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Abstract
Neuroantigen-specific T cells play an important role in the disease process of multiple sclerosis
(MS) and experimental allergic encephalomyelitis (EAE). These cells are encephalitogenic and in
susceptible animals, these cells alone can cause EAE. However, mechanisms by which
encephalitogenicity is controlled are poorly understood. This study underlines the importance of
nitric oxide (NO) in the regulation of encephalitogenicity of T cells. Interestingly, reducing NO
during myelin basic protein (MBP)-priming of T cells attenuated the ability of these T cells to
induce EAE and EAE-associated neuroinflammation and demyelination. Consistently, increasing
NO had opposite effect. Similarly scavenging NO reduced the encephalitogenicity of PLP-specific
T cells isolated from female PLP-TCR transgenic mice and supplementation of NO broke the
tolerance of PLP-specific T cells of male PLP-TCR mice. Reduced encephalitogenicity of
neuroantigen-primed T cells isolated from iNOS (−/−) mice compared to that from wild type mice
clearly defines an essential role of iNOS-derived NO in controlling the encephalitogenicity of
myelin-specific T cells. This study illustrates a novel role of NO in controlling encephalitogenicity
of T cells that may participate in the complex pathogenesis of MS.
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Introduction
Multiple sclerosis (MS) is the most common demyelinating disease and is characterized by
inflammatory demyelinating foci in the brain white matter with variable axonal damage (1–
3). Although its etiology remains unknown, data from MS patients and animal models
support the idea that it is an autoimmune disease mediated by myelin-specific CD4+ T cells
(1, 4–6). This disease is modeled in rodents, guinea pigs or marmosets by immunization
with myelin-specific proteins (myelin basic protein, MBP; proteolipid protein, PLP; myelin
oligodendrocyte glycoprotein, MOG). After immunization, MBP-, PLP- or MOG-specific T
cells are generated which ultimately cause an autoimmune disease characterized by initial
weight loss, hind leg paralysis, perivascular infiltration, and demyelination. This condition is
called experimental allergic encephalomyelitis (EAE) and myelin-specific T cells are known
as encephalitogenic T cells (7–9). However, mechanisms regulating encephalitogenicity of
these myelin-specific T cells are poorly understood.
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Because nitric oxide (NO), a multifunctional second messenger molecule, participates in
immune regulation and in the disease process of EAE and MS, we examined the role of NO
in encephalitogenicity of T cells. In this study, we provide the evidence that NO plays a
critical role in controlling encephalitogenicity of T cells. While excess nitric oxide increases
encephalitogenicity of T cells, scavenging NO reduces encephalitogenic property of T cells.

Materials and methods
Reagents

Bovine myelin basic protein (MBP), L-glutamine and β-mercaptoethanol were obtained
from Invitrogen (Carlsbad, CA). Proteolipid protein (PLP) was purchased from Tocris
Bioscience (Ellisville, MO). Fetal bovine serum (FBS) and RPMI 1640 were from
Mediatech (Washington, DC). Heat-killed M. tuberculosis (H37RA) was purchased from
Difco Labs. Incomplete Freund’s adjuvant (IFA) was obtained from Calbiochem. Solvent
Blue 38, cresyl violet acetate, and lithium carbonate were purchased from Sigma (St. Louis,
MO).

