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Abstract
We propose an efficient group sequential monitoring rule for clinical trials. At each interim
analysis both efficacy and futility are evaluated through a specified loss structure together with the
predicted power. The proposed design is robust to a wide range of priors, and achieves the
specified power with a saving of sample size compared to existing adaptive designs. A method is
also proposed to obtain a reduced-bias estimator of treatment difference for the proposed design.
The new approaches hold great potential for efficiently selecting a more effective treatment in
comparative trials. Operating characteristics are evaluated and compared with other group
sequential designs in empirical studies. An example is provided to illustrate the application of the
method.
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1. Introduction
With large numbers of experimental agents in the developing process, there is an increasing
need for innovative clinical trial designs that allow effective agents to be identified more
efficiently compared with the standard designs. Group sequential designs have the flexibility
to use cumulated information to modify the subsequent course of the trial. Monitoring a
group sequential clinical trial is a dynamic process. The time of performing an interim
analysis in a group sequential trial is a natural time to update and combine the information
from prior experience and accumulated data using Bayesian methods. The decision-theoretic
approach has the potential ability to concurrently consider efficacy, futility and cost (Berry,
1994). Although there is no explicit specification for the type I and II error rates when
determining the maximum sample size, the decisions leading to false-positive and false-
negative conclusions may be taken into account through a loss structure to satisfy regulatory
settings (Berry and Ho, 1988; and Lewis and Berry, 1994).

In contrast to previous work in the area, Cheng and Shen (2005) proposed an adaptive
design using the Bayesian decision-theoretic approach, which allowed the maximum sample
size to be random. The design keeps the virtue of the self-designing trial in the frequentist
framework (Fisher, 1998; Shen and Fisher, 1999). An algebraic expression that connects the
overall type I error rate and the parameters of the loss function was established, so that the
desired frequentist properties can be satisfied for regulatory settings. Later, the possibility of
inefficient performance by the adaptive designs was raised by Jennison and Turnbull (2006).
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We recognized the limitations in terms of efficiency in the work of Cheng and Shen (2005),
similar to the design of Shen and Fisher (1999). The realized type I error rate is often
smaller than the specified significance level. Moreover, the procedures that are based on the
non-sufficient statistics may increase the type II error rate with or without the decreased type
I error rate. The monitoring procedures for continuing or stopping the trial based on the loss
function alone are often not sensitive enough to fully reflect the evidence of operation
characteristics at interim analysis. This issue motivated us to search for a more efficient
group sequential design within this framework. Our goal of efficient clinical trial design is to
minimize the overall sample size while maintaining the specified error rates under
regulatory settings (Jennison & Turnbull, 2000, Ch.10). By combining the strengths of the
Bayesian approach in establishing a procedure and the frequentist approach in evaluating the
procedure, we propose a design that assesses the predicted power and the expected loss at
each interim analysis and makes decisions based on these two factors. The maximum sample
size is sequentially determined using interim data. The overall type I error rate can be
controlled by choosing related designing parameters.

Similar to other sequential clinical trials, the standard estimator of the treatment difference,
such as sample mean or posterior mean in this setting, is often biased. Methods in the
literature for constructing unbiased or nearly unbiased estimators are not directly applicable
to the estimator of parameter following the proposed design because of the random
maximum sample size. In this article, we develop a new procedure of estimation aimed at
minimizing the bias. The proposed estimation procedure is general and may be applied to
other group sequential designs.

The remainder of this article is organized as follows. In Section 2 we present the proposed
design, decision rules and the related properties. In Section 3 we derive the critical region
and evaluate the frequentist properties with normal responses. We describe a new estimation
procedure for the proposed design in Section 4. We conduct a simulation study and compare
our inference with the existing adaptive and classical group sequential designs in Section 5.
We apply the proposed design to an example in Section 6 and conclude in Section 7.

2. New design and main results
Consider a clinical trial that compares a new treatment T with a control C, where the
individual treatment response is XT and the individual control response is XC. For notation
simplicity, we assume a design with equal randomization, which can be easily extended to
more general two-arm trials. The block size at each stage is 2Bi, i = 1, 2, …, where Bi for
each treatment arm is fixed before the trial starts, but the maximum number of blocks is not
predetermined and is determined using interim data.

