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Abstract
Maps are often used to convey information generated by models, for example, modeled cancer
risk from air pollution. The concrete nature of images, such as maps, may convey more certainty
than warranted for modeled information. Three map features were selected to communicate the
uncertainty of modeled cancer risk: (a) map contours appeared in or out of focus, (b) one or three
colors were used, and (c) a verbal-relative or numeric risk expression was used in the legend.
Study aims were to assess how these features influenced risk beliefs and the ambiguity of risk
beliefs at four assigned map locations that varied by risk level. We applied an integrated
conceptual framework to conduct this full factorial experiment with 32 maps that varied by the
three dichotomous features and four risk levels; 826 university students participated. Data was
analyzed using structural equation modeling. Unfocused contours and the verbal-relative risk
expression generated more ambiguity than their counterparts. Focused contours generated stronger
risk beliefs for higher risk levels and weaker beliefs for lower risk levels. Number of colors had
minimal influence. The magnitude of risk level, conveyed using incrementally darker shading, had
a substantial dose-response influence on the strength of risk beliefs. Personal characteristics of
prior beliefs and numeracy also had substantial influences. Bottom-up and top-down information
processing suggest why iconic visual features of incremental shading and contour focus had the
strongest visual influences on risk beliefs and ambiguity. Variations in contour focus and risk
expression show promise for fostering appropriate levels of ambiguity.
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I. INTRODUCTION
Maps are commonly used to communicate air pollution-related health risk to public
audiences. Some maps depict risk estimates generated by mathematical models, e.g., those
provided by the U.S. Environmental Protection Agency’s (EPA) National Air Toxics
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Assessment program (NATA).(1) Although modeled estimates are uncertain,(2) people may
believe this information is certain, which could lead to inappropriate beliefs, decisions, and
behavior. Perceived certainty may be greater for maps because concrete images(3) and the
scientific nature of geographic information systems (GIS)(4) imply more certainty than
alphanumeric information. To address this problem, cartographers and others recommend
using map features that communicate uncertainty.(4–8) However, few studies have explored
how these features influence cognition or decision-making.(4–7) The primary purpose of this
study was to assess how the certainty of three map features influenced risk beliefs and the
ambiguity of risk beliefs for maps depicting modeled cancer risk from air pollution. These
dependent variables predict intentions and eventual behavior to mitigate health risks.(9–11)

Intentions are a decisional outcome.

1.1. Conceptual Framework
Figure 1 illustrates the conceptual framework that guided this study. The Integrated
Representational and Behavioral Framework combines theoretical concepts from the fields
of visual cognition, semiotics, learning and memory, and health behavior to explain how
visual representations influence cognitive and emotional representations, intentions, and
behavioral responses within a context of personal characteristics.(3) The top-down and
bottom-up processes that shape how seeing influences meaning are usually inferred rather
than measured, and therefore depicted using gray text (Fig. 1). Intention and behavior are
also in gray text as they were not included in this study. We begin by summarizing
framework concepts.

1.1.1. Visual Representation—Visual representations are processed top-down and
bottom-up. Top-down processing is directed by the viewer, e.g., when answering a question.
Pre-conscious bottom-up processing occurs because vision is neurologically linked with
cognition. A key step in visual cognition is “seeing” objects from the visual stimuli detected
by the retina.(12) Pinker proposed four key factors that shape seeing.(12) Unit of perception
and magnitude are relevant to this study. Cleveland and McGill proposed “pre-attentive”
properties of visual features that support accurate bottom-up comprehension.(13) Shading,
proximity, area, position on a scale, and direction are relevant to this study. Interview
findings suggest how top-down and bottom-up processing, Pinker’s factors, and pre-
attentive features influence beliefs derived from risk maps.(3)

Severtson and Vatovec (2012) described unit of perception as the unit at which risk was
displayed on study maps; it had a dominant influence on risk beliefs. For maps of air
pollution, the unit of perception is often contoured areas that are shaded or colored to
symbolize the magnitude of risk. These are typically classed isarithmic maps1 in which data
is categorized into discrete classes (e.g., Fig. 2a). Contiguous map areas representing each
class have well-defined contour edges that allow viewers to accurately match the
symbolized risk level at a given map location to the classes defined in the legend. A caveat
of classed maps is that classed ranges of data are less precise than actual data values.(14)

An alternative method for conveying continuous data, such as modeled cancer risk, is
directly representing each value rather than aggregating values into discrete classes. This
produces an unclassed2 isarithmic map, represented with continuous tones of light to dark

1Isarithmic maps are used for continuously varying attributes like rainfall or air pollution.(90) An isarithmic map differs from a
choropleth map because the lines or regions are determined by the data rather than conforming to a predefined area, such as a political
subdivision. [Choropleth maps depict statistical information across predefined areal enumeration units such as a county.(25) ]
NATA(1) uses classed isarithmic maps to depict health risks from air pollution.
2On unclassed maps, “data are not grouped into classes of similar values” …each data value can theoretically be represented by a
different symbol” (p. 517).(91)
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shading (a pre-attentive feature) to represent the magnitude of continuous data. Viewers
cannot visually discriminate the very small shaded units; the unit of perception is a fuzzy
blur of lighter to darker shading, e.g., Figure 2b. Viewers can only approximate how the
symbolized risk level at a given map location matches risk levels in the legend. However,
unclassed maps are a more accurate presentation of the data.(14) In a summary of unclassed
maps and cognition, Harrower(15) noted that many-shaded unclassed maps increase the
difficulty of matching map colors to the color scale in the legend,(16) decrease the accuracy
of reading a map,(17) and increase map reading time.(18) However, studies generally show no
differences between classed and unclassed maps for communicating general information
such as overall patterns.(19)

Semiotics is the study of signs. Iconic signs support cognition by resembling a thing or
idea,(20) e.g., mapped air pollution risk resembles its geographic distribution. The meaning
of symbolic signs is learned. Icons and symbols are not discrete categories; some prior
knowledge or experience supports seeing resemblance.(20) The most successful map signs
convey meaning without the need to consult the legend.(21) [See MacEachren(22) for a
synthesis of this literature.]

