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Consider a study in which the effect of a binary exposure on an outcome operates partly through a binary
mediator but measurement of the mediator is nondifferentially misclassified. Suppose that an investigator wishes
to estimate the direct and indirect effects of the exposure on the outcome. In this paper, the authors describe a
mathematical correspondence between the empirical expressions for the natural direct effect and the effect of
exposure among the unexposed standardized by a binary confounder. They then exploit this correspondence to
prove that the direction of the bias due to nondifferential measurement error in estimating the natural direct and
indirect effects is to overestimate the natural direct effect and underestimate the natural indirect effect.

bias (epidemiology); confounding factors (epidemiology); epidemiologic methods; measurement error; mediating

factors

Abbreviations: ME-biased, measurement-error-biased; NDE, natural direct effect; NIE, natural indirect effect; TE, total effect.

Measurement error is a pervasive—indeed, some would
say ubiquitous—problem in the estimation of causal
effects, yet little has been written about the effect of media-
tor measurement error on estimation of direct and indirect
effects. To our knowledge, no analytic results exist to iden-
tify the direction or magnitude of bias due to the mismea-
surement of a mediator. In this paper, we note that the
mathematical expression for the natural direct effect (NDE)
is analogous to that for the average effect of exposure
among the unexposed standardized by a single confounder.
We then harness recent results on the bias of the effect of
exposure among the unexposed under nondifferential mis-
classification of a confounder to show that the bias due to
nondifferential measurement error of a binary mediator will
overestimate the NDE and underestimate the natural indi-
rect effect (NIE).

BACKGROUND AND NOTATION

Let A be a binary exposure; let Y be an outcome which
may be binary, polytomous, or continuous; and let M be a
binary intermediate variable on the causal pathway between
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A and Y. We assume that M is not observed and that M’, an
imperfect measure of M, is observed instead. We further
assume that the measurement error of M is nondifferential
with respect to A and Y, that is, PIM'=m'IM=m, A=a,
Y=y]=P[M'=m'IM =m] for all a and y. A diagram depict-
ing the relations among the variables is given in Figure 1.
This figure encodes certain assumptions about confounding
which will be detailed below.

We call effect measures that are calculated using M’
“measurement-error-biased” (ME-biased) measures and
those that are calculated using M “true” measures. Let Y,
be the counterfactual outcome under exposure value a and
mediator value m—that is, the outcome we would have ob-
served if, possibly contrary to fact, a subject had A=a and
M=m. Let Y, and M, be the counterfactual outcome and
mediator under exposure A =a, respectively—that is, the
values of Y and M we would have observed if, possibly con-
trary to fact, a subject had exposure A =a. Then Y, is the
counterfactual outcome if we set the exposure to a and the
mediator to its counterfactual value under exposure a*.

We make the consistency assumptions that Y,,=Y
when A=a and M=m and that Y,=Y and M,=M when
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Figure 1. Relations among a binary exposure A, an outcome Y,

and a binary mediator M. M’ is a nondifferentially misclassified
measure of M.

A=a. We also assume that Y, =Y,. The total effect
(TE) of A on Y on the risk difference scale is defined as
TE = E[Y,] — E[Yy], and under the assumption of no con-
founding of the relation of A to Y, it is identified by E[VIA =
11— E[YIA=0]. We discuss extensions that control for
confounding variables below. Because it does not depend
on M, the TE measure is the same regardless of whether
the true mediator or the mismeasured mediator is ob-
served. The true NDE on the risk difference scale is
defined as NDE,e = E[Y1p,] — E[You,]. and the true NIE
is defined as NIEy = E[Y1y,] — E[Y1n,] (1, 2). The
NDE measures the expected change in outcome due to a
change in exposure, holding the mediator fixed at the
value it would have taken under no exposure. The NIE
measures the expected change in outcome when the expo-
sure is held fixed but the mediator changes from the value
it would have taken under no exposure to the value it
would have taken under exposure. Note that

= E[Y1] - E[Y]

= E[Y\u,] — E[Yom,)

= E[Y\u,] — E[Yim,] + E[Yims,] — E[Yom,]
= NIEyue + NDE e,

where the second equality follows from our assumption
that Y, = Yuu, (2).

In general, in order to identify these effects, we require
the following 4 assumptions of no unmeasured confound-
ing (these assumptions are discussed in references 2—4):

1. Y, is independent of A conditional on measured covari-
ates (there are no unmeasured confounders of the rela-
tion between A and Y).

