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Abstract
Pancreatic cancer is a highly lethal malignancy with few effective therapies. We performed exome
sequencing and copy number analysis to define genomic aberrations in a prospectively accrued
clinical cohort (n = 142) of early (stage I and II) sporadic pancreatic ductal adenocarcinoma.
Detailed analysis of 99 informative tumours identified substantial heterogeneity with 2,016 non-
silent mutations and 1,628 copy-number variations. We define 16 significantly mutated genes,
reaffirming known mutations (KRAS, TP53, CDKN2A, SMAD4, MLL3, TGFBR2, ARID1A and
SF3B1), and uncover novel mutated genes including additional genes involved in chromatin
modification (EPC1 and ARID2), DNA damage repair (ATM) and other mechanisms (ZIM2,
MAP2K4, NALCN, SLC16A4 and MAGEA6). Integrative analysis with in vitro functional data
and animal models provided supportive evidence for potential roles for these genetic aberrations in
carcinogenesis. Pathway-based analysis of recurrently mutated genes recapitulated clustering in
core signalling pathways in pancreatic ductal adenocarcinoma, and identified new mutated genes
in each pathway. We also identified frequent and diverse somatic aberrations in genes described
traditionally as embryonic regulators of axon guidance, particularly SLIT/ROBO signalling, which
was also evident in murine Sleeping Beauty transposon-mediated somatic mutagenesis models of
pancreatic cancer, providing further supportive evidence for the potential involvement of axon
guidance genes in pancreatic carcinogenesis.

Pancreatic cancer is the fourth leading cause of cancer death, with an overall 5-year survival
rate of <5%, statistics that have not changed in almost 50 years1. Advances in neoadjuvant
and adjuvant chemotherapeutic regimens have resulted in some improvement in outcome,
but pancreatectomy remains the single most effective treatment modality for pancreatic
cancer, and offers the only potential for cure. Only 20% of patients present with localized,
non-metastatic disease which is suitable for resection2. Those who undergo resection and
receive adjuvant therapy have a median survival of 12–22 months and a 5-year survival of
20–25%3. Existing systemic therapies are only modestly effective and the median survival
for patients with metastatic disease remains 6 months. Genomic characterization of
pancreatic ductal adenocarcinoma (PDAC), which accounts for over 90% of pancreatic
cancer, has so far focused on targeted polymerase chain reaction (PCR)-based exome
sequencing of primary and metastatic lesions propagated as xenografts or cell lines4. A
deeper understanding of the underlying molecular pathophysiology of the clinical disease is
needed to advance the development of effective therapeutic and early detection strategies.

Clinical cohort
A cohort of 142 consecutive patients with primary operable, untreated PDAC who
underwent pancreatectomy with curative intent (pre-operative clinical stages I and II) were
recruited, and consent was obtained for genomic sequencing through the Australian
Pancreatic Cancer Genome Initiative (APGI), the Baylor College of Medicine Pancreatic
Cancer Genome Project and the Ontario Institute for Cancer Research Pancreatic Cancer
Genome Study (ABO collaboration) between June 2005 and June 2011 as part of the
International Cancer Genome Consortium (ICGC)5. Detailed clinico-pathological
characteristics of the cohort demonstrated features typical of resected PDAC with regard to
tumour size, grade, lymph node metastasis and survival when compared to multiple
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retrospectively acquired cohorts6–8, defining the accrued population as representative of the
clinical disease in the community (Supplementary Table 1 and Supplementary Fig. 1).

Cellularity and mutation detection
A major challenge in genomic sequencing is the low malignant epithelial cell content of
many cancers, which can adversely impact on the sensitivity of mutation detection. Most
sequencing studies so far have used samples with >70% tumour cellularity, or cell lines/
xenografts4,9. To implement genomic sequencing approaches in clinical practice, it is
imperative to efficiently and accurately detect actionable mutations in diagnostic clinical
samples. We devised methodologies to overcome the challenges associated with extensive
desmoplastic stroma that is characteristic of the majority of PDAC, and these strategies
facilitated the discovery of novel molecular mechanisms in the pathophysiology of this
disease. The cellularity of each primary sample was estimated through pathological review,
deep amplicon-based sequencing of exons 2 and 3 of KRAS (average depth of 1,000×), and
single nucleotide polymorphism (SNP) array-based cellularity estimates using a novel
algorithm (qpure)10. KRAS mutations were identified in 93% of 142 cases and tumour
cellularity ranged from 5% to 85% with a mean of 38% (Supplementary Table 2,
Supplementary Figs 2 and 3, and Supplementary Methods).

