor
α (TNFα), and interferon γ (INFγ) [58]. Moreover, activated microglia can be phagocytic
and release pro-inflammatory factors such as TNFα, prostaglandin E2 (PGE2), INFγ, and
ROS such as NO, H2O2, and O2

−, which are all toxic to neurons [59]. Injection of the
bacterial endotoxin, lipopolysaccharide, into the SNpc induced PD-like changes
characterized by activation of microglia and DAergic neuron cell death [60, 61].
Importantly, following MPTP treatment, microglial cell activation occurred prior to DAergic
neuron death in the SNpc [62]. An increase in the number and size of microglia and a
morphological change consistent with their entering an activated state has been observed in
MPTP-treated mice [63]. In addition, microglial cell processes were observed in close
association with degenerating profiles [63], supporting a role for microglia in the scavenging
of dead and dying neurons [63, 64]. Furuya and colleagues [62] reported that caspase-11,
which is predominantly expressed in microglia in the SN, can produce cell death by
regulating the expression of cytotoxic cytokines. Caspase-11 null mice were resistant to the
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neurotoxic effects of an acute MPTP treatment [62]. Interestingly, inhibition of microglia
activation relieved the degeneration of DAergic neurons [65, 66]. Furthermore, NO, a
lipophilic radical that is toxic to neurons, is one of the pro-inflammatory factors released by
microglia. Inducible nitric oxide synthase (iNOS) is upregulated in MPTP-treated mice [66],
resulting in elevated NO production. The expression of iNOS in activated microglia
contributes to the death of DAergic neurons in MPTP toxicity [67, 68].

Abnormal protein interactions in the ubiquitin-proteasome system (UPS), which degrades
short-lived, damaged, and misfolded proteins in an ATP-dependent manner [69] has been
proposed as a mechanism of DAergic neuron death in the SNpc [70]. In support of this
hypothesis, systemic administration of a proteasome inhibitor led to degeneration of the
nigrostriatal pathway [70]. Moreover, chronic and continuous MPTP administration in mice
resulted in a long-lasting inhibition of the UPS and degeneration of DAergic neurons in the
SN [71]. In contrast, other groups have reported that administration of the proteasome
inhibitor did not produce DAergic neurotoxicity and did not enhance MPTP-induced
neurotoxicity [72, 73]. One group reported that proteasome inhibitors protected against
MPTP-induced neurotoxicity [74]. Thus, the contribution of a dysregulation of the UPS
system in MPTP-induced neurotoxicity remains unclear.

One of the hallmarks of PD, the development of Lewy bodies, has been proposed to be due
to a failure of the UPS. It has been proposed that Lewy bodies develop gradually, appearing
first as insoluble proteinaceous granules intermingled with filaments that are both ubiquitin
and α-synuclein positive (see [64] for review). Neither Lewy bodies nor inclusions that
resemble these bodies were observed when mice were acutely or subchronically (subacutely)
treated with MPTP [75-77]. However, chronic MPTP administration results in the formation
of α-synuclein positive granular aggregates [75]. Chronic and continuous MPTP
administration in mice produced inclusion bodies in remaining neurons in the SN [71].
Additionally, when mice were chronically treated with MPTP and probenecid (MPTP/P), the
surviving DA neurons developed accumulations of α-synuclein and ubiquitin [78].
Ultrastructurally, the inclusions, which are more numerous in MPTP/P-treated mice
compared to controls, contain granular and filamentous accumulations of protein and lipid
droplets (Fig. 2) in association with lipofuscin granules [64]. Taken together, these findings
raise the interesting possibility that scientists will be able to devise treatment regimens that
fully recapitulate the process of Lewy body formation.

Not All Mouse Strains Are Vulnerable to the Toxic Effects of MPTP
The neurotoxic effects of MPTP have been demonstrated in humans and other primates,
cats, rabbits, and in some rodents [79]. In rodents, only specific mouse strains are sensitive
to MPTP [80-86], pointing to genetic influences on the actions of MPTP. Strains of mice
differ in their response to MPTP with respect to the degree of striatal DA depletion [9, 83,
86, 87], amount of loss of midbrain DA neurons [88, 89], and behavioral deficits [89]. With
regard to degree of SNpc neuron loss, different mouse strains can be characterized as either
“sensitive” (i.e., >50% SNpc neuron loss) or “resistant” (i.e., <25% SNpc loss) [80, 88].