Monitoring encephalitogenicity of MBP-specific T cells
MBP-specific T cells were isolated and EAE was induced in 4–6 week old naïve female
SJL/J mice (Harlan Sprague-Dawley (Indianapolis, IN) by adoptive transfer as described
earlier (10–13). Briefly, donor mice were immunized s.c. with 400 µg bovine MBP and 60
µg M. tuberculosis in IFA. Animals were killed 10–12 days post-immunization, and the
draining lymph nodes were harvested and lymph node cells (LNC) were cultured in six-well
plates in RPMI 1640 supplemented with 10% FBS, 50 µg/ml MBP, 50 µM 2-ME, 2 mM L-
glutamine, 100 U/ml penicillin, 100µg/ml streptomycin. On day 4, cells were harvested and
resuspended in HBSS and a total of 2 × 107 viable cells were injected into the tail vein of
naive mice. Pertussis toxin (150 ng/mouse; Sigma-Aldrich) was injected once via i.p. route
on 0 day post transfer (dpt) of cells. Cells isolated from donor mice immunized with CFA or
IFA alone were not viable after 4 days in culture with MBP, and therefore were not
transferred. Animal maintenance and experimental protocols were approved by the Rush
University Medical Center. Animals were observed daily for clinical symptoms.
Experimental animals were scored by a masked investigator, as follows: 0, no clinical
disease; 0.5, piloerection; 1, tail weakness; 1.5, tail paralysis; 2, hind limb weakness; 3, hind
limb paralysis; 3.5, forelimb weakness; 4, forelimb paralysis; 5, moribund or death.

Isolation of PLP-specific T cells from PLP-TCR transgenic mice and monitoring
encephalitogenicity

PLP-TCR (5B6) transgenic mice (14) were genotyped by FACS analysis of with Thy1.1,
CD4, and Vbeta6. Splenocytes isolated from 4–6 week old transgenic mice were reprimed
with PLP139–151 for 4 d in the presence or absence of either NO scavenger (PTIO) or NO
donor (DETA-NONOate). After 4 d, CD4+ T cells were purified from PLP-primed
splenocytes using MagCellect mouse CD4+ T cell isolation kit (R&D Systems) and 5 × 106

purified CD4+ T cells were injected into 4–6 week old naïve female SJL/J mice through tail-
vein. Animals were observed daily for clinical symptoms as described above.

Histological analysis
On 14 dpt (peak of the acute phase), five mice from each of the following groups (HBSS-
control, MBP-primed T cells, PTIO-treated MBP-primed T cells, and DETA-NONOate-
treated MBP-primed T cells) were anesthetized. After perfusion with PBS (pH 7.4) and then
with 4% (w/v) paraformaldehyde solution in PBS, cerebellum and whole spinal cord were
dissected out from each mouse. The tissues were further fixed and then divided into two
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halves: one-half was used for histology analysis whereas the other half was used for myelin
staining as described earlier (10–13). For histological analysis, routine histology was
performed to obtain perivascular cuffing and morphological details of cerebellar tissues of
different groups of mice. Paraformaldehyde-fixed tissues were embedded in paraffin, and
serial sections (5 µm) were cut. Sections were stained with conventional H&E staining
method. Digital images were collected under bright-field setting using an ×40 objective.
Slides were assessed in a blinded fashion for inflammation by three examiners in different
anatomical compartments (meninges and parenchyma). Inflammation was scored using the
following scale as described: for meninges and parenchyma: 0, no infiltrating cells; 1, few
infiltrating cells; 2, numerous infiltrating cells; and 3, widespread infiltration. For vessels: 0,
no cuffed vessel; 1, one or two cuffed vessels per section; 2, three to five cuffed vessels per
section and 3, more than five cuffed vessels per section. At least six serial sections of each
spinal cord and cerebellar tissues from each of five mice per group were scored and
statistically analyzed by ANOVA.

Staining for myelin
Serial longitudinal sections of paraformaldehyde-fixed spinal cords were stained with Luxol
fast blue for myelin as described earlier (12, 13). Slides were assessed in a blinded fashion
for demyelination by three examiners using the following scale: 0, normal white matter; 1,
rare foci; 2, a few areas of demyelination; and 3, large areas of demyelination. At least six
serial sections of each spinal cord and cerebellum from each of five mice per group were
scored and statistically analyzed by ANOVA.