Let X̄Ti and X̄Cibe the observed mean responses in the ith block. Given the parameter of
interest, θ, which is a measure of the treatment difference, let

The one-sided hypothesis to be tested is

Within a Bayesian framework, assume that θ has a prior distribution π with E(θ|π) = δ.
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2.1. Decision Rule
The loss structures may be devised from the perspective of the investigators, patients, and/or
stockholders via the data monitoring committee (Gittins & Pezeshk, 2000). It has become a
common practice to include patient advocates on data and safety monitoring committees for
the conduct of clinical trials. We define a loss structure consisting of the respective cost of
making a false-positive conclusion, a false-negative conclusion, and the cost of the total
sample, in which the risk and benefit of the new agent under investigation should be
balanced via these cost parameters.

Let D be the decision of either accepting (A) or rejecting (R) null hypothesis. At the jth
interim analysis, the loss function is defined by

(2.1)

where

K0 is a constant and positive penalty for each unit of h0(θ) when H0 is incorrectly rejected,
and K1 is a positive penalty for each unit of h1(θ) when H0 is incorrectly accepted. Here,
h0(·) and h1(·) are positive and continuous functions, and the positive loss may change with
the actual value of θ. One sensible choice is to allow the loss function to change with the
magnitude of θ, such as h0(θ) = h1(θ) = |θ|w + c with c ≥ 0 and w > 0. In this case, the loss
to accept the null hypothesis increases as the distance of a positive θ to zero gets larger.
Similarly, the loss to reject H0 increases as a negative θ deviates from zero further. The unit
cost of each sample, K2, is relative to K0 and K1, which should be much smaller than K0 and
K1. Another special case for the type of loss functions is the commonly used 0-Ki loss, with
h0(θ) = h1(θ) = 1. Following a common convention that making a false-positive conclusion
leads to a more severe penalty than making a false-negative conclusion, we let K0 > K1.

Let  = {X1, …, Xj} be the accumulated data up to step j, where Xj represents data from the
jth block. At each interim analysis the study will be terminated for futility or for efficacy if
the evidence is strong enough. Otherwise, the study will continue to (j + 1)th block. The loss
function related to the above two decisions at the jth interim analysis is defined as the
expected loss of stopping the trial and accepting the null hypothesis, that is,

and the predicted loss of continuing the trial to the (j + 1)th block,

(2.2)

To better achieve the targeted power while minimizing the total sample size, we incorporate
the predicted power into the monitoring rules. We consider this type of the group sequential
designs motivated by internal reasons in view of the interim data on the primary endpoint.
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As discussed by Jennison & Turnbull (2006), it is proper to increase the remaining sample
size if continuing as planned would give low conditional power under θ = δ; an interim
estimate of θ̂ still represents a worthwhile clinical improvement. In this case, extending the
study could ensure the desired power under the estimated effect size. Our goal is to achieve
a desired power at an anticipated effective size with the flexibility that the desired power
may be preserved at the true effective size (θ) when the true effective size deviates from the
anticipated size within a certain extension. Of course, there is a realistic limitation to such a
deviation. In our numerical study (Section 5), the values of θ are mostly limited to the set
{θ: |θ − δ| < 0.5δ}. Since the proposed design is intended to achieve the desired power at θ,
the true efficacy value in a given range, it is natural to use the current posterior mean as an
estimator of θ to evaluate the conditional power.

Given data observed up to the jth block, letting δj be the posterior mean of θ given , the
predicted power related to the critical region Rj+1, is defined as P(Rj+1|θ = δj, ), where

(2.3)

Definition 2.1—The proposed design follows a two-step decision rule described below,
where M is the total number of interim analysis and the procedure starts from j = 1.

1. If LA( ) ≤ Lcont( ), terminate the trial and accept H0 at the jth step, let M = j.

2. If LA( ) > Lcont( ), evaluate the predicted power.

a. If the predicted power P(Rj+1| θ = δj; ) ≥ 1 − β, terminate the trial, let M
= j. If E{L(θ, A, M)| } > E{L(θ, R, M)| }, reject H0, otherwise accept
H0.

b. If P(Rj+1|θ = δj, ) < 1 − β, continue the trial to the j + 1th analysis and
repeat 1 and 2.

Remark 2.1—In our earlier work (Cheng and Shen, 2005), the decision at block j to stop
the trial and reject null hypothesis for efficacy is only based on LR( ) = E{L(θ, R, j)| }, if
it is no greater than Lcont( ). The design parameters, such as penalties for making wrong
decisions in the typical decision-theoretic approaches are often searched empirically to
match with the specified error rates by trial and error. As a result, the design may not be
efficient regarding the sample size. One advantage of using the predicted power directly in
the course of procedure is the ability to stop the trial whenever evidence favoring the
experimental treatment is sufficient. Otherwise, we continue the trial to gain more
information about the treatments. Further comparison is presented in the numerical study
section of this paper.

