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ABSTRACT

Summary: In higher eukaryotes, the identification of translation initi-

ation sites (TISs) has been focused on finding these signals in cDNA

or mRNA sequences. Using Arabidopsis thaliana (A.t.) information,

we developed a prediction tool for signals within genomic sequences

of plants that correspond to TISs. Our tool requires only genome

sequence, not expressed sequences. Its sensitivity/specificity is for

A.t. (90.75%/92.2%), for Vitis vinifera (66.8%/94.4%) and for Populus

trichocarpa (81.6%/94.4%), which suggests that our tool can be used

in annotation of different plant genomes. We provide a list of features

used in our model. Further study of these features may improve our

understanding of mechanisms of the translation initiation.

Availability and implementation: Our tool is implemented as an arti-

ficial neural network. It is available as a web-based tool and, together

with the source code, the list of features, and data used for model

development, is accessible at http://cbrc.kaust.edu.sa/dts.

Contact: vladimir.bajic@kaust.edu.sa

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

One of the objectives of bioinformatics is to identify important

biological signals in genomic sequences. The translation initi-

ation site (TIS) is one such signal in mRNA that denotes the

start codon at which translation initiates. Accurate recognition

of TIS signals can help in discovery of protein-coding genes and

improve annotation of gene loci (Do and Choi, 2006; Preiss and

Hentze, 2003). In genomic DNA, signals that correspond to TISs

consist of the ATG triplet of nucleotides, except for the rare cases

of ACG or CTG triplets (Hann, 1994; Kozak, 1989). In this

study, we focus solely on the recognition of ATG motifs

within DNA that correspond to genuine TIS signals. We will

refer to the ATG triplets as TIS motifs. Our study addresses

prediction of TIS motifs in plant species. Recognizing DNA

motifs in genomic sequences that correspond to genuine TIS

signals is much more complex than recognizing them in
mRNA or cDNA sequences, which was the main focus so far.

Pertea and Salzberg achieved accuracy of 84% on both
Arabidopsis thaliana (A.t.) and human genomic sequences

(Pertea and Salzberg, 2002). Sparks and Brendel developed
MetWAMer tools, achieving an accuracy of 85% on A.t. open

reading frame sequences (Sparks and Brendel, 2008). In this
study, using A.t. information, we developed a model for predict-

ing TIS motifs within plant genomic DNA sequences, and we
generated a number of features to characterize the genomic sur-

roundings of these motifs. Some of these features have already
been used for related tasks (Li and Leong, 2005; Liu and Wong,

2003), but we introduced a number of new features not previ-
ously used for TIS predictions. Out of all the features initially

considered, we selected 47 as the best set of features for the TIS
motif recognition task. Our feature selection is based on a wrap-

per method that uses a genetic algorithm (GA) and an Artificial
Neural Network (ANN). There are other studies that deal with

the generation and selection of features for the TIS recognition,
for example (Zeng et al., 2002). To the best of our knowledge,

our TIS predictor is the only publicly available one for plants.
The sensitivity/specificity of our model for A.t. is 90.75%/92.2%

and is the highest compared with those reported in the literature.
The accuracy tests on chromosomes of other plant genomes

show sensitivity/specificity for Vitis vinifera of 66.8%/94.4%,
and Populus trichocarpa of 81.6% / 94.4%. The web-based tool

that implements our algorithm and our datasets are freely access-
ible at http://cbrc.kaust.edu.sa/dts.

2 METHODS

2.1 Datasets

TIS data for A.t. was extracted from A.t. genome and the corresponding

annotations file obtained from the TAIR database, version 10 (http://

www.arabidopsis.org). We extracted a total of 27 388 genuine TIS sam-

ples for positive dataset that correspond to database entries annotated as

‘protein coding gene’. The same number of false TIS samples was gener-

ated from A.t. chromosomes 1 to 5, ensuring that any such sequence is

not present in the TIS-positive set. Positive and negative TIS sequences

are 300 bp in length with the TIS covering positions 150–152 counted in

50–30 direction. The number of negative samples taken from each of the

chromosomes was proportional to the chromosome size. Even though

negative cases are far more prevalent in the genome, we used equal-sized

positive and negative datasets for training because we believe that these
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data sets contain sufficiently rich distinguishing features to separate genu-

ine TIS motifs from the false ones.