Immunofluoroscence analysis
Immunofluorescence analysis was performed as described earlier (15–17). Briefly, mice
were perfused intracardially with PBS (pH 7.4) and then with 4% (w/v) paraformaldehyde
solution in PBS. Dissected spleens were post-fixed in 4% formaldehyde/PBS for 2–4 days
and cryoprotected in 20% sucrose/PBS overnight at 4°C. Splenic tissues were then
embedded in OCT (Tissue-Tek) at −50°C and processed for conventional cryosectioning to
obtain frozen longitudinal sections (8 µm) and stored at −80°C. Frozen sections were then
allowed to cool to room temperature for 1.5–2 h, washed six times each for 5 min in 1x PBS,
blocked in 2% BSA in 1x PBS with 0.5% Triton X-100 at room temperature and incubated
with mouse anti-iNOS (1/500) along with rat anti-CD11b (1/200) for overnight at room
temperature for dual immunohistochemistry. Sections were then washed six times in 1x PBS
and further incubated with Cy2 and Cy3 (Jackson ImmunoResearch Laboratories) for 1.5 h
at room temperature followed by overnight drying. Next, the sections were rinsed in distilled
water, dehydrated successively in ethanol and xylene, and mounted and observed under an
Olympus fluorescence microscope using an ×40 objective.

Semi-quantitative RT-PCR analysis
Total RNA was isolated from spinal cord and from cerebellum by using Ultraspec-II RNA
reagent (Biotecx laboratories, Inc) following manufacturer’s protocol. To remove any
contaminating genomic DNA, total RNA was digested with DNase. Semi-quantitative RT-
PCR was carried out as described earlier (11–13) using a RT-PCR kit from Clontech.
Briefly, 1 µg of total RNA was reverse transcribed using oligo(dT)12–18 as primer and
MMLV reverse transcriptase (Clontech) in a 20 µl reaction mixture. The resulting cDNA
was appropriately-diluted, and diluted cDNA was amplified using Titanium Taq DNA
polymerase and following primers.
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iNOS: Sense: 5’-CCCTTCCGAAGTTTCTGGCAGCAGC-3’

Antisense: 5’-GGCTGTCAGAGCCTCGTGGCTTTGG3’

IL-1β: Sense: 5’-CTCCATGAGCTTTGTACAAGG-3’

Antisense: 5’-TGCTGATGTACCAGTTGGGG-3’

MOG: Sense: 5’-CCTCTCCCTTCTCCTCCTTC-3’

Antisense: 5’-AGAGTCAGCACACCGGGGTT-3’

PLP: Sense: 5’-CTTTGCTTCCCTGGTGGCCA-3’

Antisense: 5’-TGTTGGCCTCTGGAACCCCT-3’

CNPase: Sense: 5’-CTACCCTCCACGAGTGCAAGA-3’

Antisense: 5’-AGTCTAGTCGCCACGCTGTCT-3’

GAPDH: Sense: 5'-GGTGAAGGTCGGTGTGAACG3'

Antisense: 5'-TTGGCTCCACCCTTCAAGTG-3'

Amplified products were electrophoresed on a 1.8% agarose gels and visualized by ethidium
bromide staining. The relative expression of each gene with respect to GAPDH was
measured after scanning the bands with a Fluor Chem 8800 Imaging System (Alpha
Innotech, San Leandro, CA).

Results
Source of NO in the spleen of neuroantigen-immunized donor mice

In order to understand if NO regulates encephalitogenicity of T cells, at first, we
investigated the source of NO that may control encephalitogenicity in donor mice. Because
spleen is an important organ in terms of initiation of immune responses, we investigated the
localization of inducible nitric oxide synthase (iNOS), which synthesizes NO during
immune stimulation, in splenic sections of donor mice. As evident from figure 1A, the
expression of iNOS protein was much higher in spleen of MBP-immunized donor mice than
that of normal mice. Double-labeling immunofluorescence analysis identified CD11b-
positive macrophages as iNOS-expressing cells (Fig. 1A). Similarly we also identified
marked iNOS immunoreactivity in CD11b-positive macrophages in splenic sections of
female PLP-TCR transgenic mice (Fig. 1B; lower panel). Consistent to the fact that male
PLP-TCR transgenic mice are much more resistant than female mice to spontaneous EAE
(18), we did not notice much iNOS immunoreactivity in splenic sections of male PLP-TCR
transgenic mice (Fig. 1B; upper panel). On the other hand, we could not detect iNOS in
CD3-positive T cells (data not shown).