Many methods have been recommended for visualizing uncertainty.(4, 5, 7, 8, 23) These are of
two basic types. Intrinsic methods change the appearance of the information and extrinsic
methods add additional symbols to the information.(24) MacEachren proposed that
representing information as “out of focus” may be an ideal way to visualize uncertainty;(4)

an intrinsic method. For contour maps, the “crispness” or “fuzziness” of contour boundaries
and the clarity of the fill within the contour area visually represents information as focused
and unfocused.(4) The focused appearance of classed maps with well-defined contours
resembles more certainty. The fuzzy unfocused appearance of continuous tone unclassed
maps resembles less certainty. As such, we propose these are iconic features. No studies
were located that examined how map focus or classed and unclassed maps influenced risk
beliefs, perceived ambiguity, or emotion.

Brewer recommends color schemes for maps(25, 26) that leverage pre-attentive shading(13) to
convey magnitude using ordered “lightness” of map colors (darker = more). Seven or fewer
classes of a single color allows viewers to accurately match each map shade to the
corresponding data class in the legend; fewer classes and/or additional colors increase
accuracy of matching.(25)

Risk beliefs are a function of perceived map location relative to the magnitude of mapped
risk levels,(27, 28) suggesting maps can effectively convey a dose-response message, a key
risk communication goal,(29) and criterion for assessing map visualization effectiveness.(5)

Proximity to hazard influences risk beliefs; location within a risk area is especially
influential.(27, 28)

The magnitude of estimated cancer risk can be expressed in various ways. Lipkus
summarized evidence on communicating probabilistic health risk,(30) noting people
generally prefer numeric to verbal risk expressions,(31) and natural frequencies are more
easily and accurately understood than other numeric expressions.(32) Numeric relative risk
expressions that lack a base rate are vague,(30) e.g., 10% more risk. The inclusion of base
rates or other normative indicators support decision-making.(33) Verbal risk expressions are
less precise, more intuitively understood,(34) influenced more by prior beliefs,(35) and
generate less accurate perceptions than numeric expressions.(36) NATA maps(1) express
cancer risk using natural frequencies (cancer cases per million people). Imprecise
expressions of “Less” to “More” increase uncertainty because they verbally convey relative
risk with no base rates or other normative indicators.
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Safety standards and benchmarks are normative indicators that identify the safety meaning
of risk levels.(37) Although the EPA applies multiple criteria to establish health standards, it
strives for unofficial benchmarks of “negligible” risk no greater than 1 cancer case per
million people and generally considers risk over 100 cancer cases per million as
“unacceptable”.(38) Safety standards and benchmarks influence risk beliefs. Some studies
show a sharp discontinuity in beliefs derived from amounts just above and below a standard
rather than more appropriate dose-response interpretations,(29, 39, 40) although this effect is
not seen in other studies.(41)

1.1.2. Cognitive and Emotional Representations—Although knowledge is
important, beliefs are more predictive of health behavior.(42, 43) Among health behavior
theories, the Common Sense Model (CSM) conceptualizes cognitive representations as
comprised of structured risk beliefs.(42) Beliefs that identify the presence of a risk and one’s
susceptibility to that risk have key roles in promoting protective risk behavior.(42, 44)

Specific beliefs underlying global beliefs include susceptibility to the risk, the severity of
consequences,(44) and beliefs of exposure to unsafe hazard levels which will likely engender
beliefs of susceptibility to consequential health problems. Learning and memory research
guided by fuzzy trace theory indicates people seek to understand, and use for decisions, the
basic gist of information rather than verbatim details.(45, 46) Beliefs are a type of gist.

The CSM also recognizes the role of emotion in making decisions about health threats, and
posits duel processing of cognitive and experiential information as shaping cognitive and
emotional representations that shape behavior. CSM researchers relate this dual processing
system to top-down and bottom-up processes.(42) Similarly, Loewenstein et al.(47) and
Slovic et al.(48) describe the tendency for people to have positive and negative feelings about
risk information and experience that shape decisions. Emotions vary in strength. Subtle
feelings are described as affect, the “faint whisper of emotion” (p. 312).(48) Rivers et al.
equate affect with emotional valence. Derived gist includes emotional valence.(49) The risk
beliefs described here (e.g., serious problem, severe health consequence) have a negative
valence. All of these perspectives recognize the powerful roles of experience in shaping
emotions and emotional valence, and of emotion in shaping beliefs (gist) and
decisions.(42, 47–50)

Perceived ambiguity, generally interpreted as “uncertainty about uncertainty,” is generated
when information is unreliable, incomplete, conflicting, or when expert knowledge is
contested.(9) People have an aversion to ambiguity, preferring certain over uncertain
risks.(51) This may explain why ambiguity often positively relates to perceived risk and
worry.(9, 51–54) Some studies show ambiguity attenuates heath behavior, while others do
not.(9)

1.1.3. Personal Characteristics—Personal characteristics such as prior knowledge,
prior beliefs, and prior experiences have substantial influences on how visual images,(55)

including maps,(56) are understood. Unfavorable sensory perceptions of the environment,
such as smell and appearance of outdoor air, increase perceived risk from air
pollution.(57, 58) One’s prior beliefs about air pollution risk may include skepticism about
related health risks. People tend to be more skeptical of information that does not match
tightly held beliefs, a type of bias that can influence how information is processed.(59) A
family history of cancer is likely to increase risk beliefs generated by modeled cancer risk,
especially since cancer is a dreaded disease.(60)

Numeracy has been defined as “the ability to comprehend, use and attach meaning to
numbers” (p. 262).(61) Research indicates numeracy is a distinct construct from other
indicators of cognition such as education, verbal intelligence, and health literacy.(61) An
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experiment that examined responses to risk information found stronger perceived numeracy
was related to weaker (and ultimately more accurate) risk beliefs.(62) In addition, low
numeracy tends to foster affective responses to risk.(63)

Research indicates sex has no influence on ambiguity related to cancer risk,(64) but females
generally have stronger risk beliefs.(65) Females also tend to notice and recall visual details
more than males, while males tend to see general trends more than females.(66)

1.2. Purpose and Hypotheses
The purpose of this study was to assess how the “certainty” of three map features (contour
focus, number of colors, risk expression) influenced risk beliefs and perceived ambiguity of
risk beliefs for maps displaying four levels of modeled cancer risk. These influences were
assessed within a context of personal characteristics. We propose: (a) focused contours,
three colors, and numerically expressed risk convey more certainty than their counterparts of
unfocused contours, one color, and verbally and relatively expressed risk; (b) these features
will interact with lower and higher risk levels to influence risk beliefs such that certain
features will be related to weaker risk beliefs for lower risk levels and stronger risk beliefs
for higher levels; and (c) a positive dose-response relationship between risk level and the
strength of risk beliefs.