The basis for differences in sensitivity to MPTP between rodent strains is not well
understood. Although several explanations have been offered, no single explanation fully
accounts for the phenomenon. The neurotoxicity of MPTP is dependent on the activity of
MAOB, the enzyme that catalyzes the conversion of the MPTP protoxin to the
dyhdropyrididinium intermediate, 1-methyl-4-phenyl-2,3-dihydropyridinium species
(MPDP+), which is subsequently oxidized to the toxic MPP+. Thus, it has been proposed
that differences in brain MAO-B levels could account for species and strain differences in
sensitivity to MPTP. Rats are resistant to MPTP toxicity [84], and differences in MAO

Meredith and Rademacher Page 4

J Parkinsons Dis. Author manuscript; available in PMC 2012 December 26.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



activity have been proposed as the reason for their low susceptibility. The mouse strain most
sensitive to MPTP, the C57BL/6 strain [85, 90], is the only species in which MAO-B
activity was greater in the brain than in the liver [91]. Thus, the increased susceptibility of
this mouse strain to MPTP may be due, in part, to the limited, systemic detoxification of
MPTP by liver MAO-B [91]. However, contrary to this hypothesis, MAO-B overexpressing
transgenic mice did not have alterations in their MPTP toxicity profiles compared with
controls [92]. In addition, no differences in the vesicular monoamine transporter, which
regulates the sequestration of MPP+ inside the cell, were observed in MPTP-sensitive versus
resistant strains [93].

Another possible explanation for the strain differences in sensitivity to MPTP is that the
different strains have different tolerances to oxidative changes. Although it is known that
free radical formation plays an important role in MPTP-induced cell death [94-96], little is
known about the different oxidation states of various mouse strains, specifically as it relates
to the SNpc. The finding of no difference in free radical production in the striatum of the
MPTP-sensitive strain, C57BL/6, and the MPTP-resistant strain, Swiss-Weber [97-99],
suggests that free radical production alone is not a sufficient explanation to account for the
differences in strain susceptibility.

Several other potential mechanisms for differential sensitivity to MPTP have been explored
including differential uptake through the DAT [100], differences in DAT kinetics [101],
changes in glutamate transporter function in astrocytes [102], control of Ca2+ influx into SN
neurons [103], and functional changes in electron transport chain proteins [104].
Unfortunately, none of these studies are conclusive with regard to their individual role in
MPTP-induced neurotoxicity.

Degree of sensitivity across mouse strains has been hypothesized to be related to coat color,
with the pigmented strains being more sensitive than the albino strains [83, 87, 105, 106].
Although albinism is the result of a lack of melanin pigments, the absence of melanin in
mice produced by a point mutation in the gene for tyrosinase, the enzyme that catalyzes the
first two steps of melanin synthesis, located on chromosome 7, did not protect the mice from
MPTP-induced behavioral deficits, DA depletion in the striatum, and neuron loss in the
SNpc [107]. The possibility that the higher sensitivity to MPTP observed in pigmented mice
[105, 108] is caused by a susceptibility gene located in the same chromosomal region
warrants further investigation.

The emerging picture is that susceptibility to MPTP is mostly a polygenetic trait. The
MPTP-sensitive strain, C57BL/6, has been crossbred with two MPTP resistant strains,
SWR/J and AKR/J. The authors concluded that neuron loss in SNpc following MPTP
treatment was autosomal dominant and the polymorphism was carried on the C57BL/6 allele
[80]. In contrast, the crossbreeding of an MPTP-sensitive strain (C57BL/6) with a MPTP
resistant strain (BALB/c) resulted in a generation of mice that were highly resistant to the
toxic effects of MPTP. These results can best be explained by the action of a recessive
susceptibility allele in the C57BL/6 genome [85]. Due to the fact that it is highly unlikely
that the loci involved in the two studies are the same, the results, taken together, point to the
involvement of multiple genes controlling the degree of MPTP toxicity. These findings raise
the interesting possibility that sensitivity to MPTP could be controlled by interactions
between multiple susceptibility and resistance alleles.

