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ABSTRACT

Drug modes of action are complex and still poorly
understood. The set of known drug targets is widely
acknowledged to be biased and incomplete, and
so gives only limited insight into the system-wide
effects of drugs. But a high-throughput assay
unique to yeast—barcode-based chemogenomic
screens—can measure the individual drug
response of every yeast deletion mutant in parallel.
NetwoRXx (http://ophid.utoronto.ca/networx) is the
first resource to store data from these extremely
valuable yeast chemogenomics experiments. In
total, NetwoRx stores data on 5924 genes and 466
drugs. In addition, we applied data-mining
approaches to identify yeast pathways, functions
and phenotypes that are targeted by particular
drugs, compute measures of drug-drug similarity
and construct drug-phenotype networks. These
data are all available to search or download
through NetwoRXx; users can search by drug name,
gene name or gene set identifier. We also set up
automated analysis routines in NetwoRx; users
can query new gene sets against the entire
collection of drug profiles and retrieve the drugs
that target them. We demonstrate with use
case examples how NetwoRx can be applied to
target specific phenotypes, repurpose drugs using
mode of action analysis, investigate bipartite
networks and predict new drugs that affect yeast

aging.

INTRODUCTION

Chemogenomic barcode screens are particularly valuable
high-throughput (HTP) drug assays that are unique to
yeast—comparable data is not yet available for any mam-
malian model organism. These screens report the change
in colony growth in response to drug treatment for every
one of the ~6000 deletion strains in the yeast deletion
collection (1,2). Deletion strains in the collection are
each tagged with unique bar codes, permitting the
growth response of every strain to be measured in
parallel (DNA bar codes are amplified and hybridized to
microarrays). Previous studies have demonstrated the rele-
vance of these yeast data to human disease. For example,
Ericson et al. tested 81 psychoactive drugs in yeast and
identified secondary drug targets that help explain side
effects in human patients (3), and Blackman ez al
applied the screen to identify the molecular targets of
elesclomol, a promising chemotherapy adjuvant (4).
These unique chemogenomic data complement other
HTP measures of drug effects, for example gene expres-
sion changes in response to drug treatment as measured in
human cell lines by the Connectivity Map project (5),
as well as databases on known drug—target interactions,
including DrugBank (6), SuperTarget (7), the
Comparative Toxicogenomics Database (8) and STITCH
(9). The set of known drug targets, collected from small-
scale experiments, is biased and incomplete: small
molecules are typically screened against only a limited
set of candidate targets. This bias limits the usefulness of
these data for any genome-wide or systematic network-
based analyses of drug effects (10). HTP chemogenomic
assays, including barcode-based screens, are better suited
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for global analyses. NetwoRx is the first resource to inte-
grate and make yeast chemogenomic screening data avail-
able in queryable format and to facilitate their systems-
level analysis.

Previous bioinformatics analyses of individual
chemogenomics datasets have provided valuable insights
into drug mode of action. These analyses have included
the unsupervised clustering of drug fitness profiles (growth
responses) to identify groups of drugs that affect genes in
the same way (11,12), and calculating gene co-fitness and
using it to predict gene function (13).

Systems-level interrogations of drug response data that
incorporate more realistic representations of complex
animal phenotypes promise to improve our knowledge
of drug actions and increase our ability to effect more
precisely desired biochemical, biological and therapeutic
outcomes (14,15). Gene set and network models of pheno-
types offer a valuable first approximation to the problem
of representing biological complexity. For NetwoRx, we
comprehensively interrogated yeast chemogenomic data
using gene set and network models.

The NetwoRx database integrates the three largest
chemogenomic experiments (3,11,12), covering nearly
6000 yeast genes and 466 drugs, and facilitates the inves-
tigation of drug effects at the systems level. We used gene
set analysis methods to identify pathways and phenotypes
targeted by drugs, compute drug—drug similarity metrics
for mode of action analysis and build drug—phenotype
networks. We applied our methods to four gene set col-
lections of high biological relevance: Gene Ontology
categories (16), KEGG pathways (17), SGD mutant
phenotypes (18) and YEASTRACT targets of transcrip-
tion factors (19). Full results of our analyses are available
through NetwoRx, a web database linking drugs to
networks and phenotypes. We also set up automated
analysis routines in NetwoRx; users can query new gene
lists against the entire collection of drug profiles and
NetwoRx will retrieve the drugs that target them.