2.2. Properties
Some practical concerns need to be addressed, specifically, whether the trial will be
terminated with a finite number of interim analysis and whether the decision rules lead to a
correct recommendation with the specified probabilities. The following Theorems 2.1 and
2.2 confirm that these desirable properties hold asymptotically with the proposed design.
The proofs of the theorems are given in Appendix A.

Theorem 2.1—Let M be the total number of blocks following the proposed decision
procedures. Assuming that the prior density of θ, π(θ), satisfies certain regularity
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conditions, h0(θ) and h1(θ) are positive and continuous functions of θ, there exists a positive
w such that

almost surely, and that K0, K1 and K2 are positive, then

if θ ≠ 0; When θ = 0, P0(M < +∞) = 1 if K1h1(0) < 2BK2, where 2B is the minimum block
size.

Theorem 2.1 shows that with probability 1 the trial will be terminated with a finite number
of interim analysis. The regularity conditions are specified by Schervish (1995, p. 429).

Theorem 2.2—Under the conditions of Theorem 2.1, let θ* denote the true treatment
difference, then

(2.4)

almost surely. When θ* > 0,  almost surely. When θ* = 0,

The condition on K2 > 0, i.e., a positive cost for enrolling each patient, is critical to avoid
unnecessary extension of the trial under H0. Theorem 2.2 ensures that with the proposed
monitoring strategies, it is expected that E{L(θ, A)| } > E{L(θ, R)| } (since K1h1(θ*) >
0) and the predicted power Pθ* (Rj+1| θ = δj, ) will be near 1 asymptotically under the
alternative hypothesis. When the true treatment difference θ* < 0, we should expect that
E{L(θ, A)| }< E{L(θ, R)| }(since −K0h0(θ*) < 0) and the predicted power remains small,
so that the trial will conclude futility with enough data. When θ* = 0, where zero is the
boundary value for the two hypotheses, the probability to conclude futility approximates to
K0h0(0)=(K1h1(0) + K0h0(0)), which is connected to the type I error rate. For a special case
in which h0(0) = h1(0), this limit becomes K0=(K0 + K1). We will give more details of this
matter in Section 3.2.

2.3. Computation
There are three key elements in the decision rule, LA( ), Lcont( ), and the predicted power
P(Rj+1|θ = δj, ). We derive the computational formulation for each as follows. Given data
observed up to the jth block and loss function defined in (2.1), the expected loss of accepting
H0 can be expressed as
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(2.5)

where π (·| ) is the posterior density function of θ given . Similarly,

(2.6)

Expressions (2.5) and (2.6) provide the computational formulation for the two components,
E{L(θ, A, j + 1)| } and E{L(θ, R, j + 1)| }, of Lcont( ) defined in (2.2). The outside
expectation on the right-hand side of (2.2) is determined with respect to the conditional
distribution of Xj+1 given . When F(·|θ) has a density function f(·|θ), the conditional
density of Xj+1 given  can be expressed as:

The last element is the predicted power P(Rj+1|θ = δj, ), where Rj+1 is defined in (2.3), and
can be expressed as

(2.7)

for j = 0, 1, …, M − 1.

3. Applications with normal responses
To illustrate the design procedures in application, we assume that the outcomes follow
normal distributions. For simplicity of notation, let

where σ2 is known. (It is not conceptually different with an unknown variance.) The prior
distribution for θ is assumed to be N(δ, σ2/B0), where B0 can be interpreted as the
equivalent sample size on which the prior information is based (Spiegelhalter et al, 1994).
Typically, B0 is much smaller than Bj so that the prior information plays a minor role in the
decision process. We let X0 = δ to keep the notation for prior information coherent with that

from the interim analysis. After data from the first j blocks are observed, letting ,

the posterior distribution of θ is , where
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are the posterior mean and variance, respectively.

Consider the following function in the loss structure: h0(θ) = h1(θ) = h(θ) = |θ| + c, where c
is a nonnegative constant. This function increases linearly with the distance of θ from zero,
when an incorrect action is taken. It satisfies the conditions of Theorems 2.1 and 2.2 when
cK1 < 2BK2.