Advantages and Caveats of MPTP Mouse Models
A primary assumption in using the MPTP mouse model is that it faithfully reproduces the
naturally occurring neurodegeneration. Certainly, MPP+ is a potent complex I inhibitor in
mouse midbrains and the midbrains of PD patients [109]. Moreover, the loss of DA in the
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striatum depends on the death of DAergic neurons and the degeneration of their axons.
Thus, striatal DA loss should reflect the loss of SN DAergic cells as it does in PD patients.
In addition, DAergic cell loss in the mouse midbrain follows a similar topographic pattern as
seen in human PD. That is, neuronal loss is concentrated in the ventral tier and lateral SNpc
neurons as well as in posterior regions, sparing the more anterior and medial cells [110]. But
the jury is still out as to whether it faithfully recapitulates PD [111].

The mouse model is useful for studying mitochondrial dysfunction in Parkinsonism [16,
112, 113]. Since PD, like other neurodegenerative diseases, is by nature slow and
progressive, the model should mimic the disease course, including the behavioral features of
the disease. However, with acute and subchronic MPTP treatments, DAergic neurons die
quickly and there is little progression in the loss of nigrostriatal DA [114]. The more
progressive MPTP treatments include chronic administration of the toxin over weeks (e.g.
MPTP plus probenecid [MPTP/P] model)[114], is more progressive, with neurons
continuing to die after completion of toxin administration. The pattern of DAergic terminal
loss in the striatum, however, does seem to replicate that of PD with most methods of MPTP
delivery [110]. In addition, extra-nigral pathology has been demonstrated in reduced levels
of monoamines other than DA [115].

The earliest use of the toxin employed a regimen of repeated injections of 20 mg/kg over 2
days at 2 hour intervals or 10 mg/kg over 1 day at 1 hour intervals [9]. In general, MPTP
rapidly kills DAergic neurons at first (as visualized by tyrosine hydroxylase (TH)
immunoreactivity (Table 1)), but can, over time, continue to cause cell death [116]. It is well
known that MPTP protocols in mice deliver dramatically different results depending upon
the timing used for the regimen. MPTP is generally delivered systemically by repeated i.p.
or s.c. injections – i.v. injections are no longer used. If injections are closely spaced (over a
single day), the effects on DAergic neurons can be additive (Table 1). This acute regimen
leads to a 40-50% loss of midbrain DAergic neurons [81, 114]. Neurons do not appear to die
by apoptosis [19] and inclusions bodies have not been found in the remaining DAergic
neurons [117]. However, mouse mortality can be 50% or more [115]. If the administration is
spread out over multiple days (once or twice daily injections over 5-10 days; subchronic or
subacute regimen), the toxin appears to be excreted more efficiently (during the first 3-12
hours) and the SN of mice do not lose as many DAergic cells [110] (Table 1). The
subchronic regimen induces apoptosis [118]. In addition, no inclusions are formed in the
remaining neurons [117, 119]. Mice survive this subchronic (subacute) delivery very well.
When the toxin is delivered chronically with a minipump for 28 days, levels of MPP+
remain measurable in the striatum for at least 21 days. There appears to be no mortality
associated with this delivery method, although animals had to be hydrated with 0.9% saline
during the period of minipump delivery of MPTP. The minipump mode of administration
kills up to 75% of SNpc DAergic neurons, reduces striatal metabolites of DA by 85%, and
induces the formation of α-synuclein-positive inclusions which appeared as ‘whorls’ in
ultrastructural photomicrographs [71] (but see [119], Table 1).

When MPTP is co-administered with probenecid (MPTP/P), which retards the renal and
CNS clearance of the toxic metabolites of MPTP, DAergic neurons are lost over a 5-8 week
period [11, 110]. There is however some mortality associated with this chronic method.
Approximately 15 percent of the mice die unless they are kept well hydrated (Meredith,
personal observation). Cell death at first involves apoptosis but later, neurons seem to die
through other mechanisms [41, 120]. Within a week after this regimen, approximately 50%
of SN DAergic neurons have been lost and by 3 weeks post-treatment, up to 70% neurons
have died, and a greater than 90% reduction in striatal DA levels is observed (Table 1). The
SN neuron loss (between 65-70%) and striatal DA loss (76%) can still be demonstrated 6
months later [110]. In addition, α-synuclein-positive inclusions have been detected in the
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cytoplasm of the remaining SN DAergic neurons [64, 121] (but see [117]). The nigrostriatal
degeneration with MPTP/P therefore appears to be slower than with other models. As noted
above, a single dose of MPTP alone causes striatal DA depletion to peak within 12 hours,
but with the MPTP/P combination, the striatal DA loss is slowed. Therefore, MPTP/P kills
more DA neurons than MPTP alone [110]. This chronic regimen can thus provide a short
preclinical ‘window’ following toxin administration for the introduction of neuroprotective
strategies.