2. Y, 1s independent of M conditional on A and measured
covariates (there are no unmeasured confounders of the
relation between M and Y).

3. M, is independent of A conditional on measured covari-
ates (there are no unmeasured confounders of the rela-
tion between A and M).

4. Y, is independent of M, conditional on measured co-
variates (there are no confounders of the effect of M on
Y that are caused by A).

For simplicity of presentation and as encoded in Figure 1,
we will assume that there are no confounders, either
measured or unmeasured, of the effects of A on Y, A on

M, or M on Y; we discuss relaxing this assumption
further below. Under this simplifying assumption,
E[Yu,. ] =>, E[Y|A =a,M = m|P(M = m|A = a*), and
the true natural direct and indirect effects are identified by

NIEp, = Y E[Y|A=1,M = m]
><m{P(M =mA=1)—PM=m|A=0)} (1)
and
NDEy,. =

> {EY|A =1,M =m]

— E[YJA=0,M =m]}P(M =m|A =0) (2)

(cf. reference 2). The expression for the NIE is the difference
between the expected value of Y given A =1 standardized by
the distribution of M among the exposed and the expected
value of Y given A =1 standardized by the distribution of M
among the unexposed. The expression for the NDE is the
difference between the expected values of ¥ given A=1 and
given A=0, each standardized by the distribution of M
among the unexposed.

The ME-biased measures of the natural direct and indi-
rect effects are given by the analogs of equations 1 and 2,
with M replaced by M":

NIEye = Y E[Y|A =1,M'= m]|

{PM'=mA=1)—PM=mlA=0)} (3)
and
NDEme = » {E[Y|A =1,M'=m]
—E[Y|A=0,M=m]}P(M'=m|A =0). (4)

In the presence of measurement error, these expressions
will be biased for the true natural direct and indirect
effects.

RELATION BETWEEN THE NDE AND THE EFFECT OF
EXPOSURE AMONG THE UNEXPOSED

Here we describe a relation that holds between the ex-
pressions for the NDE and the effect of exposure among
the unexposed when these effects are identified. Instead of
the scenario depicted in Figure 1, suppose that we were in-
terested in estimating the TE of A on Y but that the effect
of A on Y was confounded by a single, nondifferentially
misclassified, binary confounder C (see Figure 2). Let C’
denote the mismeasured confounder. For the true con-
founder, the effect of exposure among the unexposed is
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Figure 2. The effect of a binary exposure A on an outcome Y,
confounded by C. C’ is a nondifferentially misclassified measure of
C.

given by
E[Vi|A=0] - E[Yo|a = 0] =) {E[Y|]A=1,C =]

—E[Y|[A=0,C=c]}P(C=clA=0), (5)

which is the difference between the expected outcomes
among the exposed and the unexposed standardized by the
distribution of C among the unexposed. Although the data
structures are different in this scenario and the scenario de-
picted in Figure 1, if we compare equations 2 and 5 we see
that the mathematical formulas for the NDE and the effect
of exposure among the unexposed are identical if we
simply replace M in equation 2 with C. Similarly, if we re-
placed M' with C’ in the expression for the ME-biased
NDE, we would obtain the expression for the ME-biased
measure of the effect of exposure among the unexposed.
Next we will exploit this analytic relation to derive a new
result on the consequences of nondifferential misclassifica-
tion of a binary mediator.

RESULTS ON MISCLASSIFICATION OF A BINARY
MEDIATOR

Recent work by Ogburn and VanderWeele (5) demon-
strated that the bias of the effect of exposure among the
unexposed due to nondifferential misclassification of C
must be less in magnitude than, and in the same direction
as, the bias of the crude effect measure. Specifically, they
proved that the ME-biased measure of the effect of expo-
sure among the unexposed lies between the true and crude
measures of the effect of exposure among the unexposed.
This is similar to what was suggested for overall effects by
Greenland (6). Ogburn and VanderWeele proved that this
result will usually (though not always) hold for the overall
effect of exposure, and that it will always hold for the
effect of exposure among the exposed and the effect of ex-
posure among the unexposed (5). Because of the correspon-
dence noted above between the expressions for the NDE
and the effect of exposure among the unexposed, we can
use the result for the effect of misclassification on the bias
of the effect of exposure among the unexposed to derive
the following result for natural direct and indirect effect
measures (for the proof, see the Appendix):

Result 1. Let A be binary and let M be binary and nondifferen-
tially misclassified. Then the ME-biased NDE measure lies
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between the true NDE and the TE and the ME-biased NIE
measure lies between 0 and the true NIE.