To inform cellularity thresholds for subsequent analyses, we defined the impact of stromal
DNA content on mutation detection by exome capturing and sequencing different mixtures
of cancer cell line and matched germline DNA (100%, 80%, 60%, 40%, 20% and 10% cell
line DNA) when sequenced to a depth of 70× coverage. Using these data as a standard, the
median sensitivity to detect true positives across all samples in the cohort with greater than
20% epithelial cellularity was estimated at 45% (Supplementary Table 3). An informative
cohort of 99 patients who had greater than 20% cellularity and/or ≥10 validated somatic
mutations was taken forward for further analysis.

Mutation detection and CNV analysis
We performed hybrid-selection-based capture and sequencing of the entire exomes of
tumour and matched normal DNA derived from all 142 patients using a combination of
capture systems and next-generation sequencing platforms (see Supplementary Methods).
The sequence depths at each site (APGI 65×, BCM 104× and OICR 205×) were adopted to
ensure suitable sensitivity across their respective cohorts (Supplementary Table 3). In the
informative 99 samples, we detected 2,627 high-confidence mutations, 2,016 of which were
non-silent (Table 1). A total of 1,502 of these events (1,350 non-silent) were independently
validated via an orthogonal sequencing method (see Supplementary Methods). The average
number of mutations detected per patient was 26 (range 1–116), consistent with the expected
sensitivity based on cellularity estimates and previous studies4,11 (Supplementary Table 2).
We confirmed the high prevalence of genetic aberrations known to be important in PDAC
and observed mutations in 38 of the 79 genes (48% overlap) that occurred more than once
previously reported by ref. 4, and 186 of all 998 mutated genes (19% overlap) in that study.
We also defined a large number of novel mutations (1,456 genes), most of which occurred at
low frequency (see Supplementary Tables 4– 6 and Supplementary Fig. 4 for detailed
comparisons). The observed transversion/transition rates in the cohort correlated closely
with those previously reported in PDAC cell lines and xenografts (Supplementary Table 7).

Significant mutated gene analysis12 of genes with non-silent mutations that occurred in 2 or
more individual cancers identified 16 genes in the top 20 mutated genes in 2 of 3 stringent
analytical approaches (Table 2, Supplementary Table 8 and Supplementary Methods) and
reaffirmed the importance of mutations known to occur in PDAC: KRAS, TP53, CDKN2A,
SMAD4, MLL3, TGFBR2, ARID1A and SF3B1. Novel significantly mutated genes
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included additional genes involved in chromatin modification (EPC1 and ARID2) and
ATM, recently implicated as a PDAC susceptibility gene through bi-allelic inactivation in a
case of familial PDAC (germline mutation and loss of heterozygosity (LOH) in the
tumour)13. Aberrations of ATM occurred in 8% of our cohort (mutated in 5%, LOH or loss
in 5%, with two patients exhibiting both mutation and LOH or loss) and mutations detected
in other genes not previously reported: ZIM2, MAP2K4, NALCN, SLC16A4 and MAGEA6
(Table 2). GISTIC2.014 identified 30 genes affected by copy-number alterations (Q value
<0.0001) and included losses of CDKN2A and SMAD4 (Supplementary Table 4).

Pathways in pancreatic cancer
To better understand potential underlying mechanisms of importance in PDAC, we
performed a series of pathway analyses using genes that were recurrently mutated in two or
more individuals using GeneGO15, and identified mechanisms known to be importantin
cancer: G1/S checkpoint machinery (P = 1.49 × 10–3), apoptosis (P = 1.32 × 10–4),
regulation of angiogenesis (P = 7.72 × 10–4) and TGF-β signalling (P = 9.50 × 10–4).
Interestingly, novel gene signatures were enriched in our cohort, including axon guidance (P
= 5.30 × 10–5) (Supplementary Table 9). The inclusion of mutation data for 24 cases from
ref. 4 strengthened the association of axon guidance (P = 3.3 × 10–7), and was more evident
still when all mutated genes in our data set were used as input (P = 4.67 × 10–8).

Functional relevance of genomic events
Differentiating somatic driving events of carcinogenesis from passenger mutations is a
major challenge in cancer genomics16. Despite significant advances in computational
algorithms, experimental evidence of functional relevance is paramount. We used data from
three published experimental biological screens to infer functional consequences for the
individual genomic events and the pathways we identified. These included data from two
independent Sleeping Beauty transposon (SB) mutagenesis screens in Kras transgenic
mouse models of PDAC17,18 and an in vitro short hairpin RNA (shRNA) screen which
examined the consequences of downregulating 11,194 putative cancer genes on survival in a
panel of 102 cell lines (13 pancreatic)19 (Supplementary Methods and Supplementary Figs 5
and 6). Data from these screens confirmed the functional importance of KRAS, TP53,
CDKN2A and SMAD4 mutations and attributed potential functional relevance to most
significantly mutated genes—MLL3, TGFBR2, SF3B1, EPC1, ARID1A, ARID2, MAP2K4,
ATM, NALCN, ZIM2, SLC16A4 (Table 2)—and many genes mutated at low frequency
(Supplementary Table 4).