Certainly, for the single injection, acute and subchronic protocols, the DAergic neurons
disappear rapidly and their loss of TH immunoreactivity may not reflect actual cell death,
since MPTP dramatically blocks TH gene expression [122]. The TH-immunoreactive
neurons begin to ‘reappear’ a few days after toxin administration. Ever since the
introduction of unbiased stereology to count TH-immunoreactive neurons stained for Nissl
substance at least 7 days following any MPTP treatment, investigators have been able to
provide more accurate estimates of DAergic neuronal loss in all MPTP mouse models [114].

A more recent, progressive MPTP model requires repeated injections of escalating doses of
MPTP over 4 weeks [123]. The loss of TH-positive neurons is most pronounced following
the final, relatively high (32 mg/kg), dose of the toxin. Almost 70% of the neurons are lost
after that stage (Table 1). There are also behavioral changes in the open field that appear to
be progressive. The mortality was not reported in this study but could be an important factor.
Nevertheless, progression in a model with MPTP is an important advance on the more acute
models, and compares favorably with the chronic MPTP model, in which mice continue to
lose neurons in the SNpc for 3 weeks after the final injection. Thus, it seems that pre-
treating mice with the toxin creates a “stage” whereby DAergic neurons become more
sensitive [123].

The apparent lack of Lewy body-like inclusions bodies in the SN is true of all MPTP mouse
models [64, 117] (Table 1). Minipump delivery reveals ‘whorls’ in the cytoplasm of
remaining DAergic neurons [71]. In the chronic MPTP/P model, SN DAergic neurons have
α-synuclein-positive inclusions and secondary lysosomes filled with proteinaceous debris
and lipid droplets (Fig. 2), the latter of which resemble early deposits in human midbrains of
PD patients [64]. When MPTP is delivered i.p. via minipump for 14 days, α-synuclein-
positive inclusions are also found in the SN DAergic neurons [119]. However, when the
toxin is delivered for 28 days either s.c. or i.p. with a minipump, no inclusions are found
[119]. Gibrat and colleagues [119] suggest that such differences in inclusion formation are
directly related to the sustained action of MPTP on the mitochondria but they cannot explain
why longer toxin infusion did not yield inclusions. Thus, the cytoplasm of DAergic neurons
of several models show α-synucleinand ubiquitin-positive deposits [64, 71, 121], which may
represent a “pre” Lewy body stage.

An interesting rat model has been introduced using MPP+ infused directly into the brain
using an osmotic minipump that delivers the toxin to the left lateral cerebral ventricle [12].
This model is unilateral in order to avoid the moribund condition that arises with extensive
bilateral loss of DAergic neurons, as seen with 6-hydroxydopamine lesions. This MPP+
treatment produces a dose-dependent, unilateral loss of striatal DA on the side of the
infusion (Table 1). The doses can be varied, but the use of high doses also reduce serotonin
levels significantly. One interesting feature of this model is the progressive loss of DA
neurons over weeks and the initiation of DA loss in the contralateral striatum. This model
may mimic the human condition better than the mouse MPTP models, since unilateral motor
deficits are generally encountered in the early stages before bilateral deficits show up,
similar to idiopathic disease. Lewy-body-like inclusions have not been identified, but there
are proteinaceous inclusion bodies in the striatum that stain positive for α-synuclein. No
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behavioral assessments were performed so motor deficits cannot be assessed. While the
model is technically challenging, it produces a reliable response with low variation, thus
making it appealing for testing neuroprotective strategies during the phase of toxic insult and
ongoing degeneration, the stage at which PD patients present with the disease.

