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ABSTRACT

Tumor suppressor genes (TSGs) are guardian genes
that play important roles in controlling cell prolifer-
ation processes such as cell-cycle checkpoints and
inducing apoptosis. Identification of these genes
and understanding their functions are critical for
further investigation of tumorigenesis. So far,
many studies have identified numerous TSGs and
illustrated their functions in various types of
tumors or normal samples. Furthermore, accumu-
lating evidence has shown that non-coding RNAs
can act as TSGs to prevent the tumorigenesis
processes. Therefore, there is a growing demand
to integrate TSGs with large-scale experimental
evidence (e.g. gene expression and epigenetic sig-
natures) to provide a comprehensive resource for
further investigation of TSGs and their molecular
mechanisms in cancer. To achieve this goal, we
first developed a comprehensive literature-based
database called TSGene (tumor suppressor gene
database), freely available at http://bioinfo.mc
.vanderbilt.edu/TSGene/. In the current release,
TSGene contains 716 human (637 protein-coding
and 79 non-coding genes), 628 mouse and 567 rat
TSGs curated from UniProtKB, the Tumor
Associated Gene database and 5795 PubMed ab-
stracts. Additionally, the TSGene provides detailed
annotations for each TSG, such as cancer muta-
tions, gene expressions, methylation sites, TF regu-
lations and protein–protein interactions.

INTRODUCTION

Cancer is characterized by uncontrolled cell growth that
arises from the progressive acquisition of a small number
of point mutations or aneuploidy related to cell prolifer-
ation, differentiation, apoptosis and cell-to-cell communi-
cation (1,2). Tumor suppressor genes (TSGs) generally

refer to a class of cancer genes that preserve genomic
stability. It has long been acknowledged that TSGs have
significant roles in the initiation and progression of
various cancers (3). The prominent role of protein-coding
TSGs in cancer pathogenesis is highlighted by the frequent
somatic mutations on gene TP53 in various cancer types
with that frequency ranging from 5% to 80% (4,5).
Current studies have shown that the key roles of TSGs
in the development of cancers exhibit at both the genetic
and epigenetic levels. In a normal cell, as ‘the guardians of
the cell,’ TSGs play critical roles in establishing cell-cycle
checkpoints, DNA damage, inducing apoptosis and meta-
bolic regulation (3). Genetic inactivation or diminished
function of TSGs are often regarded as driver point mu-
tations to confer a growth advantage upon the tumor cells
(3). In addition, TSGs have been widely reported to occur
in the deletion regions of copy number aberration in the
genome (6). At the epigenetic level, many classical TSGs
were transcriptionally silenced via hypermethylation that
prevents abnormal cell growth in tumors (7). Moreover,
recent accumulating evidence has shown that non-protein-
coding RNAs, such as microRNAs (miRNAs), long
non-coding RNAs (lincRNAs) and small Misc RNAs
(miscRNAs), can act as TSGs to regulate cell proliferation
and apoptosis at the post-transcriptional level during
neoplasm development (8–11).

Recently, an increased number of TSGs were identified
in various cancer syndromes using high-throughput tech-
nologies (12–16). Moreover, rediscovery of TSGs accu-
mulated in previous small-scale studies could provide a
landscape of cancer genes at the genome, transcriptome
and proteome levels for genome-wide high-throughput
screens (17). To keep pace with the growing demand for
integrating TSGs with large-scale experimental evidence,
the first step is to carefully catalog known TSGs from
abundant and diverse literature and evaluate their consist-
ency. For TSG database, there was a previous one called
TSGDB (18). However, the data in TSGDB were not com-
prehensive (i.e. simply extracted from literature) and have
not been available to the community for several years.
Therefore, we performed a comprehensive collection and
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review of peer-reviewed, published literature from data-
bases such as UniProtKB (19), the Tumor Associated
Gene (TAG) database (http://www.binfo.ncku.edu.tw/
TAG/) and PubMed abstracts (http://www.ncbi.nlm.nih
.gov/pubmed/). We then manually checked and collected
a total of 716 human (637 protein-coding and 79 non-
coding genes), 628 mouse and 567 rat TSGs. To provide
quick access to gene information, we created a database
called TSGene to integrate detailed annotations for each
TSG, such as COSMIC (somatic mutations from Cata-
logue of Somatic Mutations in Cancer) (20), gene expres-
sions from hundreds of tumor and normal samples from
BioGPS (Gene Portal System) (21), and methylation sites
from DiseaseMeth database (22). The online TSGene
interface with browsing and searching functionalities is
available at http://bioinfo.mc.vanderbilt.edu/TSGene/.