We demonstrate with use case examples how NetwoRx
can be applied to (i) identify drugs that modulate the oxi-
dative stress response; (ii) repurpose drugs for cancer by
examining pathways involved in DNA damage; (iii) inves-
tigate the druggability of transcription factor targets with
a bipartite network; (iv) cluster the drug-pathway network
to identify drugs with shared modes of action; and (v)
predict new drugs that modulate yeast aging.

MATERIALS AND METHODS
NetwoRx construction methods

Data sets

Chemogenomic data. Log-ratio data of control to drug
treatment strain abundance, and P-values for individual
drug—gene associations, were obtained from the three
largest previously published yeast chemogenomic studies
(3,11,12). The union of these datasets comprised 5924
genes and 466 drugs. Ericson et al. (3) and Hillenmeyer
et al. (11) used the diploid yeast deletion collection,
including both homozygous and heterozygous deletion
strains (2,20). Parsons et al. (12) used the haploid yeast
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deletion collection from (2). NetwoRx treats the experi-
mental data in the same manner as in the original publi-
cations. The data from (11) are treated as two separate
experiments, an experiment with homozygous deletion
strains (4742 distinct ORFs, 132 drugs) and an experiment
with heterozygous deletion strains (5272 ORFs, 318
drugs). The data from (3) are treated as a single experi-
ment with a mix of heterozygous and homozygous
deletion strains (5200 ORFs, 81 drugs). The data from
(12) are treated as a single experiment with the haploid
deletion collection (4111 ORFs, 82 drugs). Because of dif-
ferences in experimental design, we treat each of these four
datasets separately in all NetwoRx analyses; e.g. when a
user searches for a particular drug or pathway, NetwoRx
will report the P-values for that drug or pathway
calculated in each dataset.

Gene sets. KEGG Pathways (21) and Gene Ontology
categories (22) were obtained from the Bioconductor 2.8
package org.Sc.sgd.db; mutant phenotypes were down-
loaded from SGD (23); transcription factor targets were
obtained from the YEASTRACT database (24).

Gene set scores

Gene-level scores. Scores for individual gene—drug rela-
tions were calculated as log strain abundance ratios
(of control to drug treatment); these data were down-
loaded from the individual publications used in
NetwoRx. For each drug treatment experiment, abun-
dance of deletion strains was measured as intensity on a
microarray, and drug treatment arrays were compared to
non-drug control arrays; details of normalization and data
cleaning specific to each source publication are fully
described in (3,12,13). If a gene was represented more
than once in a dataset, for each drug treatment we
selected the gene’s largest score.

Gene set score (GSS). The statistic for a set of genes was
calculated as the mean of the gene-level scores for set
genes, adjusted for set size (Figure 1). Gene set statistics
were calculated separately in each of the four datasets.
For a drug treatment with mean p and standard deviation
o, and a gene set P of size n, if S(P) was the average of
the gene-level scores s; (for genes i in P), then
GSS(P) = (S(P) — w)/(o/sqrt(n)). For each drug treatment,
we calculated scores for those gene sets where gene-level

genet L] ]

gene2

S(P) = f(s({genes in P})) Oxidative stress I I
gene3 >
geneSOO(; B | Targets of ANK1 I D

Figure 1. Gene set analysis of chemogenomic data. NetwoRx imple-
ments gene set analysis methods to convert scores that link drugs to
genes (boxes on left), into scores that link drugs to pathways (boxes on
right). The score S of a pathway P is calculated as a function f of the
gene-level scores s for genes in P (S is the mean of the gene-level scores
for genes is P genes, adjusted for set size—see ‘Materials and Methods’
section).
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scores were available for at least five and no more than 500
genes; other gene sets were assigned a value of NA.

P-values. For a GSS corresponding to a given gene set
and drug treatment, we calculated two P-values, P1 and
P2. For P1, we computed the one-sided P-value corres-
ponding to the Z-score defined by the GSS. For P2, we
considered the matrix of GSS values for all drug treat-
ments in a dataset and all gene sets of a given type (e.g.
all GO categories); we calculated P2 as the fraction of
these values equal to or exceeding the GSS. The conser-
vative P-value for the gene set under the drug treatment
was then reported as P = max(P1,P2). For user queries of
new gene sets, we report only P1 (as there is no appropri-
ate background gene set collection to use for P2).