There remain a few, important, unresolved issues with mouse MPTP models such as the
inflammatory response. Neuroinflammation is a hallmark of idiopathic PD [124]. Activated
microglia are known to produce pro-inflammatory molecules such as chemokines,
cytokines, NO, and ROS [125-127]. The phagocytic activity is beneficial during neuronal
development and injury, but dysregulation or excessive activation, can lead to an increased
oxidative burden for neurons. Microglial-induced inflammation can be sustained and
progressive [128, 129]. Microgliosis persists for years in humans and non-human primates
following an acute exposure to MPTP [128, 130] and has been observed in acute and
chronic MPTP mouse models [63, 131, 132], but the relationship to DAergic cell death
remains undetermined.

Another unresolved issue is the question as to whether older mice, which are more sensitive
to MPTP than young adults, would reveal the Parkinsonian pathophysiology better, and the
need to validate the relationship between key neurodegenerative features with results from
behavioral tests sensitive enough to measure Parkinsonism in rodents [111]. Certainly, the
age of the mouse is an important limiting factor in the effectiveness of MPTP. Older mice
are approximately 1-2 fold more sensitive to the toxin [133].

Behavioral Deficits in MPTP models
Interpreting rodent behavior as Parkinsonian following DAergic lesions is very challenging
[134]. Rodent locomotion is controlled centrally in a different manner than that of primates,
including humans, and reports on motor deficits in mice administered MPTP differ widely
[111]. The most common behavioral test is the open field, where changes in the time spent
moving, rearing, or the distance traveled are measured by breaks in infrared beams that cross
the box. Using the open field box, mice show a paucity of movement shortly after toxin
administration ceases [84], but these deficits may disappear over time, perhaps due to the
diminishing effects of the toxin on peripheral organs [112]. There are, however, a few
reports that show that MPTP-treated mice have reduced locomotion and rearing many weeks
later [71, 135, 136], but there are also reports of no change in locomotion and even
hyperactivity in mice [132, 137-139].

Another popular way of measuring behavior in MPTP-treated mice is with the Rotarod. This
automated device provides an end-point measurement that marks the duration the mouse ran
or walked on the rod. In order to use the equipment successfully, mice must be trained to
stay on the rod at speeds that exceed their normal pace [140, 141]. Once animals are trained,
they can be tested following DAergic lesions. While DA depletion can be detected,
especially with unilateral lesions [141], the extent of depletion cannot be correlated with the
end-point measure, and bilateral MPTP lesions are even more difficult to detect [111] (but
see [132]). Moreover, the rod does not detect changes in balance or coordination unless
stepping is videotaped [142].

Mice, like other rodents, utilize their forepaws for most “activities of daily living”, and the
basal ganglia circuitry define many aspects of forepaw movement but have little impact on
hindlimb activity [111]. Thus, tests of forepaw usage will more likely exemplify basal
ganglia deficits compared to general tests of movement [111]. Studies have shown that the
pole or grid test, both of which focus on forepaw manipulation, can detect even subtle
deficits in the DAergic system [84, 111, 143, 144]. Other forepaw tests such as the adhesive
removal test, the elevated beam traversal test (missteps in forepaws or hindpaws) and the
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stepping test (forepaw test) are all sensitive to a lesion of the nigrostriatal pathway [145,
146]. However, none of the motor deficits are easily correlated with loss of SN neurons,
striatal DA levels, or the dose of MPTP [111]. More sophisticated tests are needed to detect
the subtleties of motor dysfunction in quadripedal rodents.

Testing Therapeutic Treatments with the Mouse MPTP models
Traditionally, therapies for symptomatic relief of PD disabling deficits were tested using the
6-hydroxydopamine rat model. However, once the MPTP mouse models were developed,
they became increasingly used for testing neuroprotective treatments (Fig. 1). MPTP-treated
mice receive a therapeutic treatment either shortly before or after toxin administration.
Measures of treatment success often include 1) behavioral tests of the model in the open
field, on the rotarod and/or on the grid or traversal beam to measure footfaults; 2) “rescue”
of TH-immunoreactive neurons in the SN, and 3) enhanced DA levels in the striatum. MPTP
mouse models have been used to test the efficacy of many different types of drugs, including
drugs that potentially neuroprotect the DAergic neurons in the midbrain. This review cannot
begin to cover the extensive literature in which MPTP mouse models have been employed to
test therapeutic approaches to abrogating the pathophysiology of Parkinsonism. The
paragraphs below provide selected examples of therapies tested with MPTP-treated mice.