As currently the only available database for TSGs,
TSGene provides not only a comprehensive resource of
TSGs for the cancer research community to further experi-
mental design but also provides a comprehensive TSG
catalog for advanced systems biology-based analyses.
For example, we observed that the 637 human
protein-coding TSGs were very significantly enriched in
cancer-related pathways to regulate cell proliferation
activities such as cell cycle, apoptosis, P53 signaling,
Wnt signaling and TGF-beta signaling pathways. Based
on our curated 79 human non-coding TSGs, we dis-
covered that the majority of these non-coding TSGs’
target genes were functionally represented in ‘regulation
of cellular biosynthetic process.’ These results provide
complementary evidence for TSGs’ critical roles in funda-
mental cellular functions such as metabolism regulation.

DATA COLLECTION

Data integration and literature search

The primary aim of our TSGene database is to collect and
maintain a high quality TSG database, which serves as a
comprehensive, fully classified and accurately annotated
TSG knowledgebase. The database provides extensive
cross-references and querying interfaces. It is freely access-
ible to the public and assists the cancer research commu-
nity to improve its ability to diagnose, treat and prevent
cancer. Thus, we first collected known TSGs from two
public databases, UniProtKB and the TAG database,
and integrated them together. From UniProtKB, we
retrieved 187 (human), 125 (mouse) and 66 (rat) proteins
with the keyword ‘tumor suppressor’ (UniProtKB
keyword KW-0043, http://www.uniprot.org/keywords/
43) on 28 January 2012. From the TAG database, 170
known human TSGs were downloaded on 29 March
2012. However, the two TSG data sets only had 41
genes overlapped by mapping them to Entrez gene
symbols (Supplementary Figure S1). Additionally,
neither data source provides original literature to
support TSG roles.

To provide a detailed and precise TSG resource with
literature evidence, we first performed an extensive litera-
ture query of PubMed on 17 April 2012 using the search
expression: ‘tumor suppressor’ [Title] NOT (P53 [Title]

OR TP53 [Title]) with a return of 4864 PubMed abstracts.
To obtain comprehensive literature evidence, we next ex-
tracted 2043 sentences with both the words ‘tumor’ and
‘suppressor’ from 1430 PubMed abstracts from the
GeneRIF data file on 17 April 2012 (23). GeneRIF
(Gene Reference Into Function) is a collection of short
statements about gene function in the Entrez Gene
database (24). Combining two exhaustive searches
together, a total of 5795 PubMed abstracts were collected
and downloaded in a Medline format for further manual
review and curation.
Curation of TSGs from literature included three major

steps as follows: grouping all 5795 PubMed abstracts by
topic using the ‘Related Articles’ function in Entrez
(This allowed us to quickly and easily assess if and how
the described genes in several topic-related literature are
TSGs. Furthermore, the results from this step may
provide cross-checking between different publications for
the following curation steps.); extracting descriptions of
TSGs from grouped abstracts; manually curating gene
names from the descriptions of the TSGs and mapping
the gene names to Entrez gene IDs (This allowed us to
quickly and easily assess whether several topic-related lit-
eratures supported the described genes as TSGs and
provided cross-checking between different literatures).
Here, we used Entrez gene IDs for TSGs to serve as the
initial information to crosslink the same genes from dif-
ferent public databases. To gain precise Entrez gene IDs,
much care is taken regarding the synonyms of gene
symbols. For example, in the sentence ‘potential tumor
suppressor activity of CCS-3 may be mediated by its inter-
action with PLZF (25),’ the gene CCS-3 was one of the
synonyms of EEF1A1 in the current Entrez gene database.
After carefully checking manually, we pinpointed 716
human TSGs and retrieved their orthologs in mouse and
rat using orthology data downloaded from Mouse
Genome Informatics (MGI) (26).
Finally, we consolidated 716 human (637 protein-

coding and 79 non-coding genes), 628 mouse and 567
rat TSGs from UniProtKB, the TAG database, and
5795 PubMed abstracts.