3.1. Expected losses and predicted power
For h(θ) = |θ| + c and normal responses, we provide explicit expressions for the three key
elements, LA( ), Lcont( ) and the predicted power P(Rj+1|θ = δj, ), in the decision rule
through the following three propositions, respectively.

Proposition 3.1—Let h0(θ) = h1(θ) = |θ| + c. We have

(3.1)

(3.2)

where φ(·) and Φ (·) are the standard normal probability density function and cumulative
distribution function, respectively.

Proof—Since the posterior distribution of θ given  follows , it can be verified that

(3.3)

Applying the result of (3.3) to the right-hand side of (2.5). The expression of (3.1) is
obtained. By a similar argument, noting that 1 − Φ(x) = Φ(−x), expression (3.2) can be
obtained as well.

The computational formula for Lcont( ) defined by (2.2) is derive by the following
proposition.

Proposition 3.2—Let h0(θ) = h1(θ) = |θ| + c. Then

(3.4)

where .

Proof—Let lD(x|δj) define the integral term of LD( ) given by the right-hand side of (2.5)
and (2.6), where D = A or R. Substituting j by j + 1 in equations (3.1) and (3.2), the second
term on the right-hand side of each equation gives, respectively, the expression of lA(x|δj)
and lR(x|δj) below:
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(3.5)

Given  and Xj+1 = x, the posterior mean δj+1 satisfies the following recursive equation in
terms of δj and x:

It is known that the conditional distribution of Xj+1 given  is also normal, specifically,

Thus, we have (3.4) since .

The next proposition provides a recursive expression for the estimated probability of the
rejection region.

Proposition 3.3—Let h0(θ) = h1(θ) = |θ| + c. Then

(3.6)

where ξj is the unique solution of the following equation in variable x:

and r = K0=(K0 + K1).

Proof—In view of (3.3) and that h(θ) = |θ|+c, the critical region Rj defined by (2.7) can be
expressed as

(3.7)

where r = K0=(K0 + K1). For given constants c > 0, s > 0, and 0 < r < 1, it can be verified
that the continuous function

(3.8)
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increases in x, limx→−∞ u(x, s, r) = −∞, and lim x→+∞u(x, s, r) = +∞. By the intermediate
value theorem, there exists a unique real number ξj such that

(3.9)

where ξj is obtained by solving equation u(x, sj, r) = rc for x. It is easy to see that

(3.10)

The posterior mean satisfies the following recursive equation:

In addition to the fact that , we have

(3.11)

Following (3.9) through (3.11), the predicted power, P(Rj+1| θ = δj, ), after observing j
blocks of data can be expressed as

Hence, (3.6), the following expression for the predicted power, is derived.

The expressions (3.1), (3.4), and (3.6) are computationally straightforward and hence the
decision procedures are user-friendly to carry out.

3.2. Connection to type I error rate
Our goal in this section is to find a connection between the type I error rate and K0/K1 in the
loss function, so that the operating characteristic can be directly assessed and ensured.

Recall that K0/(K0 + K1) = r, equivalently,

(3.12)

The following two terms are defined for the preparation of Proposition 3.4 and its proof.

Let
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(3.13)

and

(3.14)

where

(3.15)

Proposition 3.4—Let h0(θ) = h1(θ) = |θ| + c. For K0=K1 defined by (3.13) through (3.12),
the probability of having a false positive conclusion is controlled under the nominal
significance level α. Moreover, the probability to conclude futility at θ = 0 in Theorem 2.2
with h0(0) = h1(0) is K0=(K0+K1), which is greater than or equal to 1 − α.

Proof—In light of (3.7), the probability to reject the null hypothesis can be expressed as

Since u(x, s, r) defined by (3.8) is increasing in x and linear in s, noting that 0 < s ≤ s1, u(δj/
sj, sj, r) > rc leads to

(3.16)

we have

(3.17)

where ξ = min{u−1(rc, s1, r), u−1(rc, 0, r)}. The last equation holds due to the fact that

For a given upper boundary (e.g. α) to the probability in the right-hand side of (3.17), the
corresponding quantile ξ can be derived. Once ξ is obtained, we can calculate r and then the
ratio of K0 and K1 subsequently.

Because efficacy is assessed at each interim analysis, we shall use α (j) at the jth interim in
order to control the overall type I error rate at α (Slud and Wei, 1982). Let
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where α (j) monotonically increases in j and limj→∞ α (j) = α (i.e. α (M) ≤ α). Use the
conservative upper boundary α (1) for all j ≥ 1 in the above inequality,

(3.18)

which leads to P(Rj|θ = 0) ≤ α (1) < α for all j.