The potential causes of cell death in PD are not known. Among them, oxidative stress,
inflammation and excitotoxicity have been suggested as important perpetrators. Free radical
generation is increased in PD and mouse MPTP models. A number of drugs are known to
scavenge free radicals and are, therefore, thought to protect DA neurons. Several of these
drugs have been tested using MPTP models. For example, free radical scavengers have the
ability to inhibit peroxide formation following oxidative metabolism of DA [147]. Various
MAO-B inhibitors have been tested in mice and found to rescue DAergic neurons following
MPTP [76, 148]. Of course, MPTP is converted to MPP+ via MAO-B; thus inhibitors of this
enzyme are particularly effective in preventing MPTP toxicity and may not be as relevant
for treating idiopathic PD. Nevertheless, MAO-B inhibitors play other roles in regulating
free radicals. For example, Selegeline, a MAO-B inhibitor, increases the activity of
antioxidant enzymes, such as superoxide dismutase, when administered before MPTP
treatment [149]. There are also reports that DA D2 receptor agonists, such as bromocriptine,
pergolide, cabergoline, and ropinirole scavenge hydroxyl or nitric oxide radicals [150]. A
number of different free radical scavengers have been tested in MPTP models and in PD
patients with mixed success.

Many investigators have implicated inflammation in the death of DAergic neurons. As noted
above, microglial activation of the SN has been demonstrated in human patients exposed to
MPTP and in mouse MPTP models [128, 130]. Activated microglia are thought to contribute
to the DAergic neuron demise by releasing toxic compounds including ROS, reactive
nitrogen species, and pro-inflammatory cytokines [151-153]. Several studies have used the
MPTP mouse model to explore the protective activity of a family of transcription factors,
peroxisome proliferator-activated receptors (PPARs), which have anti-inflammatory effects.
The activation of PPARs can protect the DAergic neurons when administered prior to MPTP
treatment [154]. Another compound, minocycline, exerts anti-inflammatory effects, which
are distinct from its antimicrobial actions [155]. Several labs have studied the anti-
inflammatory effects in a mouse MPTP model. Du and colleagues [156] showed that
minocycline reduced glial-activated iNOS expression and prevented the death of DAergic
neurons when administered in advance of MPTP treatment. They also showed that
minocycline protects against MPTP toxicity when administered by 4 hours after MPTP
treatment [156]. However, the studies of Yang and colleagues [157] using minocycline in
the MPTP-treated mouse pointed to an increase in DAergic cell death, even though the drug
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was able to inhibit microglial activation. These studies differed in the time of administration
and the MPTP protocol, which could account for the different results.

Glutamate excitotoxicity has often been raised as the mechanism of cell death in PD and the
NMDA receptor has been considered as the trigger for this toxicity. MPTP exposure in mice
triggers numerous cytotoxic changes, especially in the mitochondria, which may ultimately
lead to DA depletion and cell death, which can occur within a few hours. The DAergic
neurons have reduced levels of bioenergy due to compromise of mitochondrial respiration,
raising the question whether neurons are able to cope with even low levels of glutamate
stimulation and subsequent Ca2+ influx. Numerous studies have examined whether NMDA
antagonists in MPTP-treated mice could protect the DAergic neurons against glutamate
toxicity but results have generally been disappointing [158-162]. Blocking the NMDA
receptor has not been able to prevent degeneration in MPTP models, but antagonists have
transiently protected the striatum from DA depletion [158]. Nevertheless, extracellular
glutamate levels are significantly elevated following chronic MPTP treatment [42],
suggesting further that glutamate may be important in neurodegeneration in PD. It is well
known that adult SN DAergic neurons are Ca2+-dependent pacemakers, a process that is
driven primarily by L-type Ca2+ channels [163-165]. Thus, already compromised neurons
may be subject to sustained high levels of cytosolic Ca2+ through glutamate stimulation.
Calcium further enhances free radical production and could be important in DAergic death.
In MPTP models, these L-type Ca2+ channels have been blocked to decrease the amount of
stress on the neurons and, therefore, provide neuroprotection [103, 144]. Such an approach
appears to protect the DAergic neurons better than a blockade of the NMDA receptors,
suggesting that Ca2+ influx through ion channels is a key factor in triggering DAergic cell
death.

