Skip to main content
. Author manuscript; available in PMC: 2013 Dec 1.
Published in final edited form as: Biometrics. 2012 Sep 24;68(4):1294–1302. doi: 10.1111/j.1541-0420.2012.01789.x

Table 2.

Simulation results for sensitivity and specificity with incorrectly specified imperfect reference standards. The random effects of the true models and working models always follow mixture normal distribution and normal distribution, respectively. The diagnostic accuracy of the imperfect reference was generated from (7) using different values of γ2’s with D and the diagnostic γ0 = −4.5, γ1 = 0.1. The corresponding posterior disease status S1tiD accuracy parameter estimates are presented. The true imperfect reference standard was generated from equations (8) and (7) with γ0 = −4.5, γ1 = 0.1, and γ2 = 0.2. The true sensitivity, specificity and disease prevalence were set to be Se = 0.90, Sp = 0.90, and π1 = 0.7, respectively.

Number of tests γ2 Posterior density ω1
Ŝe(se) Ŝp(se) π̂1(se)
S10D
S11D
S12D
S13D
S14D
5 0 0.02 0.65 0.70 0.74 1.00 0.90(0.065) 0.90(0.067) 0.69(0.050)
0.1 0.02 0.46 0.70 0.86 1.00 0.90(0.071) 0.90(0.066) 0.71(0.048)
0.15 0.02 0.36 0.70 0.90 1.00 0.91(0.061) 0.92(0.069) 0.70(0.047)
0.25 0.02 0.20 0.70 0.95 1.00 0.90(0.060) 0.90(0.058) 0.69(0.057)
0.3 0.02 0.15 0.70 0.97 1.00 0.91(0.071) 0.91(0.064) 0.70(0.049)
10 0 0.02 0.65 0.70 0.74 1.00 0.89(0.061) 0.90(0.045) 0.70(0.050)
0.1 0.02 0.46 0.70 0.86 1.00 0.90(0.051) 0.90(0.054) 0.71(0.041)
0.15 0.02 0.36 0.70 0.90 1.00 0.90(0.059) 0.89(0.051) 0.70(0.037)
0.25 0.02 0.20 0.70 0.95 1.00 0.89(0.056) 0.91(0.048) 0.70(0.057)
0.3 0.02 0.15 0.70 0.97 1.00 0.90(0.056) 0.90(0.063) 0.71(0.052)