Pathway analysis of high confidence insertions in SB transposon mutagenesis screens
demonstrated enrichment for axon guidance genes (P = 1.6 × 10–3), providing independent
supportive evidence for a potential role in the pathogenesis of PDAC. In these screens, 14
genes involved in axon guidance pathways were detected (5 genes common to both). In
addition, a further 32 genes were mutated in at least one SB pancreatic tumour (out of 21)
but did not meet the significance threshold with the stringent analyses that were applied17

(Supplementary Tables 10 and 11).

Axon guidance pathway genes
The class of genes traditionally described for their roles in axon guidance (semaphorins,
slits, netrins and ephrins) are important regulators of normal neuronal migration and
positioning during embryonic development. More recently, they have been implicated in
cancer cell growth, survival, invasion and angiogenesis20; however, the incidence of
aberrations in these genes in cancer is largely unknown. We identified recurrent mutations
and copy-number variations (CNVs) of axon guidance pathway genes in this cohort (Fig. 1
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and Supplementary Table 4): SLIT2 and ROBO2 mutations were present in 5% of patients,
with focal copy-number losses of ROBO1, and SLIT2 detected by GISTIC2.0 analysis and
confirmed by manual review, potentially having an impact on a further 15% of the cohort,
suggesting that aberrant SLIT/ROBO signalling is potentially a common feature of PDAC
(Figs 1 and 2). In addition, we used targeted PCR-based sequencing of an additional 30
cases of PDAC for axon guidance genes and identified mutations in ROBO1 in two patients
and additional mutations in SLIT2 and ROBO2 (one patient each). Low mRNA expression
of the ROBO2 receptor was associated with poor patient survival (P = 0.04). Furthermore,
high mRNA expression of ROBO3, a known inhibitor of ROBO2 signalling21, demonstrated
an appropriate reciprocal inverse association with poor survival (P < 0.006) (Fig. 2).

Class 3 semaphorins (SEMA3A and SEMA3E) exhibited significant amplification in 18% of
patients and an additional 3% harboured mutations (Fig. 1). Semaphorins signal through
neuropilin and plexin receptors to elicit their effects22. SEMA3A amplification correlated
with high mRNA expression on microarray (P = 0.03), and high mRNA expression of
SEMA3A and PLXNA1, another molecule central to semaphorin signalling, were both
associated with poor patient survival on univariate analysis (Fig. 3a), and were
independently prognostic on multivariate analyses with clinico-pathological variables
(Supplementary Table 12).

To elucidate further the significance of the observed CNV events, we reviewed copy
number, CNV segment size and changes in heterozygosity of axon guidance genes in a
recent independent CNV analysis of 39 fine-needle aspiration biopsies23 and the 16 PDAC
cell lines in the CONAN database (http://www.sanger.ac.uk/cosmic)24. Overall, the
predominant changes recapitulated our studies, showing frequent focal losses within genes
involved in SLIT/ROBO signalling, and gains in genes involved in canonical semaphorin
signalling (Supplementary Tables 4, 13 and 14).

To assess whether dysregulation of axon guidance genes is associated with early neoplastic
transformation, as are many developmental signalling pathways, we examined mRNA
expression in murine models of early pancreatic carcinogenesis (in vitro acinar-to-ductal
metaplasia and in vivo pancreatic injury). Expression levels of components of SLIT/ROBO
and semaphorin signalling changed progressively from normal pancreas, through acinar-to-
ductal metaplasia and pancreatic injury to genetically engineered murine PDAC, indicating a
role for the dysregulation of these axon guidance genes in tumour initiation and progression
(Fig. 3b and Supplementary Table 15).

Discussion
We devised methodologies to optimize mutation detection for clinical samples in a large
cohort of patients and reaffirm known mutations in PDAC, better define their prevalence in
a large cohort of early PDAC, and identify potential novel drivers in this disease. Somatic
mutations in ATM were identified in a significant proportion of patients (8%), highlighting
the importance of BRCA-mediated DNA damage repair mechanisms in sporadic PDAC as
well as familial disease13. Previously, mutations in individual genes involved in chromatin
remodelling such as ARID1A25 have been described and additional genes identified here
(EPC1 and ARID2) infer that chromatin remodelling may have an important role in PDAC,
along with other cancer types26.