Specific hypotheses (H) and research questions (RQ) include:

• H1. For all risk levels, less certain map features will generate more ambiguity.

• H2. For higher risk levels, more certain map features will generate stronger beliefs.

• H3. For lower risk levels, more certain map features will generate weaker beliefs.

• H4. For all risk levels, risk level will positively relate to the strength of risk beliefs.

• RQ 1. What is the influence of personal characteristics on risk beliefs and
ambiguity?

• RQ 2. Do map variables (features, risk level) interact to influence risk beliefs and
ambiguity?

• RQ 3. Do map features interact with personal characteristics to influence risk
beliefs and ambiguity?

2. METHODS
2.1. Cancer Risk Model

The cancer risk maps used in this study were created from computer-based dispersion
modeling analysis of estimated emissions from stationary and on-road air pollution sources.
For stationary sources, the Wisconsin Department of Natural Resources annual emissions
inventory provided the emissions inputs for the EPA Regional Air Impact Modeling
Initiative (RAIMI) risk screening model. The RAIMI modeling system is a powerful GIS-
based cumulative risk model that automates dispersion modeling over large areas by linking
emissions inventory databases with the EPA Industrial Source Complex model
(ISCST3).(67) The ISCST3 employs a Gaussian plume model to estimate air pollutant
concentrations and resultant risks from multiple sources and pollutants. For mobile sources,
estimates of on-road emissions were developed using roadway data in conjunction with the
EPA MOBILE version 6.2 emissions model.(68) The resultant concentrations of pollutants
were estimated using the AERMOD Gaussian plume dispersion model.(69) Roadway
dispersion modeling was characterized as points representing vehicles (cars or trucks) and
included a downwash algorithm. Cumulative cancer risk was derived by summing the

Severtson and Myers Page 5

Risk Anal. Author manuscript; available in PMC 2014 May 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



pollutant concentrations and cancer risks for each type of source (stationary and on-road)
and each pollutant at every receptor across the county.

Notably, maps represent computer-based estimations calculated from estimated annual
concentrations of air pollutants rather than actual monitored pollutant levels. Given the
uncertainty of this information, intended use is for identifying and prioritizing geographic
areas and pollutants for further agency-level evaluation; not for appraising personal cancer
risk.(70)

2.2. Study Design, Map Variables, and Study Maps
This randomized experiment (no control group) assessed the influence of three map features
hypothesized to convey more or less certainty about modeled cancer risk. This influence was
assessed at four assigned map locations that varied by the four risk levels depicted in classed
maps. Map features were (less certain vs. more certain): contour focus (unfocused vs.
focused), color (1 color vs. 3 colors), and the risk expression used in the legend (verbal-
relative) with no safety benchmarks vs. numeric natural frequencies with safety
benchmarks). Independent map variables (IV) for this 2 × 2 × 2 × 4 factorial design are:
contour focus, color, risk expression, and risk level. H2 and H3 propose differential effects
for two subgroups: lower risk levels (risk levels of 1 and 2) and higher risk levels (risk levels
of 3 and 4).

Eight maps were designed to vary by the three map features. Four versions were produced
for each by adding a “You live here” location within one of the four risk level areas. The 32
study maps were arranged into eight blocks. Each block had two focused (F) and two
unfocused (U) maps with risk levels of 1 and 3 (ordered U3, F1, F3, U1) or 2 and 4 (ordered
U4, F2, F4, U2). Within blocks, maps did not vary by color or risk expression. Four
representative blocks are available at http://research.son.wisc.edu/pollutionstudy/
mapblocks.pdf. To control for ordering effects, maps were provided in reverse order in eight
additional blocks.

Figure 2a depicts focused contours for a three color map. Figure 2b depicts unfocused
contours for a one color map. Maps used sequential color schemes with incrementally darker
shades to depict incremental risk. Each shows the four assigned map locations (risk levels 1–
4) but study maps depicted one location per map.

Data classification produced focused or unfocused contours. For focused contours (Figure
2a), data was classified using four equal interval classes3 that spanned one power of ten as in
NATA maps(71) (Figure 2c). To control for the spatial distribution of modeled risk and
decrease outlier influence, the unfocused “unclassed map” (Figure 2b) was actually a 32
class map with eight equal interval classes within each of the four classes.

Legends were paired with either a numeric or verbal-relative risk expression. The numeric
risk expression conveyed risk as the number of cancer cases per million and included safety
benchmarks of “generally considered unacceptable risk” at risk level 4 and “generally
considered negligible risk” at risk level 1 citing the “Environmental Protection Agency
(EPA)” in a legend footnote (Figure 2c). The verbal-relative risk expression used only
verbal relative risk terms of “Less risk” at risk level 1 and “More risk” at risk level 4
(Figures 2d). All map legends (eight versions) were labeled “Estimated Cancer Risk” and
included this footnote “Based on lifetime exposure of 70 years.”

3In equal interval classing, “each class occupies an equal portion of the number line” (p. 506).(91)
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Maps depicted modeled cancer risk for Dane County, Wisconsin. The only landmarks were
state and interstate highways with road labels and the outline of four major lakes at the
map’s center. The largest lake was labeled and is a central feature of Madison (largest city in
county) and of the University of Wisconsin (UW)-Madison from which the sample was
drawn. Maps included a north arrow, scale, and inset showing the county’s location within
Wisconsin.

Dane County, about 500,000 residents,(72) is a mix of rural and urban land uses and not
highly industrialized. Madison and Dane County meet federal air quality standards with
most days showing “good” quality.(73) We selected Dane county because data was readily
available and showed geographic variability in cancer risk.