Effect of NO scavenger and NO donor on encephalitogenicity of T cells
Encephalitogenicity is monitored by the EAE-causing activity of myelin protein-primed T
cells in which myelin-specific T cells are transferred to naïve recipient mice followed by
examining clinical symptoms of EAE. As expected, MBP-primed T cells induced clinical
symptoms of EAE exhibiting the disease onset within 6–8 days post transfer (dpt) and acute
phase within 14–16 dpt followed by a relapsing-remitting phase (Fig. 2), indicating
encephalitogenic activity of MBP-primed T cells. However, when NO was scavenged by
PTIO during MBP-priming, these PTIO-treated MBP-primed T cells became less efficient in
transferring the disease to naïve recipient mice (Fig. 2A & Table-1). Clinical score and
disease severity in both acute phase and relapsing phase were significantly lower in mice
having PTIO-treated MBP-primed T cells than mice with MBP-primed T cells (Fig. 2A). On
the other hand, when the level of NO was increased by DETA-NONOate, a NO donor,
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during MBP-priming, these DETA-NONOate-treated MBP-primed T cells became more
efficient than MBP-primed T cells in transferring the disease in both acute and relapsing
phases (Fig. 2A & Table-1). These results suggest that NO is an important regulator of
encephalitogenic potential of MBP-primed T cells.

To confirm this encephalitogenic role of NO from another angle, we used PLP-TCR
transgenic mice. These mice develop EAE spontaneously (14, 18). As observed with MBP-
specific T cells, PLP-specific CD4+ T cells from female PLP-TCR transgenic mice also
strongly induced EAE in naïve recipient mice and remained unable to do so when these cells
were treated with PTIO during PLP priming (Fig. 3A & Table-2). On the other hand, male
PLP-TCR transgenic mice do not develop EAE (18) and accordingly T cells from male PLP-
TCR transgenic mice also did not transfer EAE to naïve recipient mice (Fig. 3B & Table-2)
suggesting that male PLP-specific T cells are not encephalitogenic. Because scavenging NO
reduced the encephalitogenic potential of female PLP-specific T cells, we examined if
supplementation of NO could break the tolerance of male PLP-specific T cells. Therefore,
splenocytes isolated from male PLP-TCR transgenic mice were primed with PLP in the
presence of DETA-NONOate. After 4d, purified CD4+ T cells were transferred to naïve
female SJL/J mice. As appeared from figure 3B, DETA-NONOate treatment markedly
induced the encephalitogenic activity of non-encephalitogenic male PLP-specific T cells.
These results clearly indicate that NO is a critical regulator of encephalitogenicity of T cells
and that it is possible to break the tolerance of male T cells by NO.

Effect of NO scavenging on the generation of encephalitogenic T cells in vivo in donor
mice

Because in vitro treatment of MBP-primed T cells with PTIO inhibited the
encephalitogenicity of MBP-primed T cells, we next investigated whether PTIO treatment in
donor mice was capable of inhibiting the generation of encephalitogenic T cells in vivo.
Therefore, donor mice were treated with PTIO on day 2 and day 8 of immunization and T
cells from these donor mice were primed with MBP for 4 days and transferred adoptively to
naïve recipient mice. In the control group, EAE was induced by adoptive transfer of MBP-
primed T cells from donor mice that received only PBS. Our results showed that mice that
received T cells from PTIO-treated donor mice exhibited dramatically less clinical
symptoms and disease severity compared with the control EAE group (Fig. 2B). These
results suggest that NO plays an important role in the generation of encephalitogenic T cells
in vivo in donor mice.