The effect of nondifferential misclassification of a
binary mediator is thus to overestimate the magnitude
of the NDE and to underestimate the magnitude of the
NIE.

This result holds for Y regardless of whether it is binary,
ordinal, or continuous (see the Appendix for details).
Natural direct and indirect effects can also be defined on
the risk ratio and odds ratio scales (3); an analog to result 1
holds for these effect measures. For definitions and details,
see the Appendix.

EXAMPLES

We illustrate the usefulness of result 1 with the following
example. Emsley et al. (7) considered the effect of randomi-
zation to one of 2 treatment arms (a new intervention vs.
treatment as usual) on depression, mediated by adherence to
the use of antidepressant medication, using data from PROS-
PECT (Prevention of Suicide in Primary Care Elderly: Col-
laborative Trial). Let A be an indicator of randomization to
the new intervention, M be an indicator of adherence to anti-
depressant use, and Y be a continuous measure of depression
4 months after randomization (the Hamilton Depression
Scale (8) was used). The authors assumed no interaction
between the effects of A and M on Y and, implicitly, that
adherence can be adequately measured by a binary indicator.
Under the assumption of no interaction, E[Y},,] — E[Yy,] is
the same for m =0 and m =1 and is, under assumptions 14,
equal to the NDE. The authors estimated the TE to be
—3.15 (standard error, 0.82), indicating a beneficial effect
of randomization to the new intervention. Using the proce-
dure given by Baron and Kenny (9), they estimated the
NDE of the intervention to be —2.66 (standard error, 0.93),
which implies an estimate of —0.49 (i.e., —3.15+2.66 = —
0.49) for the NIE. It is likely that the adherence indicator
was misclassified, because adherence was evaluated by
self-report (10), and possible that the misclassification was
nondifferential with respect to treatment assignment and to
the outcome. In this case, we can employ result 1 to
deduce that the true NDE would likely be smaller in
magnitude (negative but closer to 0) than the estimated
—2.66, while the true NIE would likely be larger in magni-
tude (negative but farther from 0) than the estimated —0.49:
In the presence of nondifferential misclassification of the
mediator, the analysis of Emsley et al. (7) would have
overestimated the magnitude of the direct effect and
underestimated the magnitude of the indirect effect.

In general, the bias of the observed adjusted natural direct
and indirect effects decreases with increasing sensitivity and
specificity, but sensitivity and specificity must both equal 1 in
order for the measures to be unbiased. In Figure 3, we plot the
observed adjusted NDE as a function of sensitivity and specif-
icity for two different hypothetical scenarios. The first scenar-
io, depicted in the top graph, has true natural direct and
indirect effects of 1.75 and a TE of 3.5. (Specifically, E[YIA =
1, M=1]=4, E[YIA=1, M=0]=25, E[YIA=0, M=1]=
10, and E[YIA=0, M=0]=0; PA=1,M=1)=04, PA=1,
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Figure 3. Bias of the observed adjusted natural direct effect (NDE)
as a function of sensitivity and specificity for two different
hypothetical scenarios. The first scenario (top) has a true NDE of
1.75, a true natural indirect effect (NIE) of 1.75, and a total effect
(TE) of 3.5. The second scenario (bottom) has a true NDE of 3.25, a
true NIE of —0.75, and a TE of 2.5. The single solid line represents
the true NDE and the double solid line the TE. The dashed line
represents the observed adjusted NDE as a function of sensitivity
when specificity is fixed at 0.9. The dotted line represents the
observed adjusted NDE as a function of specificity when sensitivity
is fixed at 0.9.