2.3. Survey Instrument and Study Sample
Dependent variables (DV) measured risk beliefs, emotion, and perceived ambiguity of risk
beliefs (Appendix). Ten survey items assessed specific and global risk beliefs that identify
risk at personal and neighborhood levels. Specific beliefs were exposure, susceptibility, and
severity items. Global risk beliefs included perceived air safety and problem seriousness.
One survey item, distress about air pollution risk, assessed discreet emotion. Most items had
6-point ordinal scales from strongly disagree to strongly agree. Two items had 11-point
numeric scales. For each belief item, an ambiguity version was created by adding the phrase
“It is hard to know” in front of the item, adapted from Han, Moser, and Klein.(9) The
ambiguity item directly followed the matching belief item. After these survey items,
participants were asked to “briefly describe what the map tells you”. Participants first
assessed an unfocused and then a focused map.

We used five items to control for and examine the influence of pre-map prior beliefs about
outdoor air pollution for participants’ current residential location: sensory perceptions for
smell and appearance, safety, prior ambiguity about air safety, and skepticism about air-
pollution related health risks. As UW-Madison undergraduates, participants likely resided in
the city of Madison or in Dane County; which were depicted on study maps. Given the
assigned map locations, these items provided partial control. After maps, numeracy was
assessed using the eight item subjective numeracy scale(74) that is strongly correlated with,
but more user friendly than, objective measures of numeracy.(75) We also assessed gender,
immediate family cancer diagnosis, and major area of study (Appendix).

About 1800 undergraduate students in eight classes at UW-Madison were invited to
participate via a course website in the Psychology Department or by verbal invitations to
students in three nursing classes. At the online survey website, students were randomly
assigned to one of 16 map blocks. They answered risk belief, emotion, and ambiguity survey
items as they viewed each map. It is unlikely that participants received information about
Dane County air quality prior to the study.

2.4. Data Analysis
Exploratory factor analysis (EFA) with maximum likelihood (ML) estimation and promax
rotation (PAWS Version 18),(76) followed by confirmatory factor analysis (CFA) (M-plus
Version 5.1)(77) was used to create latent variables measuring prior risk beliefs, numeracy,
risk beliefs, and ambiguity.

For H1-4 and RQ1-3, structural equation modeling (SEM) was used to assess the influences
of personal characteristics and map variables on risk beliefs and ambiguity. CFA and SEM
clustered participants to account for interdependence since each viewed four maps, and
therefore used MLR4 estimation. Depending on the analysis, SEM was conducted for: (a)
the total sample, (b) two subgroups: higher risk levels (risk level = 3, 4) and lower risk
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levels (risk level = 1, 2); or (c) four subgroups (risk levels 1–4). For subgroups, we used
multi-group SEM with no paths constrained to be equal across subgroups. Analysis details
are footnoted.5

3. RESULTS
826 students participated in the study that ended mid-semester, so a response rate could not
be estimated. Chi-square tests showed no significant differences in categorical participant
characteristics across the 4 risk levels: 66.3% were female (χ2 = 0.01, p = 1.0); 32.9%
reported a cancer diagnosis in their family (χ2 = 3.36, p = 0.34); and 44% were in a health-
related major, 1% environmental studies, and 55% another major or undecided. Health and
environmental majors were merged (other, health) (χ2 = 0.67, p = 0.88). ANOVA with
posthoc comparisons (Sidak corrections) showed no differences in prior beliefs across the 4
risk level subgroups (results available from first author): means indicated prior beliefs of
safe air [2.28(0.76]; slight disagreement for prior skepticism about air pollution-related
health risks [2.9(1.06)]; and slight prior ambiguity about air safety [4.05(1.09)] (6-point
scales).

3.1. Factor Analysis
EFA for prior beliefs prompted removing two low loading variables (< .32(78)) resulting in a
single factor that explained 48.6% of variance. Removed items (prior ambiguity about air
safety and prior skepticism) were specified in the SEM as univariate observed variables.
EFA identified two factors for numeracy (numeric ability and numeric preference) that
explained 54.6% of variance. EFA among dependent risk belief and ambiguity variables
resulted in 2 factors, risk beliefs and ambiguity that explained 68.9% of the variance among
these 21 variables. The risk beliefs factor included all specific and global risk beliefs and
emotion. The ambiguity factor included all ambiguity variables. Modification indices from
CFAs of IVs and DVs prompted the addition of six correlated error terms to improve model
fit.6 The highest loading on risk beliefs was exposure to air pollution and lowest was
severity. Multi-group CFA was also conducted across the 4 risk levels.7 Standardized CFA
loadings for all levels and across the four levels are available at http://research.son.wisc.edu/
pollutionstudy/loadings.pdf.

4Clustering a variable results in a complex model. MLR is an M-plus option for the maximum likelihood procedure for complex
models. Standard errors and the chi-square test statistic are robust to non-normality and non-independence of observations.(92)
5To assess H2, H3, and RQ1, multi-group SEM (higher and lower risk) was used to examine the influence of map features and risk
level on risk beliefs and ambiguity in the presence of personal characteristics. To assess H1, H4 and RQ1, SEM was used to examine
the influence of map features and risk level on ambiguity (H1) and on risk beliefs (H4) in the presence of personal characteristics. To
assess RQ2 and 3, multi-group SEM (higher and lower risk) included interaction terms within map features, between map features and
risk level, and between personal characteristics and map features. Significant interaction effects (p < .10) were examined using post-
hoc SEMs stratified by a map variable from the interaction term.
6For prior beliefs (IV), correlated errors were included for satisfaction with outdoor air smell and appearance. For risk beliefs (DV), 3
correlated errors were included between variables measuring: (1) perceived exposure to unsafe air at personal and neighborhood
levels, (2) perceived problem seriousness at personal and neighborhood levels, and (3) ratings of air pollution risk and the chance of
having health problems (both assessed with an 11 point numeric scale ). For ambiguity (DV), 2 correlated errors were included
between: (1) perceived ambiguity of perceived exposure at personal and neighborhood levels and (2) perceived ambiguity about
perceived problem seriousness at personal and neighborhood levels. It is appropriate to allow correlated measurement errors when
justified by contextual explanations that might result in correlated errors in survey responses.(93) Fit indices for IV measurements
with no correlated errors: SRMR = .06, RMSEA = .11, CFI = .89; Fit indices for IV measurements with correlated errors: SRMR = 0,
RMSEA = 0, CFI = 1.00. Fit indices for DV measurements with no correlated errors: SRMR = .07, RMSEA = .08, CFI = .89; Fit
indices for DV measurements with correlated errors: SRMR = .07, RMSEA = .06, CFI = .93.
7For beliefs, loadings varied across beliefs and risk levels. Loadings on risk beliefs for severity had the largest range (.20 – .62) and
increased with increasing risk level. Loadings on ambiguity varied little by risk level (except severity). Ambiguity loadings were
similar across items and risk levels except ambiguity about severity showed a trend of decreasing as risk level increased (opposite
trend as beliefs). Table and graphs of factor loadings for beliefs and ambiguity across risk levels is available at http://[reviewers see
loadings.pdf – this will be available online].
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Table I provides means and standard deviations across the four risk levels for the highest
loading risk belief (exposure at a personal level) and companion ambiguity item. For beliefs,
post hoc comparisons (ANOVA) indicated the largest mean difference was between risk
levels 2 and 3. Ambiguity was larger for risk level 2 than 1, and for 3 than 4. Eta2 indicated
a linear relationship between risk level and risk beliefs, but not ambiguity.