Effect of genetic knockdown of iNOS on the encephalitogenicity of T cells
The iNOS is a major producer of NO during immune stimulation and the expression of
iNOS increases in spleen of MBP-immunized donor mice as well as female PLP-TCR
transgenic mice (Fig. 1). Therefore, to confirm the involvement of NO in the regulation of
encephalitogenicity, we used iNOS (−/−) mice. Mice that are null for iNOS and strain-
matched wild type (WT) mice were immunized with MBP followed by transferring MBP-
primed T cells to naïve female SJL/J mice. Although T cells do not express iNOS, MBP-
primed T cells isolated from iNOS (−/−) mice were less effective than WT MBP-primed T
cells in transferring the disease to naïve female SJL/J mice (Fig. 4). Disease severity was
approximately 50% lower in mice having iNOS (−/−) MBP-primed T cells than WT MBP-
primed T cells (Fig. 4). To further confirm that decreased encephalitogenicity was due to the
absence of NO, we supplemented NO during MBP priming of T cells isolated from iNOS
(−/−) mice. In this case as well, addition of DETA-NONOate to iNOS (−/−) T cells
increased their encephalitogenicity (Fig. 4), clearly establishing an important role of iNOS-
derived NO in controlling the encephalitogenic potential of T cells.
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Effect of PTIO-treated and DETA-NONOate-treated MBP-primed T cells on CNS
inflammation and demyelination

EAE is accompanied by the infiltration of inflammatory cells, expression of
proinflammatory molecules and demyelination. Therefore, to correlate clinical score of EAE
with the degree of inflammation and demyelination, we performed H&E staining, mRNA
analysis of proinflammatory molecules and myelin-specific genes, and luxol fast blue
staining. Recipient mice receiving MBP-primed, PTIO-treated MBP-primed and DETA-
NONOate-treated MBP-primed T cells were sacrificed on 14 dpt (acute phase).

As expected, H & E staining of spinal cord (Fig. 5A) cerebellar (Fig. 5B) sections of mice
receiving MBP-primed T cells showed widespread infiltration of inflammatory cells into the
CNS. Adoptive transfer of DETA-NONOate-treated MBP-primed T cells resulted in
increased infiltration of inflammatory cells into the spinal cord (Fig. 5A) and cerebellum
(Fig. 5B) compared to the MBP group. On the other hand, mice receiving PTIO-treated
MBP-primed T cells exhibited decreased infiltration of inflammatory cells into the spinal
cord (Fig. 5A) and cerebellum (Fig. 5B). Quantitation of relative level of inflammatory cells
(Fig. 5C–F) shows that the above group of mice exhibits dramatically reduced infiltration
(Fig. 5C&E) and the appearance of cuffed vessels (Fig. 5D&F) in the spinal cord (Fig.
5C&D) and cerebellum (Fig. E&F). On the other hand, enhanced infiltration and the
appearance of cuffed vessels in spinal cord (Fig. 5A, C & D) and cerebellum (Fig. 5B, E&F)
were observed in mice receiving DETA-NONOate-treated MBP-primed T cells.

Consistently, decreased mRNA expression of iNOS and IL-1β was observed in spinal cord
(Fig. 6A–B) and cerebellum (Fig. 6C–D) of mice receiving PTIO-treated MBP-primed T
cells compared to mice receiving MBP-primed T cells. In contrast, the mRNA expression of
iNOS and IL-1β was more in cerebellum and spinal cord of mice receiving DETA-
NONOate-treated MBP-primed T cells (Fig. 6).