M=0)=0.2, PA=0, M=1)=0.3, and P(A=0, M=0)=
0.1). When sensitivity is fixed at 0.9, the observed adjusted
NDE increases as specificity decreases, moving further from
the true value and closer to the TE. Because the observed ad-
justed NIE is simply the difference between the TE and the
observed adjusted NDE, it would decrease with decreasing
specificity, moving further from the true value and closer to
0. Similarly, when specificity is fixed at 0.9, the observed
adjusted NDE increases as sensitivity decreases. The second
scenario, depicted in the bottom graph, has a true NDE of
3.25, a true NIE of —0.75, and a TE of 2.5. (These effects

were generated by setting E[YIA=1, M=1]=10, E[YIA=1,
M=0]=1,E[YIA=0, M=1]=4, and E[YIA=0, M =0] =6;
PA=1,M=1)=04,PA=1,M=0)=0.2, PA=0,M=1)=
0.3, and P(A=0, M=0)=0.1.) When sensitivity is fixed at
0.9, the observed adjusted NDE increases with increasing
specificity, moving further from the true value and closer
to the TE. Similarly, when specificity is fixed at 0.9, the ob-
served adjusted NDE increases with sensitivity.

EXTENSIONS

Result 1 may be extended to effects conditional on
additional covariates or confounders X, provided that as-
sumptions 1—4 hold conditional on X and that the misclas-
sification of M is nondifferential with respect to A and Y
conditional on X. If, in addition, the ordering of the condi-
tional TE and the conditional NDE are the same with
respect to each other and with respect to O for each value of
X, then the result will hold marginalized over X. To see
this, note that the marginalized effects are simply weighted
averages of the conditional effects, with the same weight
given to the same level of X for each effect. If the condi-
tional TE has the same sign for each level of X, and if the
conditional NDE is either less than the conditional TE
or greater than the conditional TE for each level of X, then
the same ordering that holds for the NDE,,,., NDE,,., and
TE within each level of X must hold for the weighted
averages.

The result does not hold in general for polytomous or con-
tinnous mediators. We give an example of its failure in
Table 1. In this example, the exposure and outcome are both
binary, while the mediator has 3 levels. The full data are repre-
sented by a “true” 2 x 3 x 2 table, and an “observed” 2 x 3 x 2
table was generated from the true data by applying the follow-
ing misclassification probabilities (which are nondifferential
because they do not depend on the value of A or Y): P(M'=
1IM=1)=0.7, PM'=2IM=1)=0.3, PM'=1M=2)=0.4,
PM =2IM=2)=0.6, PM'=3IM=3)=1, and all of the
other misclassification probabilities are 0. Instead of biasing
the NDE toward the TE and the NIE toward 0O, the result of
misclassification in this example is to bias the NDE toward 0
and the NIE toward the TE. In this example, the true NIE is
0.124 but the ME-biased NIE is 0.160; the true NDE is 0.277,
while the ME-biased NDE is 0.241.

Monotonicity assumptions are often useful for deriving
analytic bounds for causal effects (5, 11, 12), but the coun-
terexample given in Table 1 demonstrates that the natural
monotonicity assumptions in this context do not suffice for
our result to hold: In this example, E[YIA, M] is monotonic
(nondecreasing) in A and M and E[MIA] is monotonic (non-
increasing) in A. Similar examples can be constructed with
E[YIA, M] and E[MIA] either both nonincreasing or both
nondecreasing. In the Appendix, we give another coun-
terexample with polytomous M in which the true and
ME-biased NIEs are of opposite signs. Intuition about non-
differential misclassification of a mediator is not a reliable
guide when the mediator is polytomous.

Result 1 depends only on the analytic expressions given in
equations 14, not on the definitions of the associated effects.
It therefore holds no matter what interpretation is given to the

Am J Epidemiol. 2012;176(6):555-561
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Table 1. Counterexample to Result 1 for a Polytomous Mediator
True Data
A=0 M=A1 M=2 M=3 A= M=A1 M=2 M=3
Y=0 20 20 1 Y=0 200 2 2
Y=1 20 10 5 Y=1 700 11 11
TE 0.401
NDEiue 0.277
NIEque 0.124
Observed Data
A=0 M =1 M =2 M =3 A=1 M =1 M =2 M =3
Y=0 14.4 6.6 20 Y=0 140.8 61.2
Y=1 16 9 10 Y=1 494.4 216.6 11
TE 0.401
NDEjue 0.241
NIEyue 0.160

Abbreviations: NDE, natural direct effect; NIE, natural indirect effect; TE, total effect.

analytic expressions. For example, Didelez et al. (13) defined
natural direct and indirect effects without reference to counter-
factuals; these effects are identified by the same expressions
which we have used and therefore are subject to all of our
results. Similar results would likewise hold with direct and
indirect effects defined using stochastic counterfactuals.