Table II provides correlations among personal characteristics. The correlation between
numeric ability and preference was large; most others were small or null. Stronger numeric
ability and preference were related to male sex and viewing maps with a verbal-relative risk
expression (numeracy was assessed after maps were viewed). Stronger prior risk beliefs
were related to more prior ambiguity, female gender, weaker prior skepticism about health
risks, less perceived numeric ability, and a health major. Stronger prior ambiguity was
related to stronger prior risk beliefs, female gender, and less perceived numeric ability. Prior
skepticism about air pollution-related health risks was related to a non-health major, male
gender, and more numeric ability. Females were more likely to report being in a health
major.

3.2. Map Variables on Beliefs and Ambiguity
Table III provides standardized SEM coefficients for the influence of map variables on
ambiguity and risk beliefs across higher, lower, and all risk levels. Multicollinearity between
numeric ability and preference prompted analyzing separate models for each. Table III
provides coefficients for the model with numeric preference and the numeric ability
variable. Coefficients for the model with numeric ability are at: http://research.son.wisc.edu/
pollutionstudy/ability.pdf.

Figures 3 and 4 illustrate standardized SEM coefficients for the influence of personal
characteristics and map features on ambiguity and risk beliefs at each risk level (H1 and
H2). The Fig. 3 caption provides interpretive details. Fig. 5 illustrates significant interaction
effects (RQ2 and RQ3).

3.2.1. Ambiguity
RQ1. Influence of personal characteristics: For all risk levels (Table III), more prior
ambiguity and less preference for numeric information fostered more ambiguity. For higher
risk levels, weaker prior beliefs and less cancer experience fostered more ambiguity.

H1. For all risk levels, less certain map features will generate more ambiguity: H1 was
supported for contour focus (unfocused generated more ambiguity than focused) and risk
expression (verbal-relative generated more ambiguity than numeric), but not for color (Table
III, Fig. 3).

RQ2. Interactions among map variables: At lower risk levels, interactions indicated (see
Fig. 5): risk level generated more ambiguity for focused than unfocused contours: (.09, p = .
08; #4); and unfocused contours generated more ambiguity for the numeric than verbal-
relative risk expression (.07, p < .01, #7) and for maps with 1 than 3 colors (.05, p = .08; #6).
Only the last interaction fully supports H1.

3.2.2. Risk beliefs
RQ1. Influence of personal characteristics: Stronger prior beliefs of poor air fostered
stronger risk beliefs for all risk levels (Table III, Fig. 4). For higher risk levels (Table III),
female sex, a health major, less prior skepticism, and family cancer experience were related
to stronger risk beliefs. For lower risk levels (Table III), weaker numeric preference and
ability, and less prior ambiguity were related to stronger beliefs.
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H2. For higher risk levels, more certain map features will generate stronger beliefs:
This hypothesis was supported for contour focus (focused generated stronger beliefs) and
color (three colors generated stronger beliefs) but not for risk expression (Table III). Fig. 4
suggests null findings for risk expression occurred due to the positive effect (but null) of risk
expression on beliefs at risk level 4 but negative effect at level 3 (verbal-relative risk
fostered stronger beliefs).

RQ2. Interactions among map variables – higher risk levels: The interaction effect
between risk level and risk expression was marginally significant (.35, p = .09). Fig. 5
(interaction #1) illustrates that risk level generated somewhat stronger risk beliefs for the
numeric than the verbal-relative risk expression. An interaction effect between risk level and
contour focus (.41, p < .001; Fig. 5, #2) indicates risk level generated stronger beliefs for
focused than unfocused contours. These interaction effects further support H2; risk level had
a stronger effect for certain compared to uncertain map features.

H3. For lower risk levels, more certain map features will generate weaker beliefs: This
hypothesis was supported for contour focus (focused generated weaker beliefs) and risk
expression (numeric generated weaker beliefs), but not for color (Table III, Fig. 4).

RQ2. Interactions among map variables – lower risk levels: An interaction between risk
level and contour focus occurred because risk level generated stronger beliefs for focused
than unfocused contours (.15, p < .01; Fig. 5, #3). An interaction between color and contour
occurred because unfocused contours generated stronger beliefs for 1 color than 3 (.07, p < .
05; Fig 5, #5).

H4. For all risk levels, risk level will positively relate to the strength of risk beliefs: H4
was fully supported. Risk level had a large influence on risk beliefs (moderate influence for
higher and lower risk subgroups) (Table III). Across subgroups, risk level had a small
positive influence on ambiguity for lower risk levels and small negative effect for higher
risk, reflecting the mean ambiguity differences in Table I.

Correlations between risk beliefs and ambiguity varied by risk level (Fig. 6). At lower risk
levels, stronger risk beliefs were related to more ambiguity. At higher risk levels, stronger
risk beliefs were related to less ambiguity.

3.2.3. RQ3. Interactions between Map Variables and Personal Characteristics
—Interactions were only between risk expression and numeric preference or prior
skepticism. Less numeric preference or prior skepticism generated stronger risk beliefs or
ambiguity more for the numeric than the verbal-relative risk expression (Fig. 5). Results are:
risk expression*skepticism on risk beliefs (higher risk) = .24, p < .05 (#8); risk
expression*numeric preference on risk beliefs (lower risk) = .26, p < .05 (#9); risk
expression*numeric preference on ambiguity (higher risk) = .22, p < .05 (#10) and (lower
risk) = .31, p < .001 (#11).

