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Contemporary searches for new risk factors frequently involve genome-wide explorations of very large

numbers of candidate risk variants. Given that diseases can often be classified into subtypes that possess evi-

dence of etiologic heterogeneity, the question arises as to whether or not a search for new risk factors would be

improved by looking separately within subtypes. Etiologic risk heterogeneity inevitably increases the signal in at

least one of the subtypes, but this advantage may be offset by smaller sample sizes and the increased chances

of false discovery. In this article, the authors show that only a relatively modest degree of etiologic heterogeneity

is necessary for the subtyping strategies to have improved statistical power. In practice, effective exploitation of

etiologic heterogeneity requires strong evidence that the subtypes selected are likely to exhibit substantial het-

erogeneity. Further, defining the subtypes that demonstrate the most heterogeneous profiles is important for

optimizing the search for new risk factors. The concepts are illustrated by using data from a breast cancer study

in which results are available separately for estrogen receptor-positive (ER+) and -negative (ER−) tumors.

etiologic heterogeneity; relative risk; statistical power

Abbreviations: ER+, estrogen receptor positive; ER−, estrogen receptor negative; GWAS, genome-wide association studies;

HER2/neu+, human epidermal growth factor receptor 2 positive; HER2/neu−, human epidermal growth factor receptor 2 nega-

tive; PR+, progestin receptor positive; PR−, progestin receptor negative; SNP, single nucleotide polymorphism.

Epidemiologic studies of cancer have traditionally
focused on the anatomic site of origin of the primary tumor
as the criterion for defining the case group. Thus, we have
a long history of epidemiologic research on breast cancer,
lung cancer, colon cancer, and so forth. Occasionally, in-
vestigations have focused on subgroups defined by tumor
characteristics, such as tumor histology. As a result, we
know, for example, that smoking history has distinctive in-
fluences on the risks of adenocarcinomas and squamous
cell carcinomas of the lung (1). The impetus to examine
tumor subtypes to identify distinct etiologies has increased
in recent years as we have learned more about molecular
tumor characteristics using genomic techniques. In breast
cancer, these techniques have suggested a broad reclassifi-
cation into 4 subtypes on the basis of the relation of
genomic profiles with clinical characteristics (2). These
subtypes can be characterized approximately by routinely
collected hormone receptor levels into luminal A (estrogen

receptor positive (ER+) or progestin receptor positive
(PR+) and human epidermal growth factor receptor 2 nega-
tive (HER2/neu−)), luminal B (ER+ or PR+ and human
epidermal growth factor receptor 2 positive (HER2/neu+)),
nonluminal (estrogen receptor negative (ER−), progestin re-
ceptor negative (PR−), and HER2/neu+), and triple nega-
tive (ER−, PR−, and HER2/neu−), and an increasing focus
of breast cancer epidemiologic research involves study
of the distinctive influence of known risk factors on these
subtypes (3–11).
Given that tumor subtypes may possess some distinc-

tions in etiology on the basis of known risk factors, the
question arises as to whether undiscovered risk factors may
be more or less likely to have distinct risks for the sub-
types. As the credibility of the hypothesis that undiscovered
risk factors may influence only one subtype or may have
a differential effect on different subtypes becomes more
plausible, the strategy of searching for new risk factors
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separately within subtypes becomes a more attractive one.
However, expanding the set of candidate subtypes in this
way carries significant potential costs in statistical efficien-
cy. First, the subtypes necessarily have smaller sample
sizes than the aggregated case group, reducing the power
for detecting specific effect sizes. Second, increasing the
number of statistical comparisons increases the chances of
false discovery. Indeed, controlling the chances of false dis-
covery is a prominent and challenging feature of current re-
search to identify genetic risk loci via genome-wide
association studies. Conversely, the promise of a strategy of
testing new risk factors within subtypes separately is that
one of the subtypes will have a greatly enhanced risk
signal, and that this will more than offset the losses in
power due to decreased sample size and chances of false
discovery. This strategy can also potentially lead to greater
accuracy in risk prediction.