Drug—drug similarity

For each chemogenomic dataset, we calculated two
measures of drug—drug similarity for all pairs of drugs,
S1 and S2. S1 and S2 quantify the extent to which two
drugs are alike in their effects on genes and pathways,
respectively.

For S1, we took the matrix of gene-level scores (genes
vs. drugs), eliminated columns or rows where more than
half of values were NA, and then calculated the Pearson
correlation between all pairs of columns (drugs). For
drugs represented more than once in a data set, we
merged replicates by calculating average correlations.
For each drug—drug similarity score, we calculated its
associated P-value as the fraction of other drug—drug simi-
larity scores equal to or exceeding it.

For S2, we repeated the same filtering, calculations and
merging on the matrix of GSS scores (gene sets vs. drugs);
all gene set types (GO, KEGG, YEASTRACT, SGD
phenotype) were included in the GSS matrix.

Bipartite interaction networks

For a given gene set collection and chemogenomic dataset,
a drug and a gene set were considered to interact if the
GSS had an associated P <0.05 for at least one treatment
with that drug. For each drug/gene set association, we
report the lowest P-value observed over all treatments of
the same drug.

Code
Code for all analyses was written in R 2.13.0; we also used
the Bioconductor 2.8 GSEABase and org.Sc.sgd.db.

Database implementation

The NetwoRx portal was written in Java and runs on the
WebSphere 6.1 application server on an IBM P595 server
with a secondary P595 backup server. The database runs
on DB2 9.5 on an IBM P570 server with a mirror running
on P595 for redundancy and workload balancing.

Use-case methods

Data sets

Chronological aging. Three sets of genes that extend yeast
chronological lifespan were obtained from previously pub-
lished genome-wide experiments (25-27).

Drugs that modulate aging. Drugs known to modulate
aging in Saccharomyces cerevisiae were downloaded
from the Lifespan Observation Database at http://lifes
pandb.sageweb.org/.

Code and software

Code for all analyses was written in R 2.13.0. We used the
WGCNA R package for drug—drug similarity net-
work analysis (28). Networks were visualized with
NAViIGaTOR 2.2.1 (http://ophid.utoronto.ca/navigator/)
(29).

RESULTS
NetwoRx content and functionality

Here we briefly describe basic database content and
functionality.

Database contents

The NetwoRx web portal contains drug-response data
calculated for 466 drugs and thousands of S. cerevisiae
genes. Drugs are linked to their PubChem Compound
IDs (30), yeast genes to their SGD entries (18) and
gene sets to their relevant databases (GO, KEGG,
YEASTRACT, or SGD phenotype).

Drug—gene associations. P-values for associations between
drugs and individual genes. Link: http://ophid.utoronto.
ca/networx/singleid

Drug—pathway associations. P-values and GSS for associ-
ations between drugs and KEGG pathways (21), GO
categories, YEASTRACT targets of transcription factors
(24) and SGD mutant phenotypes (23). Link: http://ophid.
utoronto.ca/networx/drug2pathway

Drug—drug similarity metrics. Similarity values S1 and S2
(between —1 and 1) and associated P-values for all pairs of
drugs, quantifying the extent to which drugs affect genes
(S1) or pathways (S2) in the same way. Link: http://ophid.
utoronto.ca/networx/drug2drug

Drug-pathway networks. Bipartite networks of significant
drug—pathway associations are available as tab-delimited
text files or Navigator 2.2.1 files for network visualiza-
tion (29). Link: http://ophid.utoronto.ca/networx/
drugnetworks

New pathway search. Users can specify a new set of genes,
and NetwoRx will calculate which drugs interact with it.
Link: http://ophid.utoronto.ca/networx/newmodule

Accessing data

Search by drug. Users can search for drugs by their name
or by their PubChem Compound ID (e.g. rapamycin or
5284616).

Search by gene or list of genes. Users can search for yeast
genes by their systematic names (e.g. YKL203C).

Search by gene set identifier. Users can search for gene sets
by their set-specific identifiers (e.g. GO:0006979; Figure 2).
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Figure 2. Searching NetwoRx by pathway ID. Users can search NetwoRx for drugs that target gene sets using set-specific identifiers, e.g. the Gene

Ontology ID for ‘Response to oxidative stress’, GO:0006979.