2.2 Feature generation

For TIS prediction, many useful features in sequences surrounding ATG

signals are reported. Prominent amongst these can be found, for example,

in (Li et al., 2004; Liu and Wong, 2003; Liu et al., 2004; Ma et al., 2006;

Saeys et al., 2007; Tzanis and Vlahavas, 2006). Many of the reported

features are local in the sense that they primarily characterize properties

of the sequences immediately surrounding a candidate TIS. We extended

this set of features with some that are affected by nucleotides up to 150bp

from the ATG motif site. Since selection of the optimal combination of

candidate features is a combinatorial problem, we first reduce the size of

the search space by defining a predetermined subset of features used in all

feature-selection iterations. This fixed subset consists of features that we

selected based on the previously reported results for which we believe to

play a significant role in TIS recognition. We expanded the considered

features with a number of new ones. The feature selection method

enlarged the fixed feature set. The core step in our feature selection pro-

cess is the application of genetic algorithm (GA) in search of an optimal

features combination. Briefly, the process stipulates that all candidate

features are numbered and assigned a value of 0 (not selected as a

member of a feature set) or 1 (selected). In this way we form a ‘chromo-

some’ in the GA terms. We use a single point crossover together with

mutation where each bit in a chromosome is subjected to 15% chance of

having its value altered. Finally, we define evaluation function as the

accuracy of model based on a 3-fold cross-validation on the training

data. Description of major features and more details on feature selection,

training and testing, are given in Supplementary Material 1. A full list of

the used features is given in Supplementary Material 2.

2.3 Main classifier

Our prediction model is an ANN-based classifier. ANNs were used before

for TIS prediction (Pedersen and Nielsen, 1997; Rajapakse and Ho, 2005;

Tikole and Sankararamakrishnan, 2008). We used a 31-node single

hidden-layer ANNs and the backpropagation algorithm for weights opti-

mization. After selecting features using GA, we train the ANN. Available

data, 27 388 positive (real TISs) and 27388 negative (false TISs) samples,

are split into the training and testing sets. From each of these two sets,

65% (18 802) are reserved for model training and the remaining 35%

(9586) for testing. The training data (18 802 positive and 18 802 negative

samples) were further divided into three parts. The first one, containing

5000 positive and 5000 negative samples were exclusively used to generate

feature values. The second set containing 10 882 positive and 10882 nega-

tive samples is used for ANN training. To avoid overfitting, the early

stopping with validation method (Prechelt, 1998) is used on the remaining

2920 positive and 2920 negative samples as a validation set.

3 RESULTS

As a representative measure of model performance, we used the

model sensitivity defined as Se¼TP/(TPþFN) and specificity
Sp¼TN/(TNþFP), where TP, TN, FP and FN are the numbers
of true positive predictions, true negative predictions, false posi-

tive predictions and false negative predictions, respectively. When
evaluated on the test data only, the performance of our TIS pre-
diction model for A.t. resulted in Se¼ 90.75% and Sp¼ 90.77%.
When we tested our model on the whole A.t. genome excluding

the training data, we obtained Se¼ 90.75% and Sp¼ 92.2%. The
tests of our TIS prediction in other plant genomes, with the
unmodified Arabidopsis model, resulted on Vitis vinifera (entire

chromosomes 1 and 2) in Se¼ 66.8% and Sp¼ 94.4%, and on

Populus trichocarpa (entire chromosome 1) in Se¼ 81.6% and

Sp¼ 94.4%. Details are in Supplementary Material 3.

4 CONCLUSION

We developed a web tool for the recognition of TIS motifs in

plant genomic DNA sequences that is based on an ANN classi-

fier. Model features are selected by a GA as a part of the model

optimization process. The model demonstrates not only an im-

proved prediction accuracy over the reported TIS predictors

for A.t., but also performs well on two other plant species for

which it was not specifically trained. We hope that our tool will

find good use in studies and annotation of gene properties of

plants and may provide a further insight into the mechanisms

of translation initiation.
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