Our goal in this article is to conduct some simple statisti-
cal power comparisons in order to shed light on the poten-
tial gains and losses of statistical testing strategies that
involve the use of tumor subtypes. We explore configura-
tions of risk factor prevalence, overall odds ratio, and risk
heterogeneity to determine the circumstances in which a
search for etiologic heterogeneity is likely to lead to im-
proved statistical power compared with a traditional strategy
in which all cases are aggregated in a unitary case group.

MATERIALS AND METHODS

We investigate 2 different alternatives to a conventional
case-control analysis in which all cases are aggregated in a
single case group. In the first strategy, each tumor subtype is
compared separately with the controls. The risk factor is
identified as being significantly associated with disease if
any one of the subtype analyses is significant, after adjust-
ment for multiple comparisons. In our calculations below,
we identify the smallest range of odds ratios that leads to a
significant test of association with equivalent or greater
power than the conventional test of the overall (aggregated)
odds ratio. For calculating power, we make the assumption
that one of the subtypes has an elevated odds ratio compared
with all the remaining subtypes (if there are more than 2 sub-
types) and contrast high and low odds ratios in the subtypes
with the overall odds ratio. In the second strategy, we evalu-
ate the subtypes using a case-only approach in which we test
the hypothesis that there is no difference in the risk profiles
among the tumor subtypes; that is, we test for the presence
of etiologic heterogeneity directly (12). For conceptual
clarity and analytical convenience, our calculations are
defined initially in terms of tests of a binary risk factor.
Later we show briefly that the results are broadly replicated
in genetic trend tests of additive allelic effects.

Consider a case-control study with m controls and n
cases. We are evaluating a risk factor with population prev-
alence p and odds ratio φ. The risk factor frequency in
cases is therefore given by q, where q = pφ/(1− p + pφ).
The asymptotic power for detecting this association is
given by Φ(−zα/2 + log(φ)/v1/2), where zα/2 is the normal
deviate for a 2-sided test at the α significance level, v =
(nq)−1 + (n(1 − q))−1 + (mp)−1 + (m(1− p))−1, and where

Φ(·) is the normal distribution function. Suppose now that
there are 2 tumor subtypes, denoted A and B, and that there
are nA cases of tumor type A and nB cases of tumor type
B. Further, let the relative frequencies of the risk factor in
subtypes A and B be qA and qB, respectively. The corre-
sponding odds ratios are thus φA = qA(1− p)/p(1− qA) and
φB = qB(1− p)/p(1− qB). Note that these terms are con-
strained by the fact that

ðnA=nÞqA þ ðnB=nÞqB ¼ q: ð1Þ

Using the Bonferroni adjustment to account for multiple
comparisons, we found that the power to detect an associa-
tion of the risk factor with either of these subtypes is

1�
Y
i¼A;B

½1�Fð�za=4 þ logðfiÞ=v1=2i Þ�;

where vi = (niqi)
−1 + (ni(1− qi))

−1 + (mp)−1 + (m(1− p))−1,
i = A, B. For this strategy to have equivalent or better power
than the conventional, aggregated test, we need configura-
tions of relative frequencies and odds ratios within the sub-
types to be such that

1�
Y
i¼A;B

½1�Fð�za=4 þ logðfiÞ=v1=2i Þ�

� Fð�za=2 þ logðfÞ=v1=2Þ:

Assuming, without loss of generality, that the higher odds
ratio occurs in subtype A, we can find the minimum range
of odds ratios in the subtypes that delivers equivalent
power to the conventional test for a given relative frequency
of type A tumors (i.e., nA/n) and significance level α by
solving for φA, φB the following equation:

1�
Y
i¼A;B

½1�Fð�za=4 þ logðfiÞ � v1=2i Þ

¼ Fð�za=2 þ logðfÞ=v1=2Þ;
ð2Þ

where φA, φB are constrained by equation 1. We note that
the solution to equation 2 depends on the choice of signifi-
cance level α. However, α has only a modest impact. We
present in the Results solutions for α = 0.05.