NetwoRx use case examples

Here we provide several NetwoRx use cases, using
NetwoRx data alone (cases 1-4) or in combination with
data from other HTP experiments (case 5).

Case 1. Retrieving drugs that perturb phenotypes:
oxidative stress

Querying NetwoRx with gene sets related to oxidative
stress—from the Gene Ontology (‘response to oxidative
stress’,  GO:0006979) or SGD mutant phenotypes
(‘oxidative stress resistance’) returns drugs that perturb
these pathways. Both compounds known to cause oxida-
tive stress (e.g. hydrogen peroxide, paraquat) and to
protect from it (e.g. allyl disulfide, rapamycin) are
returned. Other significant drugs have not yet been
tested for their impact on oxidative stress (Figure 3A).

Case 2. Focused searches identify drugs with shared mode
of action: drugs that target the same DNA damage
pathways as Cisplatin

Querying NetwoRx with the chemotherapeutic agent
Cisplatin (CID 441203) to identify its mode of action
returns four significant KEGG pathways related to
DNA damage: base excision repair (sce03410), nucleotide
excision repair (sce03420), DNA mismatch repair
(sce03430) and homologous recombination (sce03440).
Querying NetwoRx with these four DNA damage
pathways and extracting the drug—pathway network
reveals that many significant drugs are known cancer
drugs that are connected to multiple pathways
(Figure 3B). Other significant drugs have not yet been

tested for cancer and should be prioritized for further
study.

Case 3. Bipartite networks reveal that some gene sets are
druggable hubs

NetwoRx users can choose to download the entire collec-
tion of significant drug—pathway connections for a given
gene set type, either as a tab-delimited text file or as a
graph that can be visualized in NAViGaTOR 2.2.1 (29).
Downloading the entire set of associations for
YEASTRACT transcription factors reveals that while
most targets of TFs are affected by only few drugs,
some (e.g. GCRI, IFHI) are perturbed by many
(Figure 3C).

Case 4. Clustering the drug-pathway matrix identifies
drug modules that share modes of action

NetwoRx provides measures of drug—drug similarity that
quantify the extent to which pairs of genes impact
pathways in the same way. NetwoRx users can search
these data by drug name or download them in bulk. We
downloaded the entire matrix of drug-drug similarities
from NetwoRx for the heterozygous experiments of (11).
We then used the R package WGCNA (28) to cluster
drugs into modules sharing mode of action. These
modules can be applied for drug repurposing. For
example, one module was highly enriched for psychoactive
drugs (Figure 3D). Five of the six drugs in the module are
used as sedatives and antipsychotics. The last drug,
hexestrol, is a synthetic estrogen that NetwoRx predicts
to be psychoactive.
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Figure 3. (A) Drugs that perturb oxidative stress pathways. Drugs are shown in order of increasing P-value; some drugs (green) are known to
ameliorate the effects of oxidative stress, whereas other drugs (red) induce it. Drugs indicated in black have an unknown effect on oxidative stress.
Data set: homozygous collection from (11). (B) Mode of action analysis of the chemotherapeutic Cisplatin. Node size is proportional to degree
(nodes with more connecting edges are drawn larger). Known cancer drugs are indicated in green. Data set: homozygous collection from (11). (C)
Bipartite network showing all connections between drugs and YEASTRACT targets of transcription factors. Node size is proportional to degree.
Data set: (12). We highlight the high degree nodes and their connectivity. (D) Drug module identified by clustering the matrix of drug-drug similarity
scores. Five of six drugs in this module are known to be psychoactive (indicated in bold). Data set: heterozygous collection from (11).

Case 5. User-defined gene sets: identifying new drugs that
modulate yeast chronological aging

NetwoRx can perform gene set analysis of new gene sets
specified by the user. Here we apply this functionality to
identify new drugs that may modulate yeast aging. Three
previous studies have conducted genome-wide assays in
yeast to identify gene deletions that lead to increased
survival in prolonged stationary phase (25-27). We
obtained sets of longevity genes from each publication
(42, 57 and 90 genes, respectively). Notably, the overlap
among these sets was poor (Figure 4, bottom right). There
were three genes common to (26) and (27), and one gene
common to (25) and (27). No gene was common to all
three studies; furthermore, no gene was common to the
two most recent studies, despite the fact that they shared a
similar experimental methodology. This poor overlap may
be due in part to false negatives common to noisy HTP
experiments, as well as to the fact that aging is a

particularly subtle and complex organismal phenotype;
examining HTP data at the systems level in terms of
pathways and gene sets rather than individual genes can
help mitigate this problem, leading to more robust
findings (31-33).