4. DISCUSSION
4.1. Map Features and Risk Level on Risk Beliefs and Ambiguity

4.1.1. Risk Level—Risk level had the most dominant influence on how participants
identified personal- and neighborhood-level risk, suggesting that shaded isarithmic maps can
effectively communicate dose-response relationships for geographic risk information.
Bottom-up comprehension of pre-attentive incremental color shading surrounding (proximal
to) assigned map locations in tandem with top-down processing to answer questions about
risk for assigned map locations likely enhanced risk level’s influence. The iconic
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resemblance of shading to communicate increasing magnitude and of assigned map location
to communicate participants’ proximity to risk further supports comprehension. The
vertically ordered legend categories may have enhanced the dose-response meaning derived
from the map due to bottom-up processing of pre-attentive position on a scale(13)

(incremental legend categories) and direction(13) from low to high. Others have found that
vertical orientation relates to increasing magnitude.(79)

4.1.2. Contour Focus—Data classification produces focused (classed) or unfocused
(unclassed) map contours. Contours were the unit of perception, a key factor proposed to
shape what people see and derived bottom-up meaning.(12) The substantial influence of
contour focus on ambiguity and risk beliefs supports this proposition as did an earlier study
of a different mapped hazard and perceptual units.(3) The iconic visual appearance of “in
focus” or “out of focus” to convey a gist of certainty or uncertainty explains results showing
full support for the hypothesized influence of contour focus on ambiguity. For unfocused
maps, the lack of discrete incremental risk levels in the map and legend, and related top-
down difficulty of matching map and legend colors add to perceptual unit’s influence. This
study participant’s comment illustrates these explanations; “The gradual shading made it
more difficult to decide where exactly each spot fell on the spectrum of cancer risk.”
Conveying uncertainty, such as modeled cancer risk, is a risk communication challenge.(80)

Depicting uncertain information as out of focus shows promise for addressing that
challenge.

Full support for the hypothesized influence of focused contours to generate stronger beliefs
for higher risk levels and weaker beliefs for lower risk levels is explained by bottom-up
comprehension of incremental risk due to the discreet and incrementally shaded risk levels
in the map and legend, and the top-down ease of matching map and legend colors. This
participant’s comment illustrates the advantage of classed maps; “the lines are more clear-
cut so you can easily tell what areas have which levels of air pollution.” Findings and quotes
support MacEachren’s proposition that contour focus effectively represents the certainty of
information.(4) More broadly, iconic representations may be effective for conveying
certainty.

Results illustrate that location-based risk level (essentially proximity to mapped risk) has a
larger influence on participants’ ability to identify person- and neighborhood-level risk for
focused than unfocused maps. We conclude that perceptual unit interacts with risk level to
influence beliefs such that visually distinct units depicting defined areas of risk amplify the
impact of shaded risk level compared to fuzzy unfocused units. Assigned participant
locations that were well within the defined risk areas likely strengthened these interaction
effects.

Notably, contour focus is a by-product of producing classed and unclassed maps. An
unfocused unclassed map is a more accurate representation of the risk data than a focused
classed map.(14) Other methods of visualizing uncertainty(4, 7, 8, 23) require intrinsic
modifications to the appearance of map features, or the extrinsic addition of uncertainty
features to a map.

4.1.3. Risk Expression—As predicted, the less certain verbal-relative risk expression
generated ambiguity at all risk levels. The substantial influence of risk expression on
ambiguity is indicated by this participant’s comment about the relative nature of the verbal-
relative risk expression; “the map provides a non-scaled risk of harm, pretty ambiguous.”
This participant’s comment indicates the absence of base rates generates ambiguity “…
because it [verbal-relative risk expression] could have been from 0% – 100% or 1% –3%;
whether I would have felt unsafe if I lived in a region with ‘more’ risk would have varied
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greatly depending on whether ‘more’ meant 100% or 3%.” Comments suggest the lack of a
normative base rate had a greater influence on ambiguity than the verbal nature of the risk
expression.

For risk levels 1–3, the numeric risk expression may have provided a less threatening
message for four reasons. First, the ambiguity of the verbal-relative risk expression tends to
heighten perceived risk and associated emotion compared to less ambiguous numeric
risk.(9, 53, 54, 81) Second, initial numbers in the numeric range were small (0.1, 1, 10), and
likely perceived as smaller if compared to the denominator of a million people. Third, these
small numbers were on the leading left edge of the range, thus likely more visually salient
than the larger numbers on the right edge. Fourth, some studies show people attend more to
the frequency of harm, small in this case, than the population at risk.(82) Collectively, these
explain why the numeric expression prompted weaker beliefs at risk levels 1–3; supporting
our hypothesis for lower but not higher risk levels.

The “unacceptable” benchmark at risk level 4 in the numeric risk expression may explain
why participants had a non-significant trend of stronger beliefs at level 4 for the numeric
expression, but stronger beliefs at level 3 for the verbal-relative expression. This is
consistent with findings of discontinuity effects for beliefs generated by risk levels just
below or above a safety indicator.(40) The personal relevance of the benchmark for students
in a health major may explain their stronger risk beliefs at level 4. Finally, using
interpolation to derive meaning for the unlabeled risk levels in the verbal-relative expression
(levels 2, 3) may have generated additional ambiguity.

Interaction effects indicated numeric preference and skepticism moderated the main effects
of risk expression. At lower and higher risk levels, less comprehension of numeric
relationships may have generated more ambiguity for the numeric expression; supported by
this participant’s comment, “The thing that is confusing about this map is the ratios they
give in the key.” Aversion to ambiguity(51) may have prompted some participants assigned
to the verbal-relative expression to indicate a numeric preference (Table II).

The scientific appearance of, and use of “people” in, the numeric expression may convey a
gist of credibility and seriousness. For lower risk levels and participants with less numeric
preference, the gist of credibility and seriousness together with decreased comprehension of
the smaller numbers and probabilities may have generated stronger beliefs, feelings, and
ambiguity compared to the easily comprehended verbal-relative expression of “Less”. For
higher risk levels, less prior skepticism (bias) about air pollution-related health effects may
have allowed participants to adopt stronger beliefs, and more so for the numeric expression
due to the gist of credibility and seriousness.