If there are more than 2 subtypes under consideration,
the risks of false discovery will increase. We explore the
consequences of this by considering configurations in
which the relative frequency of subtype A, the subtype
with the elevated odds ratio, remains the same, but the
cases in subtype B are further classified into additional sub-
types of equal frequencies of occurrence and equal odds
ratios. We recognize that these configurations are somewhat
artificial, but the setup is constructed merely to obtain an
approximate understanding of the impact of the additional
multiple testing in this context. In this framework, if there
is a total of k subtypes, the minimum range of odds ratios
in the subtypes that delivers equivalent power to the con-
ventional test involving all cases, adjusted for multiple
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comparisons, can be obtained approximately by solving for
φA, φB the equation:

1� 1�Fð�za=2k þ logðfAÞ=v1=2A

h ih
1�Fð�za=2k

þ logðfBÞ=v1=2B

ik�1
¼ Fð�za=2 þ logðfÞ=v1=2Þ;

ð3Þ

where φB is the true odds ratio in the k − 1 subtypes other
than subtype A.
A different strategy for utilizing etiologic heterogeneity to

detect new risk factors is simply to perform a case-only anal-
ysis, comparing the relative frequencies of the risk factor in
the different subtypes. The question is, how different must
the odds ratios in the subtypes be in order that this test has
equivalent power to the conventional approach of testing all
cases versus the controls? Given the relative frequencies of
the subtypes (i.e., nA/n and nB/n), we can find the minimum
range of odds ratios by solving for φA, φB the equation:

logðfA=fBÞ=v1=2co ¼ logðfÞ=v1=2; ð4Þ

where

vco ¼ ðnAqAÞ�1 þ ðnAð1� qAÞÞ�1 þ ðnBqBÞ�1

þ ðnBð1� qBÞÞ�1:

Finally, we have adapted the preceding concepts to the
setting in which we wish to perform a Cochran-Armitage
test of linear genetic effect. That is, we wish to perform
linear trend tests to compare cases and controls in a 2 × 3
table with respect to the numbers of variant alleles. In our
calculations, the control frequencies are determined by
using Hardy-Weinberg equilibrium, based on the underlying
population allele frequency of the variant allele (denoted a),
and the case frequencies are determined by the “per allele”
odds ratio (denoted by φ). We then harmonize the elements
in the 2 subtype 2 × 3 tables to make sure they both conform
to a linear genetic model (in which each additional allele
confers the same per-allele effect). As before, we then find
the detectable per allele odds ratio in the subtype analysis
that has equivalent power to that of the overall analysis.
Further details of these calculations are provided in the Ap-
pendix. The power formulas for the Cochran-Armitage test
are available in the article by Slager and Schaid (13).

RESULTS

Power comparisons

Results for some plausible configurations are presented
in Table 1. As an example, in the first row of the table, we
consider a risk factor with population frequency of 10%
and an odds ratio of 1.2. The cases belong to 2 subtypes
with distinct odds ratios where the subtype with the greater
odds ratio (defined as subtype A) occurs in 20% of the
cases. In this setting, subtype A must have an odds ratio of
at least 1.51 in order for a case-only test for etiologic

heterogeneity to have equivalent power to the conventional
(case vs. control) test of the overall odds ratio. In these cir-
cumstances, the odds ratio of subtype B is 1.13. If, on the
other hand, we compare each of the subtypes separately
with the controls and adjust for multiple comparisons, the
odds ratio for subtype A need only be 1.28 or greater in
order for this strategy to have superior power to the conven-
tional approach. In this case, the odds ratio of subtype B is
1.18. If there are 3 or 4 subtypes overall, the minimum
odds ratios in subtype A to achieve equivalent power in-
crease to 1.32 and 1.35, respectively, and the corresponding
odds ratios of the remaining subtypes decrease to 1.17 and
1.16. For configurations with 2 subtypes and higher base-
line odds ratios, the required odds ratio in the high-risk
subtype must be at least 1.67 for an aggregate odds ratio of
1.5 and 2.22 for an aggregate odds ratio of 2.0. Examining
the rest of the table, we observe that the relation between the
required heterogeneity for the subtyping strategy versus the
conventional aggregated strategy is nonlinear, but over
most of the configurations examined the required heteroge-
neity to achieve equivalent power is modest, especially
when the subtype with the elevated risk (subtype A) is rela-
tively common.
In Table 2, we show corresponding results for the

Cochran-Armitage trend test. The results are broadly
similar. The per-allele odds ratio in subtype A only needs
to be modestly elevated when this subtype is relatively
common (50%), but it needs to be higher as its frequency
decreases.