Novel mutations in genes traditionally described for their roles in axon guidance were also
observed by a combination of genomic data and supportive experimental evidence from
independent murine SB mutagenesis screens. Axon guidance is integral to organogenesis,
regeneration, wound healing and other basic cellular processes22,27. The widespread
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genomic aberrations observed here in axon guidance genes suggests that they may have a
role in PDAC, joining mounting evidence in other cancers20,28, including a recent report
demonstrating ROBO2 mutations in liver-fluke-associated cholangiocarcinoma29. In
addition, evidence from cancers of the lung, breast, kidney and cervix implicate aberrant
SLIT/ROBO signalling in carcinogenesis20; Robo1 knockout mice develop bronchial
hyperplasia and focal dysplasia, and inactivation of Slit2 and Slit3 leads to the development
of hyperplastic disorganized lesions in the breast20. Upregulation of MET and WNT
signalling have important roles in PDAC, and recent data indicate that SLIT/ROBO
signalling modulates MET and WNT signalling activity through CDC42 and β-catenin,
respectively20. Loss of SLIT/ROBO signalling can potentially be an alternative mechanism
for deregulating these pathways downstream of their receptors, and in addition could
influence the activity of inhibitors that target these upstream components, for example, MET
inhibitors (Fig. 2).

Class 3 semaphorins are the only secreted semaphorins in vertebrates. They regulate cell
growth, invasiveness and angiogenesis, and are highly expressed in metastatic cells in many
cancer types30,31. Although aberrant semaphorin signalling in cancer seems to be organ
specific32, our finding that high expression of SEMA3A and its receptor PLXNA1 co-
segregates with poor patient survival is supported by a previous study that reported this
association and also demonstrated promotion of invasiveness of PDAC cell lines by
SEMA3A31. Therapeutics targeting molecules involved in axon guidance have been
developed as potential strategies to facilitate neuronal regeneration after injury33, but are yet
to be assessed for their role in cancer treatment.

As illustrated here, global genomic analysis of large, well-annotated and clinically
homogeneous cohorts of patients can identify mechanisms that are common among
genomically diverse cancers, and will be pivotal in the development of novel therapeutic
strategies that are guided by the determination of the molecular phenotype of individual
patients34. Future work will be required to determine which key components, when
damaged, drive the disease, and these mechanisms will need to be assessed in molecularly
well-characterized preclinical models35. The potential therapeutic strategies identified will
then require testing in appropriate clinical trials that are specifically designed to target
subsets of patients stratified according to well-defined molecular markers36,37.

METHODS SUMMARY
Sample acquisition and processing

Samples used were prospectively acquired and restricted to primary operable, non-pretreated
pancreatic ductal adenocarcinoma. Representative sections were reviewed independently by
at least one additional pathologist with specific expertise in pancreatic diseases. Samples
either had full face frozen sectioning performed in optimal cutting temperature (OCT)
medium, or the ends excised and processed in formalin to verify the presence of carcinoma
in the sample to be sequenced and to estimate the percentage of malignant epithelial nuclei
in the sample relative to stromal nuclei. Macrodissection was performed if required to excise
areas that did not contain malignant epithelium.

Sequencing
Cellularity of each tumour sample was estimated with pathology review, deep sequencing of
KRAS and a method developed using genome-wide SNP array data (qpure10). Exon capture
was performed using the SureSelect II or Nimblegen capture methods and paired-end
sequenced on the SOLiD (v4) or GAII/HiSeq platforms. Somatic mutations were called and
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then verified on the Ion Torrent Personal Genome Machine (Life Technologies Corporation)
and 454 (Hoffman–La Roche Limited).