As evident from figure 7A–D, adoptive transfer of MBP-primed T cells caused widespread
demyelination in spinal cord (Fig. 7&C) and cerebellum (Fig. 7B&D), which was more in
case of DETA-NONOate-treated MBP-primed T cells and less in mice receiving PTIO-
treated MBP-primed T cells. Earlier we have demonstrated decrease in myelin gene
expression in CNS tissues of EAE mice (Brahmachari and Pahan, 2007). Accordingly, there
was decreased mRNA expression of MOG, PLP and CNPase in spinal cord (Fig. 7E) and
cerebellum (Fig. 7F) of mice receiving MBP-primed T cells as compared to mice receiving
only vehicle. Consistent to that observed with myelin staining, this decrease in myelin gene
expression was not visible in mice receiving PTIO-treated MBP-primed T cells (Fig. 7E–F)
and it was higher in mice receiving DETA-NONOate-treated MBP-primed T cells (Fig. 7E–
F).

Discussion
Understanding mechanisms regulating the encephalitogenicity of myelin-specific T cells is
an important field of research as it may lead to the development of therapeutic approaches
for MS. Studies presented from various angles clearly demonstrate that NO is an important
regulator of encephalitogenic potential of neuroantigen-specific T cells. Our conclusion is
based on the following: First, PTIO is a scavenger of NO and PTIO-treated MBP-primed T
cells were unable to induce clinical and pathological features of EAE in recipient mice.
Similarly, PTIO also inhibited the generation of encephalitogenic T cells in vivo in donor
mice. Second, exogenous addition of NO during MBP-priming increased the
encephalitogenic property of T cells as seen by the appearance of clinical symptoms,
increased expression of proinflammatory cytokines and decreased expression of myelin
specific genes. Third, female 5B6 PLP-TCR transgenic mice develop spontaneous EAE and
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accordingly, PLP-specific T cells isolated from female PLP TCR mice also transferred EAE
to female non-transgenic recipient mice. However, after PTIO treatment, PLP-specific T
cells of PLP TCR mice lost their ability to induce EAE in recipient mice. Fourth, in contrast
to female, male PLP TCR transgenic mice are resistant to spontaneous EAE (18).
Accordingly, PLP-specific T cells from male PLP TCR mice also did not transfer EAE to
non-transgenic recipient mice. However, NO could break the tolerance of these male PLP-
specific T cells as after DETA-NONOate treatment, male PLP-specific T cells markedly
induced EAE in non-transgenic recipient mice. These important results suggest that it is
possible to break the tolerance of male T cells by NO. Finally, ablation of iNOS also
reduced the encephalitogenicity of MBP-primed T cells. On the other hand, addition of NO
to iNOS (−/−) T cells during MBP-priming restored the encephalitogenic activity of T cells.
Taken together, these results clearly suggest that reducing the level of NO could be an
effective approach for suppressing encephalitogenicity of T cells.

In fact, several studies have indicated a possible role of NO in autoimmune demyelination
(20, 27–31). Apart from astroglia and microglia in the CNS, peripheral cells such as
macrophages and monocytes in MS patients also express iNOS and produce NO (31, 32).
Because T cells are primarily primed in periphery, NO production from peripheral cells
during immune activation may play a significant role in the formation and functioning of
disease-producing autoreactive T cells. Here we must remember that complete knockdown
of iNOS is not beneficial for EAE and may be for MS as well. Although selective inhibition
of iNOS in the CNS by intraventricular administration of antisense oligonucleotides blocks
the disease process of EAE in mice (33), clinical symptoms of EAE and mortality rate
increase in iNOS (−/−) mice as compared to wild-type mice (34). This is because NO
produced up to the certain level from the activation of iNOS may be beneficial for EAE. It is
to be noted that NO inhibits the activation of T cells and thereby acts as an
immunosuppressant (31, 34). However, once iNOS is activated, it produces excessive
amounts of NO for extended period of time (27, 31, 35), and NO produced in excess is
cytotoxic (22, 36, 37). Therefore, partial knockdown of iNOS by pharmacological
compounds to inhibit the excessive production of NO, but not the complete knockout of the
iNOS gene, may be the feasible therapeutic approach for EAE and hence for MS. In this
aspect, it is important to mention that NO is a key regulator of EAE-inducing activity or
encephalitogenicity of T cells.