Example

As an example to illustrate the relevance of these con-
cepts, we examine some published data from a recent study
that explored the odds ratios of breast cancer single nucleo-
tide polymorphisms (SNPs) in tumor subtypes (14). The
authors presented per-allele odds ratios of the top 8 SNPs
identified from previous genome-wide association studies
(GWAS), stratified by various tumor characteristics includ-
ing estrogen receptor status. In this study, 83% of the cases
were ER+. In Table 3, we reproduce the overall per-allele
odds ratio estimates for breast cancer and the estimates spe-
cific for ER+ and for ER− tumors. The critical data for our
purposes are the extent to which the odds ratios for ER+
and ER− subtypes differ with respect to each other and to
the overall odds ratio. We also recognize that the estimated
subtype odds ratios presented are derived from models that
adjust for other risk factors, and so the 3 odds ratios are not
perfectly constrained as in the equations in the Appendix.
The results are simply intended to show in general terms
the design trade-offs in the context of real data. For each of
the 8 SNPs, we first calculate the sample size required to
identify with 90% power at the 5% significance level the
overall odds ratio that was actually observed and, then,
based on this sample size, we calculate the corresponding
power of the strategy in which each of the subtypes is sepa-
rately compared with controls and adjusted for the fact that
there are 2 comparisons. The results show that the sub-
typing strategy would have been more powerful for 5 of the
8 SNPs and would have had equivalent power for a sixth.
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DISCUSSION

Although much is known about the factors influencing
cancer risk, it is widely believed that there may be many
undiscovered risk factors, especially genetic factors with
relatively low penetrance. Thus, an important contemporary
research agenda involves the search for genetic associations
in GWAS of SNPs (15). In the future, this agenda is likely
to increasingly involve the search for rare risk variants
within genes using new sequencing technologies (16, 17).
In parallel with this trend, investigators are increasingly ex-
ploring the possibility that subtypes of cancers may exhibit
distinct risk profiles. Genome-wide searches present formi-
dable statistical challenges, in that real risk variants of low
penetrance are hard to distinguish from the much larger
numbers of variants that inevitably provide effect estimates
that are significant simply because of chance (false

positives). An important strategic question is whether or
not it is advantageous to perform genome-wide searches
within tumor subtypes where the effect sizes of individual
risk variants may be relatively large. The trade-off in this
approach is that the subtypes have smaller sample sizes
than the aggregate set of cases, and the exploration of sub-
types increases the number of comparisons and the chances
of false discovery. Our goal in this article has been to shed
some light on this issue, by calculating the extent of hetero-
geneity necessary to offset these disadvantages.

Broadly speaking, the results show that the degree of het-
erogeneity necessary to provide search strategies that utilize
the subtyping with superior power is relatively modest.
Larger degrees of heterogeneity are needed if the key
subtype with the distinct relative risk is either overwhelm-
ingly common or relatively rare. In general, strategies that
test the subtypes separately against a common control

Table 1. Equivalent Detectable Odds Ratios

Frequencies
Overall Odds Ratio

Equivalent Detectable Odds Ratiosa

pb Subtype A, % Subtype B, % Case Only 2 Subtypes 3 Subtypes 4 Subtypes

0.10 20 80 1.20 1.51 (1.13) 1.28 (1.18) 1.32 (1.17) 1.35 (1.16)

0.10 20 80 1.50 2.37 (1.30) 1.67 (1.46) 1.75 (1.44) 1.85 (1.42)

0.10 20 80 2.00 4.05 (1.58) 2.22 (1.95) 2.31 (1.93) 2.60 (1.87)

0.10 50 50 1.20 1.35 (1.05) 1.23 (1.17) 1.26 (1.14) 1.28 (1.13)

0.10 50 50 1.50 1.91 (1.11) 1.53 (1.46) 1.64 (1.37) 1.69 (1.32)

0.10 50 50 2.00 2.93 (1.19) 2.00 (1.99) 2.24 (1.77) 2.37 (1.66)

0.10 80 20 1.20 1.28 (0.91) 1.23 (1.09) 1.24 (1.04) 1.25 (1.01)