Querying these gene sets against all datasets in the
NetwoRx collection revealed that these gene sets share
many targeting drugs. In total, 125 drugs target at least
one gene set, 29 target at least two sets and eight target all
three. We downloaded the set of drugs previously shown
to extend yeast chronological lifespan from the Lifespan
Observation Database at http://lifespandb.sageweb.org/.
Three of these drugs (rapamycin, caffeine, and sodium
chloride) are included in the NetwoRx collection, and
our analysis identified all three as significantly associated
with one or more aging gene sets (Figure 4, green nodes).
Rapamycin, a well-known antiaging drug that has been
shown to extend lifespan in multiple species (34), targets
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all three gene sets; NaCl targets two gene sets; caffeine
targets one. Other drugs in the network have been
reported to extend life in other species, e.g. curcumin
and wortmannin extend life in Drosophila melanogaster
(35,36).

Other NetwoRx functionalities can be applied to
narrow down a list of interesting candidates from the set
of 125 significant drugs. For example, we retrieved from
NetwoRx a list of the top 10 drugs most similar in terms of
their pathway-based mode of action to the antiaging drug
rapamycin, from the heterozygous experiment of (11). Six
of these ten drugs also target at least one aging gene set,
i.e. are represented in the aging—drug network (Figure 4):
allyl disulfide, allyl sulfide, CDL 14A, CDL 3F2, CID
688028 and CID 697443.

DISCUSSION

Integrative  computational =~ methods  that mine
chemogenomic data are fast, cheap and can complement
traditional methods of drug screening. The NetwoRx
database integrates data from the major S. cerevisiae
barcode chemogenomics experiments, and facilitates sys-
tematic analysis of drug mode of action and drug:pathway
links by identifying pathways and 5924 genes modulated
by 466 drugs. Users can search or download data,
allowing them to identify yeast pathways, functions and
phenotypes that are targeted by particular drugs, compute
measures of drug—drug similarity, and construct
drug-phenotype networks. Users can also query new
gene sets against all drug profiles and identify drugs that

target them. These unique chemogenomic data comple-
ment existing drug database such as DrugBank and the
Connectivity Map, and can help shed light on
the genome-wide effects of drug treatment, accelerating
the identification and development of new therapeutics.
We illustrated with examples how NetwoRx can be
applied to analyze mode of action of cancer drugs, repur-
pose psychoactive drugs and predict new drugs that
modulate yeast aging.

As with any assay, yeast barcode chemogenomic screens
have several limitations; these have been discussed else-
where (e.g. 37,38). Importantly, these screens can be
used only with those compounds bioactive in yeast; can
capture only those drug—gene interactions that impact
growth; and be relevant to disease for only those human
proteins having yeast homologs.

NetwoRx goals and future developments

Many studies linking drugs to proteins and cellular
responses have been conducted over the past decades,
but most of the resulting data are biased, as drugs are
typically screened against only a small set of candidate
targets or genetic contexts. Although such screens are
valuable for testing particular hypotheses about individual
protein—drug relations, they have limited ability to
quantify drug effects at the systems level. Hypothesis-
free genome-scale HTP investigations of drug response
have potential to improve our knowledge of drug mode
of action (39) and accelerate the development of true
systems medicine (40). With NetwoRx, our goal is to



D726 Nucleic Acids Research, 2013, Vol. 41, Database issue

make data from large-scale yeast chemogenomics experi-
ments available as a resource for HTP integrative compu-
tational biology analyses, and through it enable a global
picture of drug action.

In the future, we will expand NetwoRx with data from
comparable experiments of high enough throughput—
where at least dozens of drugs are queried against
thousands of genes. This will include future yeast
chemogenomic barcode experiments of the type included
in the current release of NetwoRx, but may also incorp-
orate related experiments in other animals. In the future,
developments in RNAi technology will allow experiments
of comparable throughput to be conducted in mammalian
cell lines, and we will expand NetwoRx to include these
data. Pooled shRNA screens have already helped eluci-
date the mode of action of individual cancer drugs and
show enormous promise for speeding drug development
(41,42).
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