In summary, NO controls the encephalitogenicity of T cells, in which scavenging of NO
reduces and supplementation of NO increases EAE-inducing activity of T cells.
Furthermore, we also demonstrate that NO is a critical molecule for the development of self
tolerance in male as NO alone broke the tolerance of male myelin-specific T cells.
Therefore, specific targeting of NO either by iNOS inhibitors or NO scavengers may be an
important step for the attenuation of MS-causing activity of pathogenic T cells.
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Fig. 1. Myelin protein priming induces the expression of iNOS in vivo in the spleen of donor mice
A) Donor female SJL/J mice were immunized s.c. with 400 µg bovine MBP and 60 µg
Mycobacterium tuberculosis in IFA. On 12th day of immunization, mice were perfused and
splenic sections were double-immunolabeled for iNOS and CD11b. B) Splenic sections of
male and female PLP-TCR transgenic mice (4 weeks old) were double-immunolabeled for
iNOS and CD11b. Results represent analysis of four separate splenic sections from each of
five different mice (n=5) per group.
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Fig. 2. Effect of NO modulators on the encephalitogenicity of MBP-specific T cells
A) Lymph node cells (LNC) isolated from MBP-immunized donor female SJL/J mice were
re-primed with MBP in the presence of either PTIO (50µM), or DETA-NONOate (DNO;
100µM). After 4 days, viable non-adherent cells (2 × 107) were adoptively transferred to
naïve female SJL/J recipient mice via tail-vein injection. B) Donor mice were immunized
with MBP as described under methods section, and on 2 and 8 day post immunization (dpi),
mice were treated with either PTIO (100mg/kg) or saline as vehicle via i.p. injection. On 12
dpi, mice were sacrificed, and LNC were further primed with MBP (50 µg/ml) for 4 days
followed by transfer of viable non-adherent cells to naïve recipient mice. Six recipient mice
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(n=6) were used in each group. Mice were examined for clinical symptoms daily. Data are
mean ± SEM of six mice per group.
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Fig. 3. Effect of NO modulators on the encephalitogenicity of PLP-specific T cells
A) Splenocytes isolated from female PLP-TCR transgenic mice were re-primed with PLP
139–151 in the presence or absence of 50µM PTIO. After 4 d, CD4+ T cells were purified
and 5 × 106 PLP-specific T cells were transferred to naïve female SJL/J mice via tail vein.
B) Splenocytes isolated from male PLP-TCR transgenic mice were re-primed with PLP139–
151 in the presence or absence of 100µM DETA-NONOate. After 4 d, CD4+ T cells were
purified and 5 × 106 PLP-specific T cells were transferred to naïve female SJL/J mice via
tail vein. Six recipient mice (n=6) were used in each group. Mice were examined for clinical
symptoms daily. Data are mean ± SEM of six mice per group.
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Fig. 4. Knockdown of iNOS reduces the encephalitogenicity of MBP-specific T cells
Splenocytes isolated from MBP-immunized iNOS (−/−) donor mice (B6.129) were further
primed with MBP in the presence or absence of DETA-NONOate (100µM). After 4 d, CD4+