Notably, numeracy only influenced outcomes for the numeric risk expression, likely due to
its alphanumeric content. An absence of numbers explains why numeric preference had no
effects for the verbal-relative expression. In addition, contour focus and incremental shading
operated similarly across participants who varied in perceived numeracy indicating these
visual features addressed numeracy barriers for communicating information uncertainty and
incremental risk. Although a distinct construct,(61) numeracy is viewed as a component of
health and science literacy,(83) and all are relevant to environmental health. Results suggest
visual map features may go beyond numeracy to address other aspects of health and science
literacy.

Unfocused contours generated more ambiguity for the numeric than the verbal-relative risk
expression (Fig. 5, #7). When the legend has numeric risk levels, participants may be
motivated to match their map location color to the legend to determine numeric risk.
Inability to accurately match unfocused graded colors to the numeric legend scale may
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increase perceived ambiguity. Since incremental shading pre-attentively and iconically
conveys “Less” to “More,” the verbal-relative risk expression in the legend is redundant;
therefore matching a map location’s color to the legend is less meaningful. Fewer attempts
to match map locations to the verbal-relative risk expression may decrease ambiguity
compared to the numeric risk expression. Those creating maps should consider how features
work together to communicate a coherent message.

4.1.4. Number of Colors—We expected more than the weak interaction effects found
between color and contour focus because additional colors should enhance the matching
process substantially more for unfocused maps than those with only 4 classes, as fewer
classes increase visual discrimination of a single shaded color.(25) The dominant pre-
attentive and iconic influence of incrementally darker shading to convey incremental risk
may have overshadowed the influence of additional colors on unfocused maps resulting in
smaller interaction effects. In addition, stronger beliefs for unfocused blue than multicolor
maps at lower risk levels may have occurred because at risk levels 1 and 2, blue appeared
darker than yellow and light green.

4.1.5. Personal Characteristics—Map features exerted effects within a context of
personal characteristics. Published evidence that prior risk beliefs have a substantial
influence on knowledge and beliefs derived from images(55, 56) supports our findings for the
sizable effects of prior risk beliefs and ambiguity on outcomes. When expected and depicted
air pollution risk is not aligned, weaker prior risk beliefs may generate ambiguity. When risk
is low, numeracy, prior beliefs, and prior ambiguity may have a stronger influence on beliefs
and feelings than gender. Finally, a lack of interaction effects between sex and map features
does not support previous observations that sex moderates visual cognition.(66) Influences of
numeric preference and skepticism were discussed earlier.

4.1.6. Emotion, Relationship between Risk Beliefs and Ambiguity—The
integration of distress and beliefs (some with considerable emotional valence) into a single
latent risk belief variable indicates emotion played a role in participants’ cognitive responses
to the maps, consistent with findings on the role of emotion.(42, 47–49) The distinction
between cognitive and emotional responses cannot be discerned because risk beliefs
included aspects of both.

Only results at lower risk levels support other’s conclusions that uncertainty relates to
stronger risk beliefs.(52) Emotions generated by the ambiguity of lower risks and associated
with low numeracy, described earlier and noted by others,(9, 51–54, 63) could foster stronger
beliefs. At higher risk levels, uncertainty was related to weaker beliefs. The strong bottom-
up response to incrementally darker colors that iconically represented incremental
magnitude may explain why participants were, appropriately, more ambiguous about
stronger beliefs at lower risk levels and weaker beliefs at higher risk levels (Fig. 6). The
larger gap in beliefs between risk levels 2 and 3 suggests place-based air pollution
perceptions, lower for rural than urban,(58) moderates the influence of risk level on risk
beliefs.

4.2. Limitations
Since there were no adjustments for assessing multiple interactions (some significant values
expected due to chance), these exploratory results should be cautiously interpreted. The
study design does not support examining the separate effects of risk expression components
(verbal-numeric, relative-objective, safety benchmarks) because the numeric expression
included benchmarks. The student sample hinders generalizing results to the public due to:
homogeneity in age and education level, and less personal relevance for the fictitious “you
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live here” locations and for risk estimates based on 70 years of exposure. While earlier maps
likely exerted a training effect for later maps, we reversed map order for half the sample,
and accounted for map order and intra-individual dependencies in the analysis. Although we
could not control for variance in map appearance across computers, this increases external
validity for online risk maps.

4.3. Implications
4.3.1. Broad Implications—Identifying effective methods for conveying the uncertainty
of mapped risk information is important because maps show promise as an effective tool for
informing the public about the geographic distribution of environmental risk. Although
websites often include written disclaimers on the limitations of and appropriate uses for
available maps, methods are needed to convey the gist of uncertainty within maps because
users are likely to skip the disclaimers and maps are likely to convey lasting meaning. Most
encouraging are findings that ambiguity was stronger for less appropriate dose-response
beliefs. Contour focus paired with incremental shading show promise for addressing
numeracy barriers and fostering appropriate dose-response beliefs and levels of ambiguity.
Numeric and verbal-relative risk expressions were also effective for conveying certainty, but
the effectiveness of the numeric expression was compromised when numeracy was low.
Such methods support sharing uncertain information with the public and related goals of
increasing transparency regarding the work of agencies,(84, 85) encouraging informed
community action,(86) and public participation in policy decisions.(87)

Studies provide mixed evidence for the influence of ambiguity on behavior,(9) ambiguity can
impede taking action.(9, 88) However, given (a) the power of images to shape meaningful
gist, (b) the effectiveness of darker color to communicate increasing risk, and (c) the
negative valence of heightened risk beliefs, we posit that maps with or without uncertain
features are more likely than text information to support decision-making and motivate
action. For example, some may be motivated to advocate for better public transportation.
Personal characteristics, especially prior risk beliefs, are likely to play a substantial role in
explaining how maps motivate action.

4.3.2. Implications for Theory—The most powerful visual features, contour focus and
shading, were conceptualized as having both bottom-up and iconic influences. We propose
that iconicity operates on a continuum between two basic modes of resemblance. Icons can
resemble features that are processed bottom-up and icons can resemble “real-world”
meaning that is readily available from long-term memory, e.g., a tent to depict a
campground or blue to denote bodies of water. For iconic signs that are processed bottom-
up, the neurological link between vision and cognition supports comprehension.
MacEachren noted other perspectives on iconicity(22) such as the mimetic to abstract
continuum proposed by Robinson and others.(21, 89) The bottom-up to real-world
resemblance continuum complements these other perspectives.