DISCUSSION

We have shown that the bias in estimating the natural
direct and indirect effects of an exposure on an outcome
when considering a nondifferentially misclassified binary
mediator will always overestimate the magnitude of the
NDE and underestimate the magnitude of the NIE. This
result is important because the use of misclassified medi-
ators is common in practice and because misclassification
is often impossible to rule out. It is therefore useful to
be able to describe and bound the bias arising from such
misclassification. We have also pointed out the corre-
spondence between the analytic expressions for the NDE
and the effect of exposure among the unexposed. We
used the relation to derive a new result concerning the
misclassification of a mediator; the relation might enable
one to adapt other results and methods for the effect of
exposure among the unexposed (or exposed) to the
context of mediation and natural direct and indirect
effects.

Further work is needed to search for more intuitive con-
ditions under which the mediated effects can be bounded
for polytomous, misclassified mediators and to extend
these results to settings in which the exposure and
outcome, in addition to the mediator, may be measured
with error. In the absence of such results, we recommend
that researchers use and further develop sensitivity analyses
to explore the nature and direction of the bias due to
mediator misclassification.

Am J Epidemiol. 2012;176(6):555-561
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APPENDIX

Mediated effects on the risk ratio and odds ratio scales

We define the natural direct effect (NDE), the natural in-
direct effect (NIE), and the total effect (TE) on the risk
ratio (RR) and odds ratio (OR) scales (3):

NIERY, = E[Yim,)/E[Y1m,),
NDERR = E[Y1u,]/E[Yom,), and

true

TERR = E[Y,]/E[Y,] = NDERR x NIERR

true true

for the risk ratio scale and

NIECR

true

={E[Yim]/(1 = E[Y1m, )}/ {E[Y1a,) /(1 = E[Y1ag,]) },
NDESR

true

={E[Yinm]/(1 — E[Y1n,]) }/{E[Yom,] /(1 — E[Yom,]) }, and
TEOR

={EM]/(1 = EN])}/{EYo]/(1 - E[Yo])}

= NDEX®R x NIER

true
for the odds ratio scale. The corresponding measurement-
error-biased (ME-biased) natural direct and indirect
effect measures are calculated by replacing E [YaM“
with Eypa—g[Y|[A=a] =3 E[Y[A=a,M =m] PM =
m|A =d'] in the expressions above. Then the following
result holds:

Result 2. Let A be binary and let M be binary and nondif-
ferentially misclassified. Then the ME-biased NDE measure
lies between the true NDE and the TE and the ME-biased
NIE measure lies between 1 and the true NIE on the risk
ratio and odds ratio scales.

Proof of results 1 and 2

Ogburn and VanderWeele (5) proved the following result
for the bias due to the nondifferential misclassification of a
binary confounder:

Lemma 1. Let A be a binary exposure; let ¥ be an outcome
which may be binary, polytomous, or continuous; and let C be a
binary and nondifferentially misclassified confounder of the rela-
tion between A and Y. Then the ME-biased measure of the effect
of exposure among the unexposed is between the crude and true
measures of the effect of exposure among the unexposed, on the
risk difference, risk ratio, and odds ratio scales.

We will prove our result for the mediated effects on the
risk difference scale; the proof of result 2 follows by a
similar argument. Lemma 1 says that one of the following
two orderings must be true:

E[Y|A=1] - E[Y|A =0
<) {E[YA=1,C' =]
—E[Y[A=0,C' =}P(C=1A=0)
<) {Elvja=1,C=
—E[Y[A=0,C=c]}P(C=clA=0)
or
E[Y|A = 1] - E[Y|A = 0]
> {E[yjA=1,C' =]
—E[Y|[A=0,C" =|}P(C = (A =0)
>N {E[Y[A=1,C=
—E[Y|[A=0,C=d}P(C=c]A=0).