T cells were purified and 5 × 106 MBP-primed CD4+ T cells were adoptively transferred to
naïve female SJL/J recipient mice. Similarly, MBP-primed T cells from WT B6.129 mice
were also transferred to naïve female SJL/J mice. T cells from three different donor mice
were transferred to six different recipient mice. Mice were examined for clinical symptoms
daily. Data are mean ± SEM of six mice per group.
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Fig. 5. Infiltration of mononuclear cells into spinal cord and cerebellum of mice that received
MBP-specific T cells
On 14 dpt (acute phase), spinal cord (A) and cerebellar (B) sections isolated from HBSS-
treated (normal), MBP-primed T cell-treated, PTIO-incubated MBP-primed T cell-treated,
and DNO-incubated MBP primed T cell-treated mice were stained with H & E. Digital
images were collected under bright field setting. Infiltration (C & E) and cuffed vessels (D
& F) in spinal cord (C & D) cerebellar (E & F) sections were represented quantitatively by
using a scale as described under methods section. Data are expressed as the mean ± SEM of
five different mice per group. ap < 0.001 vs HBSS (normal); bp < 0.001 vs MBP-primed T
cells; cp < 0.05 vs MBP-primed T cells.
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Fig. 6. Expression of proinflammatory molecules in spinal cord and cerebellum of mice that
received MBP-specific T cells
On 14 dpt, spinal cord (A & B), and cerebellum (C & D) of HBSS-treated (normal), MBP-
primed T cell-treated, PTIO-incubated MBP-primed T cell-treated, and DNO-incubated
MBP primed T cell-treated mice were analyzed for the mRNA expression of iNOS and
IL-1β by semi-quantitative RT-PCR (A & C). Relative band density is presented in B & D.
Data are expressed as the mean ± SEM of five different mice per group. ap < 0.001 vs HBSS
(normal); bp < 0.001 vs MBP-primed T cells; cp < 0.05 vs MBP-primed T cells.
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Fig. 7. Demyelination and expression of myelin-specific genes in spinal cord and cerebellum of
mice that received MBP-specific T cells
On 14 dpt, spinal cord (A) and cerebellar (B) sections of HBSS-treated (normal), MBP-
primed T cell-treated, PTIO-incubated MBP-primed T cell-treated, and DNO-incubated
MBP primed T cell-treated mice were stained with Luxol fast blue. Digital images were
collected under bright field setting. Demyelination in spinal cord (C) and cerebellum (D)
was represented quantitatively by using a scale as described in materials and methods. Data
are expressed as the mean ± SEM of five different mice per group. ap < 0.001 vs HBSS
(normal); bp < 0.001 vs MBP-primed T cells; cp < 0.05 vs MBP-primed T cells. Spinal cord
(E) and cerebellum (F) were analyzed for the mRNA expression of CNPase, MOG and PLP
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by semi-quantitative RT-PCR. Results represent the analysis of five different mice per
group.
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Table-1

Effect of DETA-NONOate and PTIO on encephalitogenicity of female MBP-primed T cells

Treatment Incidence
of EAE

Mean peak
clinical score

Alteration of EAE

Incidence Score

MBP-primed T cells 6/6 3.0

PTIO-treated MBP-primed T cells 5/6 1.66 − 17% − 45% a

DETA-NONOate-treated MBP-primed T cells 6/6 3.66 + 22% b

LNC isolated from MBP-immunized donor female SJL/J mice were re-primed with MBP in the presence of either PTIO (50µM), or DETA-

NONOate (100µM). After 4 days, viable non-adherent cells (2 × 107) were adoptively transferred to naïve female SJL/J recipient mice via tail-vein
injection. A clinical score of 1 or more was considered as the incidence of EAE in mice.

a
p < 0.001

b
p < 0.05 vs MBP-primed T cells (control).
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Table-2

Regulation of encephalitogenicity of male and female PLP-primed T cells by NO modulators

Treatment Incidence
of EAE

Mean peak
clinical score

Suppression of EAE

Incidence Score

Female PLP-primed T cells 6/6 3.83

PTIO-treated female PLP-primed T cells 0/6 0.17 100% 95% a

Male PLP-primed T cells 0/6 0.25 100% 93% a

DETA-NONOate-treated male PLP-primed T cells 6/6 3.5

Splenocytes isolated from male and female PLP-TCR transgenic mice were re-primed with PLP 139–151 in the presence or absence of 50µM PTIO

and 100µiM DETA-NONOate. After 4 d, CD4+ T cells were purified and 5 × 106 PLP-specific T cells were transferred to naïve female SJL/J mice
via tail vein. Six recipient mice (n=6) were used in each group. While a clinical score of 1 or more was considered as the incidence of EAE in mice.

a
p < 0.001 vs female PLP-primed T cells.
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