0.10 80 20 1.50 1.71 (0.74) 1.57 (1.22) 1.61 (1.09) 1.63 (1.01)

0.10 80 20 2.00 2.52 (0.31) 2.15 (1.44) 2.24 (1.17) 2.29 (1.00)

0.25 20 80 1.20 1.53 (1.13) 1.29 (1.18) 1.33 (1.17) 1.36 (1.16)

0.25 20 80 1.50 2.52 (1.30) 1.73 (1.45) 1.84 (1.42) 1.95 (1.40)

0.25 20 80 2.00 5.01 (1.57) 2.49 (1.89) 2.72 (1.87) 3.01 (1.84)

0.25 50 50 1.20 1.36 (1.05) 1.24 (1.16) 1.26 (1.14) 1.28 (1.12)

0.25 50 50 1.50 1.95 (1.12) 1.58 (1.41) 1.66 (1.35) 1.72 (1.30)

0.25 50 50 2.00 3.14 (1.22) 2.12 (1.89) 2.37 (1.67) 2.48 (1.65)

0.25 80 20 1.20 1.28 (0.91) 1.23 (1.09) 1.24 (1.04) 1.25 (1.02)

0.25 80 20 1.50 1.72 (0.79) 1.58 (1.21) 1.62 (1.09) 1.64 (1.02)

0.25 80 20 2.00 2.53 (0.59) 2.18 (1.39) 2.27 (1.16) 2.33 (1.03)

0.50 20 80 1.20 1.56 (1.12) 1.31 (1.17) 1.35 (1.17) 1.39 (1.16)

0.50 20 80 1.50 2.86 (1.30) 1.85 (1.43) 2.01 (1.40) 2.13 (1.39)

0.50 20 80 2.00 10.91 (1.52) 3.16 (1.80) 3.76 (1.78) 4.41 (1.77)

0.50 50 50 1.20 1.37 (1.06) 1.24 (1.16) 1.27 (1.13) 1.29 (1.12)

0.50 50 50 1.50 2.03 (1.13) 1.63 (1.39) 1.71 (1.33) 1.76 (1.28)

0.50 50 50 2.00 3.56 (1.24) 2.36 (1.71) 2.57 (1.64) 2.74 (1.50)

0.50 80 20 1.20 1.28 (0.93) 1.23 (1.08) 1.24 (1.04) 1.25 (1.01)

0.50 80 20 1.50 1.74 (0.85) 1.59 (1.20) 1.63 (1.11) 1.66 (1.03)

0.50 80 20 2.00 2.63 (0.77) 2.23 (1.34) 2.33 (1.16) 2.39 (1.20)

a Minimum heterogeneity of relative risks for the subtypes required for a strategy of comparing the subtypes individually with the controls (or

with each other in the case-only design) to achieve equivalent power to a test of the corresponding overall relative risk (i.e., comparing all cases

vs. controls) at the 5% level. The numbers in parentheses are the corresponding relative risks for subtype B.
b Population prevalence of the risk factor.
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group seem to have better power than case-only strategies,
at least among the configurations that we explored. In
our anecdotal example involving data from studies of
8 breast cancer SNPs, we see that the heterogeneity dis-
played by most of these leads to power for the subtyping
strategy that is somewhat higher than the conventional ag-
gregated test.
We envisage analyses of etiologic heterogeneity that

utilize a common control group, since the cases of the dis-
tinct tumor subtypes are assumed to arise from the same “at
risk” population. This is the reason that the standard epide-
miologic approach to evaluating etiologic heterogeneity in-
volves polytomous logistic regression, which utilizes a
common control group (18). Many investigators have been
concerned that the genetic substructure in this population
could invalidate simple statistical tests of individual
SNPs, and methods have been developed to use multiple
loci to adjust for variance inflation due to such substruc-
ture in GWAS investigations (19). The use of genomic
control of this nature is equally applicable to studies that
make use of etiologically distinct subtypes as it is to
conventional GWAS that aggregate the cases in a single
case group.
Our studies have been focused on calculations addressing

the power trade-offs for detecting a single risk variant. In
practice, genome-wide searches seek to identify all variants,
and the true risk variants are likely to exhibit broad ranges