Analysis
Significantly mutated genes were identified using the Genome MuSiC package12. DNA
copy number analyses were performed using the Illumina HumanOmni1 Quad genotyping
arrays and GenoCN software. Recurrent and significant copy number changes were
identified using GISTIC2.014. Functional enrichment of gene categories was assessed using
the Metacore package (Thomson-Reuters Corporation) and the MSigDB v3.0 database38.
All sample information and data for mutation, copy number and expression analyses were
submitted to the ICGC DCC at http://dcc.icgc.org/. A complete description of the materials
and methods including approvals for human research and animal experimentation is
provided in Supplementary Information.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Mutations and copy number variation in axon guidance genes
Axon guidance pathway genes with recurrent mutations and/or copy-number changes
defined by GISTIC2.0 analysis (Q < 0.2), and manually reviewed for focal alterations. a,
SNV and CNV frequency per patient with gene-centric summary (left) and patient-centric
summary (top); numbers of patients with mutations and proportion of each event are
presented. Please see Supplementary Table 4 for further details. b, Clinico-pathological
variables for individual patients. APGI, Australian Pancreatic Cancer Genome Initiative;
BCM, Baylor College of Medicine; IPMN, intraductal papillary mucinous neoplasm; Mod,
moderately differentiated; OICR, Ontario Institute for Cancer Research; PDAC, pancreatic
ductal adenocarcinoma; Undiff, undifferentiated.
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Figure 2. SLIT/ROBO signalling in pancreatic ductal adenocarcinoma
a, SLIT/ROBO signalling normally enhances β-catenin complex formation with E-cadherin
and suppresses WNT signalling activity. Loss of ROBO1/2 signalling promotes stabilization
of β-catenin, which decreases E-cadherin complex formation and cell adhesion and
augments WNT signalling activity through increased nuclear translocation of β-catenin. In
addition, SLIT/ROBO signalling can downregulate MET signalling activity; loss of ROBO
signalling activity promotes MET signalling downstream and may have an impact on
therapeutic strategies aimed at inhibiting MET activity at the receptor level. (Adapted from
ref. 20.) Aberrations in SLIT2 and/or ROBO1/2 affected 23% of patients (6% mutated with
1 patient showing mutations in both SLIT2 and ROBO2), with 18% demonstrating CNV
corresponding to loss of the gene. b, c, High expression of SLIT receptor ROBO2 was
associated with a better prognosis (b), and high expression of ROBO3, an inhibitor of
ROBO2, showed an inverse relationship, with high levels associated with poor survival (c).
HR, hazard ratio.
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Figure 3. Axon guidance genes in human and murine pancreatic ductal adenocarcinoma
a, Kaplan–Meier survival curves showing co-segregation of aberrant expression of
components of semaphorin signalling with outcome. Amplification at SEMA3A and
PLXNA1 loci was associated with high mRNA expression and both are independent poor
prognostic factors. b, Quantitative RT–PCR for components of semaphorin and SLIT/
ROBO signalling in murine models of early (acinar-to-ductal metaplasia (ADM) and
pancreatic injury) and established PDAC in genetically engineered mice with a Pdx1-
promoter-driven activating mutation of Kras and mutant Tp53 allele (Pdx1-Cre; LSL-
KrasG12D; LSL-Trp53R172H). Error bars represent standard error of the mean (see
Supplementary Table 15 for details).
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Table 1

Mutations in pancreatic ductal adenocarcinoma (n = 99)

Mutation class Total

Missense 1,684

Nonsense 99

Splice site 89

Insertion/deletion 144

Non-silent 2,016

Silent 611
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Table 2

Significantly mutated genes in pancreatic ductal adenocarcinoma

Gene symbol Gene name and protein function SB mutagenesis
*

shRNA
†

KRAS Oncogene; GTPase; activation of MAPK activity Yes Yes

TP53 Tumour suppressor p53; DNA damage response – Yes

CDKN2A Cyclin-dependent kinase inhibitor 2A; G1/S transition of mitotic cell cycle; tumour
suppressor

Yes –

SMAD4 Mothers against decapentaplegic homologue 4; BMP signalling pathway Yes Yes

MLL3 Myeloid/lymphoid or mixed-lineage leukaemia protein 3; DNA binding; regulation of
transcription

Yes Yes

TGFBR2 Transforming growth factor-β receptor type II; regulation of growth Yes –

ARID1A AT-rich interactive domain-containing protein 1A; SWI/SNF complex; chromatin
modification

Yes Yes

ARID2 AT-rich interactive domain-containing protein 2; chromatin modification Yes –

EPC1 Enhancer of polycomb homologue 1; histone acetylation Yes –

ATM Ataxia telangiectasia mutated; DNA damage response – Yes

SF3B1 Splicing factor 3B subunit 1; nuclear mRNA splicing – Yes

ZIM2 Zinc finger imprinted 2; regulation of transcription – Yes

MAP2K4 Dual specificity mitogen-activated protein kinase kinase 4; Toll-like receptor signalling
pathway

Yes Yes

NALCN Sodium leak channel non-selective protein; sodium channel activity – Yes

SLC16A4 Solute carrier family 16 member 4; monocarboxylate transporter – Yes

MAGEA6 Melanoma-associated antigen 6; protein binding – ND

ND, not determined.

*
Significant insertion sites in two independent Sleeping Beauty mutagenesis screens17,18.

†
In vitro shRNA screens in 102 cancer cell lines with effect on cell survival19.
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