We need to solve the inequality (3.18) for ξ. Following the argument of the first derivative,
it can be shown that the component inside of Φ, which is (n0δ − ξσ√nj)/{σ√ (nj − n0)}, as a
function of nj, increases when 0 < nj < (ξσ/δ)2 and decreases when (ξσ/δ)2 < nj < ∞.
Therefore,

Letting each expression on the right-hand side of the last inequality be less than or equal to
α (j), it yields

By using the conservative upper boundary α (1) = α/2 instead of α (j) in the above
derivation, (3.13) is verified. Next, we find the algebraic expression for r. In light of (3.16)
and (3.17), ξ and r satisfy the equation:

where u is defined by (3.8). For the scenario of max{u(ξ, s1, r), u(ξ, 0, r)} = u(ξ, 0, r) =
cΦ(ξ), cΦ(ξ) = rc implies r = Φ(ξ). For the complementary scenario of max{u(ξ, s1, r); u(ξ,
0, r)} = u(ξ, s1, r), it occurs if and only if r ≤ v(ξ), where v(ξ) is defined by (3.15). Hence
(3.14) can be verified after working out the algebra in solving u(ξ, s1, r) = rc for r.

In general, the choice of constants Ki depends on the objectives of a trial. In a special case:
when hi(θ) = 1 for i =0, 1, K0 and K1 are the costs of making type I and type II errors,
respectively, relative to the cost of enrolling a patient, K2.

4. Estimation following the proposed design
After the inference, the estimation of θ is often of interest. It is well known that the naive
estimate of θ (sample mean) following a classical group sequential design is biased. This
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phenomenon also occurs with the posterior mean of θ following the proposed design.
Typically, θ is overestimated for trials concluding efficacy and underestimated for trials
concluding futility.

We take a different perspective and approach to all existing methods. Since θ is the
treatment difference, it is reasonable to assume that the domain of θ, denoted as , is
bounded and can be predetermined. Let δM and sM be the posterior mean and posterior
standard deviation of θ from the original data at the end of the trial that follows the proposed
design. We perform a grid search to find a near unbiased estimator of θ in  based on
Monte Carlo simulations.

Because the proposed efficient design (ED) is uniquely determined by a set of design
parameters, we denote such a design as ED(δ, K0, K1, K2, B0, B1, B, β). Let  be the
original data collected under the specified design ED(δ, K0, K1, K2, B0, B1, B, β). To
perform a grid search, we divide  into N subintervals with an equal length. The partition is
fine enough, so that the midpoint θn in the nth subinterval is representative for the nth
interval and θn, n = 1, · · ·, N, should cover the whole .

Definition 4.1
The simulation based estimation procedure follows:

1. For each θn, we simulate one data set from N (θn, σ2/Bi) by applying the same
monitoring rules of ED(δ, K0, K1, K2, B0, B1, B, β) as in the original trial. At the
end of the simulated trial, compute the posterior mean of θn. To stabilize the
estimation, we repeat the procedure for L times and denote the posterior mean from

the lth simulation as  for each θn. We denote the average of the posterior means
from the L simulations as

2. When ζMC(θn|L), n = 1,…, N, are computed, the estimator θ̂ will be searched from
{θ1,· · ·, θN} with the following criterion: among all candidates in {θ1, · · ·, θN},
ζMC(θ̂|L) is the closest to δM, where δM is the posterior mean obtained from the
observed data, i.e.,

(4.1)

We reason that the θ̂ proposed in (4.1) is a reduced-bias estimator. Let g(θ) = Eθ (δM). For
any given θn, we have

It is realistic to assume that the  is uniformly bounded when θn takes a value in a
predetermined bounded domain . Based on the above estimation procedure (1), we have
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uniformly for θn in . Moreover,

(4.2)

The last equality follows from the facts that

Since Varθ(δM) is free of θn and Varθn {ζMC (θn|L)} = O(1/L), for sufficiently large L,
choosing θn to minimize Eθ; θn {ζMC (θn|L) − δM}2, the left-hand side of (4.2), is
asymptotically equivalent to choosing θn to minimize {g(θn)−g(θ)}2.

The above proposed estimation procedure has the flavor of a bootstrap procedure in the
resampling part (Wang & Leung, 1997). The main difference between our procedure and
their procedure is that we use a searching step to locate the estimator of θ that is closest to
the posterior estimator; whereas Wang and Leung (1997) used the maximum likelihood
estimator.