Functional annotations of protein-coding TSGs

To better understand the function of these TSGs in our
database, we collected their extensive functional informa-
tion. The representative annotations in the TSGene
database are summarized in Table 1. Basic gene informa-
tion is included, such as gene names from the Entrez gene
database (24) and orthologs among human, mouse and rat
from MGI (26). Crosslinks to the miRNA database
miRbase (27), text mining server iHOP (28) and literature
databases PubMed and GeneRIF (23) were also provided.
For functional annotations, we retrieved the pathways
that the genes are involved in from BioCyc (29), KEGG
Pathway (30), PID Curated (31), PANTHER (32) and
Reactome (33); we also extracted possible association
with diseases from KEGG Disease (30), Fundo (34,35),
GAD (36), NHGIR (37) and OMIM (24) using the func-
tional annotation server KOBAS (38). Details of these
databases can be found through the cited references as
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well as from TSGene. Additionally, possible post-
translational modifications (PTMs) and transcription
factor regulation information were collected from
dbPTM (39) and the TRANSFAC database (40), respect-
ively. Digital gene expressions for 184 tumor samples and
84 normal tissues were integrated from BioGPS (21).
Information about genomic variants, methylation sites
and protein–protein interactions were integrated from
COSMIC (20), DiseaseMeth (22) and Pathway
Commons (41) databases, respectively.

Biological features of 637 protein-coding TSGs in humans

As the majority of TSGs are protein-coding genes
(637 human protein-coding TSGs in Supplementary
Table S1), we performed the pathway enrichment and
disease association analyses to obtain general insight
into their biological features using the KOBAS server.
Over-represented pathways and significantly associated
diseases were determined by an adjusted P-value <0.05
calculated by the hypergeometric test followed by the
Benjamini–Hochberg method (38). As shown in Supple-
mentary Table S2, majority of the enriched pathways,
such as ‘P53 signaling pathway,’ ‘Cell cycle,’ ‘Wnt signal-
ing pathway’ and ‘TGF-beta signaling pathway,’ are
cancer relevant. Among the 32 significantly associated
diseases, 27 various types of cancer were on the enriched
list, including ‘cancers of the digestive system,’
‘hepatocellular carcinoma,’ ‘prostate cancer,’ ‘colorectal
cancer’ and ‘breast cancer.’
To assess the functional distribution of gene ontology

(GO) and protein domains, we conducted enrichment tests
on 637 human protein-coding genes using the online tool
DAVID (42). We selected those GO terms or protein
domains with an adjusted P-value <0.05 as calculated

by the hypergeometric test followed by the Benjamini–
Hochberg method (43). Using the complete human genes
as background, 637 protein-coding TSGs were over-
represented in negative regulation of cell proliferation,
and positive regulation of apoptosis according to GO
Biological Processes terms (Table 2). In total, 66.88% of
the reported protein-coding TSGs were involved in biolo-
gical regulation, and 32.18% of the 637 TSGs were
negative regulators for cellular processes (Supplementary
Table S3). In addition, the most commonly represented
InterPro domains were frequently related to DNA
binding or kinase activities such as ‘Winged helix repres-
sor DNA-binding,’ ‘Insulin-like growth factor-binding
protein, IGFBP,’ ‘DEATH-like’ and ‘Zinc finger,
PHD-type.’ These results highlight fundamental roles of
protein-coding TSGs on controlling cell growth (Supple-
mentary Table S3).

Biological features of predicted targets of TSG miRNAs
in humans

Among the 79 human non-coding TSGs (Supplementary
Table S4), 70 belong to miRNAs. We retrieved their pre-
dictive targets from popular miRNA target database
TargetScan (version 5.2, February 2011) (44–46). We
required that miRNA-target relationships were evolution-
arily conserved in four species (human, mouse, rat and
dog) and had a total context score higher than �0.30
(47,48). The context score quantitatively represents an
overall target prediction efficacy (44,45). This process
generated 5453 target genes from 57 miRNA TSGs. To
obtain more reliable targets, we extracted 277 target genes
for further functional analysis that were regulated by at
least 20 miRNA TSGs (Supplementary Table S5).
According to the enriched GO terms identified by

Table 1. Annotation entry statistics for 716 human TSGs

Data category Related entries Annotated TSGs Content/sources

General information
Human TSGs 716 716 Gene names, full name, genomics position, synonym, definition

from Entrez gene database
Mouse TSGs 628 628 Mouse TSGs mapped from MGI Human Mouse Orthologs
Rat TSGs 567 567 Rat TSGs mapped from MGI Human Rat Orthologs
Literature 2559 710 Literature evidence for TSGs

Function and regulation
Pathway 2989 396 KEGG and BioCyc database, etc.
Disease 3000 315 GAD and OMIM database, etc.
Transcription factor regulation 8708 549 Regulatory reactions with TFs from TRANSFAC
Post-translational modification 2295 328 Experimental verified data PTMs from dbPTM
Target genes for non-coding TSGs 5453 57 Target predicted byTargetScan