These orderings hold because the misclassification of C is
nondifferential with respect to A and Y; they require no
appeal to the fact that C is a confounder of the relation
between A and Y or of causal or temporal ordering of the 3
random variables. Therefore, if we assume that M is non-
differentially misclassified with respect to A and Y in the
mediator setting, the same mathematical result holds: either

E[Y|A = 1] — E[Y]A = 0]
<> {EYA=1,M" =m]

—E[Y|A = 0,M" = m]}P(M = n|A = 0)
<Y {E[Y[A=1,M =m]

m

— E[Y|A =0,M = m|}P(M = m|A = 0)

Am J Epidemiol. 2012;176(6):555-561
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Table 2. Example Demonstrating That Monotonicity in M Does Not Suffice for Result 1 to Hold for a Polytomous

Mediator
True Data

A=0 M=1 M=2 M=3 A= M=1 M=2 M=3
Y=0 20 20 1 Y=0 200 2 11
Y=1 10 10 5 Y=1 700 2 11
TE 0.401

NDE; e 0.439

NIEtue -0.038

Observed Data

A=0 M =1 M =2 M =3 A=1 M = M =2 M =3
Y=0 11.4 21.6 8 Y=0 110.8 21.96 71.24
Y=1 7.5 10.8 6.7 Y=1 389.4 80.78 251.82
TE 0.401

NDEwme 0.369

NIEve 0.032

Abbreviations: ME, measurement error; NDE, natural direct effect; NIE, natural indirect effect; TE, total effect.

E[Y|A=1] - E[Y|A = 0]
> {E[Y|A=1,M" =m]

m

—E[Y|[A=0,M =n]}P(M =m'|A =0)
> {E[Y|A=1,M = n]
— E[Y|A=0,M = m]}P(M = m|A = 0).

In the mediator setting, under assumptions 1-4, the quanti-
ty on the left-hand side of the inequalities represents the
TE, the quantity in the middle is the ME-biased NDE, and
the quantity on the right is the true NDE of A on Y. This
gives us the result that the nondifferential misclassification
of M biases the NDE towards the TE. If we subtract the TE
from all sides of the inequalities above and then multiply
each inequality by —1, we obtain the result that the ME-
biased NIE is between 0 and the true NIE.

Counterexample for polytomous mediators

Although result 1 does not generally hold for polytomous
mediators, in the confounding setting monotonicity assump-
tions proved useful for deriving bounds for causal effects
(5). Based on the direction of temporal and causal effects in
the mediator setting, it is natural to consider monotonicity of
E[YIA, M] and E[MIA], but we showed via counterexample
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in Table 1 that these do not suffice to derive the result for a
nondifferentially misclassified polytomous mediator. It may
also be natural to consider monotonicity of P[M =mlA] in m,
but in Table 2 we give a counterexample showing that this
still does not suffice for the result to hold.

The full data are represented by a “true” 2 x 3 x 2 table, and
an “observed” 2 x 3 x 2 table was generated from the true data
by applying the following nondifferential misclassification
probabilities: P(M'=11M=1)=0.55, P(M'=2IM=1)=0.1,
PM =3IM=1)=035PM' =1M=2)=0, PIM'=2IM=2)=
098, PM'=3IM=2)=0.02, PM'=1IM=3)=0.4, PM'=
2IM=3)=0, and P(M'=3IM=3)=0.6. In this example,
E[YIA, M] is monotonic in M because E[YIA =1, M =m] and
E[YIA=0, M =m] are both nondecreasing in m: E[YIA=1,
M=m]=0.78 and E[YIA=1, M=2]=E[YIA=1, M=3]=
0.85, while E[YIA=0, M=1]=E[YIA=0, M=2]=0.33 and
E[YIA =0, M =3]=0.83. Furthermore, it iS monotonic in A:
E[YIA=1, M =m] is greater than E[YIA=0, M=m] for m=1,
2, 3. We also have that E[AIM] is monotonic (nonincreasing)
in M: E[AIM=1]1=0.97, E[AIM=2]=0.68, and E[AIM =3]=
0.30. Finally, E[MIA] is monotonic in A (this must be the
case whenever A is binary) and P[M =mlA = a] is monoton-
ic in m for a=1, 0: P[M =mlA =1] is nonincreasing in m
(PIM=11A=1]1=097 and PM=2A=1]1=P[M=31A=
11=0.01) and therefore P[M =mlA = 0] is nondecreasing in
m. Despite all of the monotonicity assumptions that do hold
in this example, E[AIM] is not monotonic in M. Instead of
biasing the NDE toward the TE, the result of misclassifica-
tion in this example is to bias the NDE toward 0. The
ME-biased NIE, rather than being biased toward 0, is of the
opposite sign from the true NIE.