5. Numerical studies
Using Monte Carlo simulations, we compare the performance of the proposed efficient
design (ED) with existing group sequential designs in a similar setting. The OBF design
(O’Brien & Fleming, 1979) is a classical group sequential design with a fixed maximum
sample size. The self-designing trial of Shen & Fisher (1999) is a frequentist adaptive
design, and the Bayesian adaptive design (Cheng & Shen, 2005) is based on the decision-
theoretic approach. The ED, Bayes adaptive design and self-designing trials do not enforce a
maximum sample size, in contrast to the O’Brien-Fleming (OBF) design, in which the
maximum sample size is estimated given the design parameters: δ, α and β.

It is worth noting that the original OBF design is two-sided. DeMets and Ware (1982)
extended the results of the OBF design to the one-sided version of the symmetric OBF
design. Our numerical study is based on the one-sided boundaries proposed by DeMets and
Ware (1982).

For each scenario, the same type I and II error rates, δ, and block sizes are used among the
four designs under comparison. The block sizes are prespecified, B0 = 1, Bi = B = 6, for i ≥
2. For the OBF design, let B1 = B for simplicity. For the remaining three designs, B1 = 15 in
order to have a more stable estimator of θ at the first step. The Bayesian adaptive design
uses the loss structure with h1(θ) = h0(θ) = 1, while Ki is chosen to achieve the
corresponding α and β, respectively. The number of interim analysis of the OBF design is
backward derived given the block size B and the fixed maximum sample size. The
asymptotic boundary for the one-sided OBF test is obtained from DeMets & Ware (1982)
and Shen & Fisher (1999) with the given design parameters.
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The values of θ are mostly limited to the set {θ: | θ − δ| < 0.5δ}. For a fair comparison
among the methods, the true values of θ are given as fixed when the Xi’s are generated from
a normal distribution with σ2 = 1. We used mean θ = 0 under the null hypothesis, and mean
θ = 0.5 under the alternative hypothesis. The design parameters are specified as follows: α =
0.025, β = 0.1, and δ = 0.4 or 0.7. Since the type I error rate in the proposed designs depends
on K0 and K1 only through the ratio K0/K1, we let K1 = 1 and K0 = r=(1 − r), where r is
computed from (3.14). Let h0(θ) = h1(θ) = | θ| + c and c = BK2, which satisfy the conditions
of Theorems 2.1 and 2.2.

The empirical type I error rate, power and average sample number (ASN) of each design are
summarized in Table 1 with 10,000 repetitions. The proposed efficient design maintains the
nominal level at α = 0.025, and achieves the specified power. Among the designs under
comparison, the ED is the most robust one to different values of δ. It can achieve the
specified power even if δ is considerably optimistically planned, compared with the true θ.
When δ (= 0.7) overestimates θ, the ED and Bayesian designs are the two designs that can
still maintain the power at 0.9, but the ASN of ED is 17% lower than the ASN of the
Bayesian design. When δ is underestimated relative to the true θ (at δ = 0.4), ASNs for ED
are at least 25% lower than those for the other designs under the alternative.

While all sequential methods typically lead to savings in sample size compared with the
standard fixed sample design, ED performs the best among the designs we investigated. As
noted in Table 1, type I error rates of all designs under comparison are under control. The
proposed design with assessment of predicted power at each interim analysis results in some
further saving in the ASN while achieving the specified power.

The cost of each patient, K2, relative to the cost of making a wrong conclusion is chosen to
match the specified power. In general, the larger K2 is, the less power the trial has. We
found that K2 should be in the magnitude of 0.15 of K1, the cost of mistakenly concluding a
negative trial. The results show that the proposed design is quite robust when K2 varies in
the range of 0.15 to 5(0.1)5 over different values of θ and δ. We performed following
sensitivity analysis based on simulations (not shown in tables due to space limitation). The
role of c is relatively minor other than that c should satisfy the inequality 0 ≤ cK1 < 2K2
min{Bj, j ≥ 1}, which is one of the conditions for Theorem 2.1. The performance of the
proposed design is quite robust when c varies within its domain. When the block size is
increased from B = 6 to 16, we found that the performances were also similar for the two
settings. The only difference is that average sample size increased by 10 under H0 and by 6
under H1 with slightly higher power. Figure 1 shows two histograms of the total number of
blocks for the proposed design without a constraint on the maximum number of blocks. Our
numerical studies also shows little difference in the error rates or the average sample size if
the number of blocks is truncated at 15 for the scenarios shown in the histograms.