Expression and methylation
Tumor samples 680 458 Expression in 184 tumor samples from BioGPS database
Normal tissues 1970 542 Expression in 84 normal tissues from BioGPS database
Methylation 6163 592 Promoter methylation profiles from DiseaseMeth database

Genomic variation
Substitutions 27 358 535 Point mutations
Insertions/deletions 12 279 108 Deletions and insertions
Other mutations 9480 72 Non-stop and others mutations

Functional interaction
Physical interactions 58 705 541 Physical interactions from high-throughput data
Metabolic interactions 385 91 Consecutive metabolic reactions
Signaling interactions 9862 217 Signaling transduction partners

TSG, tumor suppressor gene; MGI, mouse genome informatics; PTM, post-translationalmodification.
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DAVID (42), regulators for the macromolecule metabolic
process are over-represented in these 277 target genes
(Table 3). In addition, 39.71% of the target genes locate
in the nucleus (Supplementary Table S6). These results are
the first to highlight non-coding TSGs as metabolic regu-
lators, which is consistent with regulatory roles of import-
ant protein-coding TSGs on cellular metabolism (49).

DATABASE INTERFACE

We set up a MySQL relational database to store all the
data. A user-friendly web interface for browsing and
searching was implemented by Perl CGI and JavaScript.

Representative entry in TSGene

A typical TSGene gene entry is shown in Figure 1. Anno-
tations of each gene can be obtained by clicking the label
‘General information,’ ‘Expression,’ ‘Regulation,’
‘Mutation’ and ‘Interaction’ on the top. In the ‘General
information’ page, gene name, pathway, disease, nucleo-
tide sequence and protein sequence can be found in a
tabular view (Figure 1A). Highlighted summaries of
support literature and data sources are provided
(Figure 1B). In the ‘Expression’ page, gene expressions
from 84 normal tissues and 184 tumor samples are
provided through a bar view with the sample name and
normalized expression scores (Figure 1C), which is useful
to acquire an overview for tissue specificity of each TSG
among normal and tumor samples. Take gene CDKN2A
as an example: the expression bar view showed that it
expressed relatively higher in liver, lung, ovary and
gastroesophageal cancer (Supplementary Figure S2).
Three of the four tumor tissues were confirmed by
literature-based gene expression data from HPRD
(Human Protein Reference Database); only gastroeso-
phageal cancer was not included in the HPRD database,
but the database also reported data in gastric adenocar-
cinoma and esophageal squamous cell carcinoma (50,51).

Moreover, classified mutation types such as substitution,
insertion and deletion from the COSMIC database can be
found in the ‘Mutation’ page. Interactions with transcrip-
tion factors, abundance of PTM information and methy-
lation information for each TSG are represented in the
‘Regulation’ page. To view the interaction partners,
users can click on ‘Interaction’ to expand different inter-
action categories, including physical interactions from
high-throughput experiments, metabolic and signaling
interactions from known pathway databases (41).

Text and sequence searching

TSGene supports both text query and sequence search.
Users can find a quick search box on the top right of
each page to search by Entrez gene symbol or gene ID.
An advanced search option is provided to search TSG
information, including the gene symbol, Entrez gene ID,
genomic location, disease and pathway. Furthermore, a
query interface to access TSGs-related literatures
provided a window for users to find more comprehensive
TSG descriptions from original literature sources. Logical
operators are provided for other annotations that allow
users to build more sophisticated queries on mutations,
tumor types, interactors, transcription factors and regula-
tory information (Figure 1D). Moreover, users can utilize
an online BLAST interface to input an interesting
sequence in FASTA format and search against all TSG
nucleotide or protein sequences in our TSGene database
(Figure 1I). For advanced bioinformatics users, TSG lists
and annotation, including nucleotide and protein se-
quences, gene expressions and literatures, are available
to download.