Conclusions
The mouse MPTP model has been an important tool for understanding PD, despite the fact
that this model does not fully recapitulate the broad spectrum of PD symptoms. Chronic or
continuous treatment with MPTP produces a barrage of insults to SNpc DAergic neurons
including ATP deprivation, oxidative stress, activation of the mitochondrial apoptotic
cascade, excitotoxicity, inflammation, dysregulation of the UPS, and the formation of
inclusion bodies. The effects of this barrage of insults, acting in isolation and in
combination, ultimately leads to the demise of SNpc DAergic neurons, sometimes in a
progressive manner. Research on strain differences has revealed that sensitivity to MPTP is
likely controlled by an interaction between multiple susceptibility and resistance alleles [80,
85]. This is an important line of research since the identification of the genes that confer
susceptibility and resistance to MPTP will lead to new therapeutic targets. No model is
perfect, however. The fact that rodents have a behavioral repertoire that preclude replication
of many typical PD motor deficits is a disadvantage for these rodent models [111].
Nevertheless, the use of the MPTP mouse model has resulted in a better understanding of
the causes of cell death, the role of mitochondria in the disease, and the exploration of
neuroprotection and neurorestorative strategies. Moreover, there have been important
advances in the development of MPTP models that more faithfully reproduce a PD-like
disease progression. For example, chronic MPTP models provide a short preclinical
‘window’ following toxin administration for the introduction of neuroprotective strategies
[41, 63, 78, 110, 121] and i.c.v. strategies produce a progressive neuron loss [12].
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Figure 1.
Diagrams indicating estimates of total number of papers produced involving (A) MPTP and
(B) MPTP administered only to mice.
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Figure 2.
Electron micrographs illustrating proteinaceous and lipid inclusions in MPTP/P-treated
mice. (A) Secondary lysosomes with parallel membranes and lipid droplet (asterisk). (B)
Lipid droplets (asterisk) among proteinaceous deposits (arrow).
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Table 1
Mouse model features that recapitulate PD. General definitions of the models
appear below*

Toxin Time to
greatest DA

cell loss

Striatal DA loss DAergic cell loss
in SN

Inclusions

Single dose
MPTP (30
mg/kg in
mice)

12 hours >80% loss of DA
after 1 day and
>40% loss after

30 days

20-30% Not examined

MPTP, acute*
(mice)

12 hours >90% loss of DA
7 days after
treatment

40% None

MPTP,
subchronic

(subacute)* in
mice

12 hours 53% loss of DA
30 days after

treatment

24-40% None

MPTP/P,

chronic* in
mice

3 weeks post-
treatment

95-98% loss of
DA 3 weeks after
treatment; 76%

loss after 6
months

50% post-
treatment and
70% 3 weeks
post-treatment

Proteinaceous and
lipid inclusions
in secondary
lysosomes that
are α-synuclein-
positive but do
not resemble
Lewy bodies

MPTP,

chronic* with
escalating
doses in mice

At the end of
treatment (4

weeks)

Dose-dependent
loss of DA;

greater than 70%
loss of DA with
the two highest

doses only

24% loss after 1
week and 62%
after 4 weeks
following the
highest dose

Not examined

MPTP,

chronic* with
mini-pumps
in mice

21 days 85% loss of DA
metabolites in
dorsal striatum

75-80% α-synuclein-
positive
inclusions that do
not resemble
Lewy bodies
inclusions

MPP+,
chronic
pump in rats

42 days or
longer

Dose-dependent
loss of DA

40% No inclusions in
DA neurons

*
MPTP, acute – 4 injections of MPTP in one 24 h period, 2 hours apart; injections are generally 20-30 mg/kg

*
MPTP, subchronic (subacute) – daily injections over 5 – 10 days. The toxin injected varies from 15mg/kg to 30mg/kg

*
MPTP, chronic –

• MPTP/P model, 25 mg/kg injected every 3.5 days for 5 weeks;

• Minipump delivery is continuous, either s.c. or i.p.; 23 or 46 mg/kg/day for 14 days or 46 mg/kg/day for 28 days;

• Escalating dose model included daily injections for 5 days, with the weekend off for 4 weeks. The injected doses were scaled up over
time from 4 mg/kg to 32 mg/kg
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