We also assess the bias of the proposed estimator and compare it with the posterior mean.
Table 2 presents the proposed estimate and the naive posterior mean estimate for θ, along
with their empirical estimates of the standard error with β = 0.1, δ = 0.6, and α =.025 or .05.
The true underlying θ varies from 0 to 0.6. The grid search was conducted over the
predetermined interval [−0.5, 1] with an equal subinterval length of 0.005. To obtain the the
reduced-bias estimator, we used 10,000 repetitions for each grid point. The obtained
estimator, θ̂, has a substantially reduced bias compared with that of the posterior mean,
denoted by δM in Table 2. The standard deviation of the proposed estimators are not
significantly different from the standard deviation of the posterior mean.
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6. Example
We apply the proposed design to a randomized, placebo-controlled, double-blind trial
involving patients with acne papulopustulosa of Plewig’s grade 11–111. Investigators
examined the effect of treatment under a combination of 1% chloramphenicol and 0.5% pale
sulfonated shale oil versus an alcoholic vehicle (placebo) (Lehmacher & Wassmer, 1999;
Fluhr et al., 1998). After 6 weeks of treatment, the level of bacteria was compared to the
baseline level for patients in the active treatment group versus those in the placebo group.
With α= 0.01 and 1− β = 0.95, h0(θ) = h1(θ) = | θ|+c, we used K2 = 3*105, c = BK2 =
0.00018, K1 = 1 and K0 = r/(1 − r) = 1933.9, where r = 0.9995 is calculated from expression
(3.14). Assume that δ = 1 and σ̂0 = 2 based on the prior information. The quantities needed
for conducting the proposed design are listed in Table 3, where σ̂j is the sample standard
deviation from the cumulatiive data and Pred. Power is the notation for the predicted power
P(Rj+1|θ = δj, ). The block means, not cumulative means, are denoted by xj = x̄Tj − x̂Cj.

In the first interim analysis, LA( ) = 1.507 > Lcont( ) = 0.210, therefore, the next step is
to check the predicted power. Since the predicted power, 0.946, is less than 1 − β = 0.95, the
trial continues to the next block. At the second interim analysis, LA( ) > Lcont( ), and the
predicted power is 0.997, which is great than 0:95. Therefore, we stop the trial. Because
LR( ) = 0.061 < LA( ) = 1.530, the conclusion is to reject H0: θ ≤ 0. The procedure is
robust in terms of the choices of δ and σ̂0. When δ varies from 0.5 to 2.5 and σ̂0 varies from
1 to 2.5, the conclusion remains the same and the trial is always terminated after no more
than two interim analyses.

7. Discussion
We have proposed an efficient design with the new aspects of allowing the investigators to
evaluate both efficacy and futility at each interim analysis, which leads to a saving in sample
size. The one-stage-ahead expected loss and predicted power assessment allow the trial to be
terminated once evidence favoring a treatment, or not, is sufficient. The proposed design has
the following desirable merits. First, the method can terminate a trial as soon as the evidence
is sufficient to show the efficacy of a treatment. Second, the method ensures the control of
the type I error rate, which is a practical requirement for trial designs under the regulatory
setting, whether Bayesian or frequentist. Third, the proposed method avoids premature
decisions with a flexible maximum sample size by relying on the mechanism of assessing
the conditional probability. Compared with the other two adaptive designs in simulations,
the proposed design is more robust to a range of assumed prior distributions, but more
sensitive to the current data.

We have provided a new estimation procedure to obtain a reduced-bias estimator for the
parameter of interest. One major advantage of this method is that the estimation procedure
takes into account the whole process of the complicated stopping rule through Monte Carlo
simulations. The empirical studies have shown that the estimator behaves well under various
scenarios. Although this estimation procedure is developed for the proposed design, the
methodology of searching for an unbiased parameter estimator may be applied to other
Bayesian group sequential designs, as well as classical group sequential designs with the
posterior mean replaced by its naive estimate, as in (4.1).