Online browsing

Users can browse TSGs in our database using data source,
cancer type, graphically represented pathway, protein-
coding, non-coding and genomic location (Figure 1E–H).
In total, there are 53 types of cancer with reported TSGs in

Table 2. Top 20 enriched GO biological processes of the 637 protein-coding TSGs

GO term P-value Benjamini–Hochberg corrected P-value

Negative regulation of cell proliferation 7.77E�57 2.45E�53
Negative regulation of cellular process 1.71E�53 2.70E�50
Negative regulation of biological process 3.30E�47 3.48E�44
Regulation of cell proliferation 2.41E�43 1.90E�40
Regulation of cellular process 1.13E�39 7.16E�37
Regulation of biological process 8.28E�36 4.35E�33
Positive regulation of cellular process 5.86E�35 2.64E�32
Developmental process 1.48E�33 5.85E�31
Biological regulation 5.22E�33 1.83E�30
Positive regulation of biological process 6.45E�32 2.04E�29
Regulation of apoptosis 6.79E�32 1.95E�29
Regulation of programmed cell death 1.67E�31 4.40E�29
Regulation of cell death 2.34E�31 5.68E�29
Anatomical structure development 2.67E�31 6.03E�29
Multicellular organismal development 5.87E�31 1.24E�28
System development 1.19E�30 2.34E�28
Positive regulation of apoptosis 1.74E�29 3.23E�27
Positive regulation of programmed cell death 2.81E�29 4.93E�27
Positive regulation of cell death 3.86E�29 6.41E�27
Organ development 1.92E�28 3.03E�26
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our database (The statistics are in Supplementary Table
S7). In the cancer type browser page, users can click on the
hyperlinks of the specific cancer type to view all the
reported TSGs with literature evidence in the given

cancer type (Figure 1E). To give overviews of the TSGs
within their involved pathways, we marked 169 human
KEGG pathways with all human TSGs in striking color
(Figure 1F). Clicking on the highlighted TSGs in the

Figure 1. Web interface of the TSGene database. (A) Basic gene information in the TSGene database. (B) A typical highlighted literature with
supporting keywords. (C) Gene expression profile. (D) Query interface. (E) Browser for various cancer types. (F) KEGG pathway mapped with TSGs
(color-marked). (G) Browsing TSGs using Chromosome location. (H) Browsing TSGs by data source and gene types (protein-coding and
non-coding). (I) BLAST interface for sequence searching in TSGene database.

Table 3. Top 20 enriched GO terms of the predicted 277 target genes of non-coding TSGs

GO term P-value Benjamini–Hochberg
corrected P-value

Regulation of cellular metabolic process 1.50E�09 7.89E�07
Regulation of macromolecule metabolic process 2.04E�09 8.05E�07
Regulation of cellular biosynthetic process 2.74E�09 8.65E�07
Regulation of biosynthetic process 3.74E�09 9.85E�07
Regulation of primary metabolic process 1.39E�09 1.10E�06
Regulation of macromolecule biosynthetic process 5.80E�09 1.31E�06
Regulation of metabolic process 1.21E�09 1.91E�06
Regulation of gene expression 4.93E�08 9.74E�06
Macromolecule metabolic process 1.30E�06 2.29E�04
Cellular macromolecule metabolic process 1.61E�06 2.54E�04
Regulation of nucleobase, nucleoside, nucleotide and nucleic acid metabolic process 3.02E�06 4.34E�04
Regulation of nitrogen compound metabolic process 4.18E�06 5.50E�04
Intracellular 1.73E�05 1.56E�3
Regulation of transcription 1.43E�05 1.74E�3
Intracellular part 1.37E�05 1.86E�3
Binding 1.24E�05 2.59E�3
Nucleic acid binding 6.28E�06 2.62E�3
Nucleus 1.36E�05 3.67E�3
Primary metabolic process 3.43E�05 3.86E�3
Negative regulation of biological process 3.98E�05 4.18E�3

GO, gene ontology.
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pathway map allows users to access corresponding entries
in our database. Using the chromosome browser, users
can obtain TSG lists that include a summary of the
genes and hyperlinks to detailed gene evidence and anno-
tation pages (Figure 1G). Additionally, to provide better
accessibility for non-coding TSGs and various data
sources, we compiled all the protein-coding and
non-coding TSGs from different data sources together
for users to browse (Figure 1H).

CONCLUSION AND FUTURE PERSPECTIVES

TSGene is the first attempt to establish a literature-based
resource of tumor suppressor by integrating genomic data
of mutations, gene expressions, regulations, methylations
and interactions. It is a valuable resource for better under-
standing tumorigenic mechanisms related to tumor sup-
pressors and developing useful information for clinical
application. We will continue on collection and curation
of TSGenes, especially non-protein-coding RNAs.
Additionally, using our curated TSG list, dictionary-
based text mining tools will be developed to enhance spe-
cificity in TSG annotations.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online: Sup-
plementary Tables 1–7 and Supplementary Figures 1–2.
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