4.3.3. Implications for Research—Results provide abundant suggestions for further
study. Several factors may moderate how contour focus influences risk beliefs and
ambiguity. More data classes may attenuate effects by decreasing the visual contrast
between incremental risk levels on classed maps and by increasing visual complexity. For a
given dataset, perceptual unit’s size will be influenced by the number of classes; the distinct
influence of each variable should be examined. More colors may enhance visual contrast
and mitigate the influence of the number of classes. A diverging color scheme (especially a
spectral diverging scheme)(25, 26) may decrease the influence of contour focus by further
enhancing visual contrast across risk levels on unfocused unclassed maps. Symbolic risk
colors (e.g., red conveys warning) may influence risk beliefs and ambiguity and exert more
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influence for larger than smaller units of perception. Including an alphanumeric control,
measures that discriminate between cognition and emotion, and appropriate decisional
outcomes would provide evidence on theoretical mechanisms that explain how images
influence these dependent variables. Including health or science literacy measures would
support exploring how map features address these barriers to cognition. Comparing maps
that depict either total estimated cancer risk or total estimated carcinogenic air pollution
would assess whether and how people discriminate between these two risk model endpoints;
the former is more uncertain as it includes estimated cancer potencies. To establish external
validity, studies are needed among representative samples and using participants’ perceived
map locations for their actual residence because personal relevance influences
interpretations of risk information(44) including mapped risk.(3) Following participation,
study participants should be informed about the uncertainty of modeled cancer risk and then
debriefed to assure comprehension because the study information could generate
unwarranted anxiety for some individuals.

4.3.4. Implications for Practice—Those creating maps of modeled risk for public
audiences should consider how the uncertainty of this information can be embodied in map
features. Unfocused unclassed (or many-classed) isarithmic maps of continuous data appear
to be an effective method for conveying uncertainty; an attractive option because they depict
data more accurately than classed maps. Incrementally darker shading was very effective for
conveying incremental risk. The verbal-relative risk expression also resulted in substantially
more ambiguous beliefs, but did not allow external comparisons to other risk levels or
normative indicators; a potential limitation depending on communication goals. Uncertain
features resulted in stronger beliefs at lower risk levels, another tradeoff to consider when
creating maps for public audiences. Interaction effects suggest practitioners should consider
how features work together to communicate a coherent message. Feedback from the target
audience should inform the final selection of features.

5. Conclusions
Visual features addressed communication challenges of conveying information uncertainty
and a dose-response message. The effectiveness of these features is explained by (a) the
iconicity of contour focus and incrementally darker color shading to convey uncertainty and
incremental risk for assigned map locations, and (b) bottom-up processing of unit of
perception (contour focus) and pre-attentive features (shading). For unfocused contours, the
ambiguity generated by the difficulty of matching map and legend colors explains how top-
down processing to identify location-based risk contributed to bottom-up influences. The
power of incremental shading to convey a dose-response message appropriately generated
more certainty for beliefs that were aligned with risk levels. Additionally, risk level
interacted with contour focus such that risk level had stronger effects on beliefs for focused
perceptual units that illustrated discrete risk level increments and facilitated matching map
and legend colors. The expected geographic distribution of risk level from rural to urban
locations reinforced and modified the incremental risk message. The lack of normative base
rates and safety benchmarks explains why the verbal-relative risk expression generated
substantially more ambiguity than the numeric risk expression. Unlike the numeric risk
expression, iconic and pre-attentive map features addressed numeracy barriers for
communicating information uncertainty and incremental risk. Overall, results indicate
incremental shading effectively conveys a dose-response message, and contour focus and
risk expression show promise for conveying information uncertainty. Further research is
needed to confirm and extend these findings.
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Fig. 1.
Integrated Representational and Behavioral Framework. The framework was revised from
the original version3 to reflect study concepts. Information processing is depicted in gray
text because it is inferred rather than measured. Intention and Behavior are depicted in gray
because these concepts were not included in this study.
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Fig. 2.
depicts two of the eight versions of study maps and legends. 2a is a focused contour map
(classed map) with three colors (yellow, green, blue). 2b is an unfocused contour map
(unclassed map) with one color (shades of blue). 2c is the legend using the numeric risk
expression for an unfocused map with three colors. 2d is the legend using the verbal-relative
risk expression for a focused contour map with one color. Maps and legends are in color for
the online version of the paper.
*Risk Levels provided on maps 2a and 2b were not on study maps. Study maps depicted
only one assigned location per map. (note to type-setter – this should appear under each
map)
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Fig. 3.
illustrates the influence of map features and personal characteristics on ambiguity for risk
levels 1–4. Incrementally darker shades of gray indicate incrementally larger risk levels.
Bars represent standardized SEM coefficients significant at p < .05 or higher. Textured bars
are non-significant. A longer bar indicates a stronger influence regardless of direction above
or below the x-axis. Horizontal labels at the top and bottom indicate personal characteristics
and map features related to stronger outcomes. Bars above the axis indicate personal
characteristics, female gender, health major, and certain map variables related to stronger
outcomes (positive coefficient); bars below indicate counterparts related to stronger
outcomes (negative coefficient).
*Exp = Experience, Pref = Preference (note to type-setter – this should appear under Fig. 3
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Fig. 4.
illustrates the influence of map features and personal characteristics on beliefs for risk 1–4.
See the Fig.3 caption for interpretive details.
*Exp = Experience, Pref = Preference (note to type-setter – this should appear under Fig. 4
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Fig. 5.
illustrates significant interaction effects (see x-axis) on risk beliefs (bars with black outlines)
and ambiguity (no outlines) for RQ2 and RQ3. Bars show the SEM coeffient for the
influence of the 1st variable in the interaction term. See explanatory text for details.
a. RL = risk level, RE = risk expression, CF = contour focus, Co = color, Sk = skepticism,
Np = numerical preference
b. ns = not significant (all others are significant at p < .05)
(note to type-setter – a. and b. should appear under Fig. 5)
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Fig. 6.
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