of risk heterogeneity, with many having no heterogeneity at
all. Thus, a search strategy that has superior power for
some variants is likely to have inferior power for others.
Consequently, in the absence of knowledge of the ranges
of risk heterogeneity of the unknown variants that we seek
to identify, it is a challenge to formulate a plan for how to
optimize the search strategy overall. More importantly, we
need to know which subtypes of tumors are good candi-
dates for providing the basis for an analysis. In the breast
cancer example in Table 3, we focused on results that dis-
tinguish the risks for ER+ versus ER− tumors, when in
fact the investigators explored numerous other ways to
subtype the cases, including progestin receptor status, histo-
logic classification, grade, invasiveness, status of the
v-erb-b2 erythroblastic leukemia viral oncogene homolog 2
gene (ERBB2), and presence of bilaterality (14). In practice,
one would want to select a subtyping taxonomy for which
strong evidence of etiologic heterogeneity exists. A
growing literature in breast cancer is providing evidence
that many known risk factors have distinct relative risks for
ER+ versus ER− tumors (20–24). This evidence supports
search strategies for genetic factors on the basis of estrogen
receptor status on the indirect supposition that, if these
tumor types differ with respect to known risk profiles, they
are more likely also to differ with respect to unknown risk
factors. A more direct approach has also been proposed,
whereby the fundamental etiologic heterogeneity of

Table 2. Equivalent Detectable Odds Ratios for Genetic Tests

Allele
Frequency

Frequencies
Per-Allele Odds

Ratios

Subtype A, % Subtype B, % Overall Subtypesa

0.10 20 80 1.20 1.29 (1.18)

0.10 20 80 1.50 1.73 (1.45)

0.10 20 80 2.00 2.42 (1.90)

0.10 50 50 1.20 1.24 (1.17)

0.10 50 50 1.50 1.58 (1.42)

0.10 50 50 2.00 2.11 (1.90)

0.30 20 80 1.20 1.31 (1.18)

0.30 20 80 1.50 1.83 (1.43)

0.30 20 80 2.00 2.83 (1.85)

0.30 50 50 1.20 1.24 (1.16)

0.30 50 50 1.50 1.61 (1.40)

0.30 50 50 2.00 2.26 (1.78)

0.50 20 80 1.20 1.32 (1.17)

0.50 20 80 1.50 1.94 (1.42)

0.50 20 80 2.00 3.64 (1.80)

0.50 50 50 1.20 1.25 (1.16)

0.50 50 50 1.50 1.64 (1.38)

0.50 50 50 2.00 2.43 (1.70)

a The minimum heterogeneity of per-allele odds ratios required

(subtype A; subtype B in parentheses) for a strategy of comparing

subtypes individually versus controls in order to possess equivalent

power to an overall test of association.

Table 3. Power for Testing ER + /ER− Subgroups in Breast

Cancer for 8 Known SNPsa

SNP
Allele

Frequencyb

Per-Allele Odds Ratiosc Subtype
Power,
%dOverall

ER+
(83%)

ER−
(17%)

rs2981582 0.38 1.23 1.27 1.01 90

rs3803662 0.26 1.20 1.24 1.07 92

rs13387042 0.50 1.16 1.18 1.17 92

rs889312 0.28 1.13 1.15 1.11 92

rs13281615 0.40 1.09 1.12 1.05 97

rs4666451 0.60 1.08 1.08 1.19 99

rs981782 0.54 1.06 1.05 1.12 87

rs1045485 0.87 1.05 1.04 1.16 58

Abbreviations: ER + , estrogen receptor positive; ER− , estrogen

receptor negative; SNP, single nucleotype polymorphism.
aData adapted from Reeves et al. (14). For each row, we

determine the sample size needed to achieve 90% power for

detecting the “overall” relative risk in a conventional comparison of

all cases versus controls.
bAllele frequency in the control group.
cWe used the odds ratios appearing in Figure 1 of the report by