Although we assumed normal observations in illustrating the design, the large sample
properties in Section 3 only require independent increments from each block of data to be
approximately normally distributed, which will allow extension of the method to outcomes
with other distributions and time-to-event outcomes with staggered entry using log-rank type
test statistics (Tsiatis et al., 1985 and Shen & Cai, 2003).
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The maximum number of blocks is sequentially determined using interim data. When the
maximum number of interim analyses is fixed, optimizing the block size B is possible
theoretically, but could be difficult computationally. At the first interim analysis, the
conditional power can be variable if the size of the first block of data is small. That is why
we recommend choosing a relatively larger block size initially, but a constant, smaller block
size later. Beyond the initial block, the smaller the block size, the more efficient is the
procedure. The most efficient block size would be one, if we do not take the cost of the
interim analysis into consideration. But such a fully sequential design after the first block
may not be practical in clinical trial conduct. Therefore, we recommend a small block size,
such as 5 to 10, after the first block.

We recognize the tradeoff between efficiency and flexibility for clinical trial designs. While
being more flexible, the proposed group sequential design may not be the most efficient
design as defined in the mathematical sense by Tsiatist and Mehta (2003). As shown in
several recent papers (e.g., Bauer, Brannath and Posch, 2001; Brannath, Bauer and Posch,
2006), the most efficient design (in a mathematical sense), however, relies on many
underlying assumptions such as the right spending functions and that the sample sizes
should be specified a priori. The designs could be poorly underpowered if any of these
design parameters were misspecified in the planning phase, which is very likely in practice.

There are different approaches to specifying δ, at which the power is set for group sequential
designs, such as using a minimal clinical significant treatment difference (Barber and
Jennison, 2002) or an anticipated effective size. Achieving the desired power at the true
effective size in a neighborhood of δ has gained more attention for its practicality and
flexibility in clinical trial designs in recent years. That is the rationale we use as we set our
objectives for the proposed design.
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Appendix A. Proofs of Theorems 2.1 and 2.2
For the natural flow of the proofs, we prove Theorem 2.2 first and Theorem 2.1 next.

Proof of Theorem 2.2
We prove (2.4) first. Assume that θ* > 0. For any given positive ε, there exists an N > ε
such that h1(θ)=(1 + |θ|w) < ε whenever θ > N. Let

Under the regularity conditions (Schervish, 1995, p. 429, 450),

almost surely and E(|θ |w| ) differs from |θ̂|w by , where θ̂ is MLE of θ and

. Hence, U is finite almost surely and we have

(A.1)

almost surely. A similar argument holds for lim inf. Letting ε approach to zero, we obtain
the following inequalities:
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Hence,

(A.2)

almost surely when θ* > 0. Similarly, we can show the follows:

(A.3)

Since

(2.4) is a direct result of (A.2) and (A.3).

For the second part of Theorem 2.2, assuming θ* > 0, since

almost surely, we have

where

Hence,

almost surely.
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For the last part of Theorem 2.2, assuming θ* = 0, by a similar argument of (A.1), we have

(A.

4)

where oε(1) converges to 0 almost surely as j approaches to infinity for any given ε > 0. The
last equality of (A.4) follows from the facts that

and

Letting θ̂mj be the MLE and I(θ) be the Fisher information number, we have

(A.5)

(Bickel, 2001, p. 339). In light of (A.5),

(A.6)

Moreover,  converges to Φ(Z) in distribution, where Z follows a
standard normal distribution. As a result of (A.4) and (A.6),

Let ε go to zero. Noting that 1 − Φ(Z) follows a uniform distribution on (0, 1) and that the
above argument also holds for lim inf, we have

(A.

7)

Hence, the last part of Theorem 2.2 is proved.

Proof of Theorem 2.1
When θ* < 0, in view of the second equation in expression (A.3),
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almost surely. Consequently, Pθ*(M < ∞) = 1.

Next, assuming θ* > 0, the trial stops at M = j if

In the second part of Theorem 2.2, we proved that

almost surely. Subsequently, Pθ*(M < ∞) = 1.

Finally, if θ* = 0 and K1h1(0) < 2Bj+1K2 for j ≥ 1,

(A.

8)

By a similar argument that yields (A.4) through (A.7), we have

(A.9)

The last equality follows from the facts that 1 − Φ(Z) follows a uniform distribution on (0,
1) and that 2Bj+1K2=K1h1(0) > 1. Combining (A.8) and (A.9), we have

which implies P(M < ∞) = 1.
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Figure 1.
The histogram of the number of blocks as relative frequencies for (a) under H0, θ = 0 and
(b) under H1, θ = 0.5. For both (a) and (b), α = 0.025, β = 0.1, δ = 0.5, B1 = 15, B = 8, σ =
1, K2 = 3 * 105, c = BK2, K1 = 1 and K0 = r/(1 − r), where r is defined by (3.14).
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