Reeves et al. (14), recognizing that these are adjusted odds ratios.
dWe used the allele frequency and overall odds ratio to calculate

the sample size required to deliver 90% power to detect the “overall”

odds ratio in a conventional analysis of all cases versus controls

using Appendix equation A2. We then used this overall sample size

and equation A3 in the Appendix to calculate the power of the

subtyping strategy, recognizing that “A” in the formula represents the

larger of the odds ratios for ER+ and ER− in the table.
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different subtyping taxonomies can be ranked on the basis
of the extent to which the subtypes are correlated in pairs
of double primaries (25). In general, before electing to
perform broad searches for risk associations in tumor sub-
types, it is advisable to first have strong evidence that the
subtypes are etiologically distinct.
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APPENDIX

Calculations for the Cochran-Armitage Test

As in the main text, we define m to be the number of
controls, n to be the number of cases, and nA and nB to be
the numbers of cases in subtypes A and B, respectively.
Let the population allele frequency be “a” and the per-
allele odds ratio be “φ.” The population frequencies of indi-
viduals with 0, 1, and 2 alleles, respectively, based on
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Hardy-Weinberg equilibrium, are as follows: p0 = (1− a)2,
p1 = 2a(1− a), and p2 = a2. The corresponding frequencies
among incident cases can be calculated by using the fol-
lowing:

q0 ¼ ½1þ p1f=p0 þ p2ð2f� 1Þ=p0��1

q1 ¼ q0p1f=p0

q2 ¼ q0p2ð2f� 1Þ=p0:

Likewise, for subtypes A and B, we have the following:

q0A ¼ ½1þ p1fA=p0 þ p2ð2fA � 1Þ=p0��1

q1A ¼ q0Ap1fA=p0
q2A ¼ q0Ap2ð2fA � 1Þ=p0

and

q0B ¼ ½1þ p1fB=p0 þ p2ð2fB � 1Þ=p0��1

q1B ¼ q0Bp1fB=p0
q2B ¼ q0Bp2ð2fB � 1Þ=p0:

These equations ensure that cases in both subtypes A
and B and all cases aggregated conform to a linear “per-
allele” risk model and that, for each grouping, the probabil-
ities add to 1. However, in order that the estimates of φA
and φB are congruent and simultaneously satisfy the preced-
ing equations, it is necessary that φA and φB are related
through the following equation:

fB ¼ p2 � p0 þ pBp0ðq0 � pAq0AÞ�1

p1 þ 2p2
: ðA1Þ

Power

The power for a 2-sided test at the 5% significance level
is as follows (13):

P ¼ F
�1:96s0 � m1

s1

� �
þF

�1:96s0 þ m1

s1

� �
: ðA2Þ

For our aggregated test, the parameters in the power
formula can be expressed in terms of our parameters as
follows:

m1 ¼
nm

nþ m
½ðq1 þ 2q2Þ � ð p1 þ 2p2Þ�

s2
0 ¼

nm

nþ m
½ð p1 þ 4p2Þ � ð p1 þ 2p2Þ2�

s2
1 ¼

nm2

ðnþ mÞ2 ½ðq1 þ 4q2Þ � ðq1 þ 2q2Þ2�

þ n2 m

ðnþ mÞ2 ½ð p1 þ 4p2Þ � ð p1 þ 2p2Þ2�:

For testing subgroup i with correction for the fact that 2
tests rather than 1 will be applied, the power is given by

P ¼ F
�2:24s0 � m1

s1

� �
þF

�2:24s0 þ m1

s1

� �
; ðA3Þ

where

m1 ¼
nim

ni þ m
½ðq1i þ 2q2iÞ � ð p1 þ 2p2Þ�

s2
0 ¼

nim

ni þ m
½ð p1 þ 4p2Þ � ð p1 þ 2p2Þ2�

s2
1 ¼

nim2

ðni þ mÞ2 ½ðq1i þ 4q2iÞ � ðq1i þ 2q2iÞ2�

þ n2i m

ðni þ mÞ2 ½ð p1 þ 4p2Þ � ð p1 þ 2p2Þ2�;

where i = A, B. The solutions in Table 2 are obtained by
selecting a power of 90%, calculating the required sample
size using equation A2, and then using equation A3 itera-
tively to determine the combination of φA, φB with
minimum value of φA > φ that delivers equivalent power
where φA = q1A p0 / p1(1− q1A) and the corresponding φB is
determined by using equation A1.
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