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Abstract
Current theories of human categorization differentiate an explicit, rule-based system of category
learning from an implicit system that slowly associates regions of perceptual space with response
outputs. The researchers extended this theoretical differentiation to the category learning of New
World primates. Four capuchins learned categories of circular sine-wave gratings that varied in
bar spatial frequency and orientation. The rule-based and information-integration tasks,
respectively, had one-dimensional and two-dimensional solutions. Capuchins, like humans,
strongly dimensionalized the stimuli and learned the rule-based task more easily. The results
strengthen the suggestion that nonhuman primates have some structural components of humans’
capacity for explicit categorization, which in humans is linked to declarative cognition and
consciousness. The results also strengthen the primate contrast to other vertebrate species that may
lack the explicit system. Therefore, the results raise important questions about the origins of the
explicit categorization system during cognitive evolution and about its overall phylogenetic
distribution.
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1. Introduction
Learning and using categories—behavioral or psychological equivalence classes—is a basic
cognitive function for animals and humans. For example, predator categories confer a fitness
advantage by allowing predator recognition and avoidance. For this reason, categorization is
a sharp focus in animal research (e.g., Herrnstein, Loveland, & Cable, 1976; Jitsumori,
1994; Lea & Wills, 2008; Lazareva & Wasserman, 2010; Pearce, 1994; Smith, Redford, &
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Haas; 2008; Thompson & Oden, 2000; Vauclair, 2002) and human research (e.g., Ashby &
Maddox, in press; Brooks, 1978; Feldman, 2000; Knowlton & Squire, 1993; Medin &
Schaffer, 1978; Murphy, 2003; Nosofsky, 1987; Rosch & Mervis, 1975; Smith & Minda,
1998).

Categorization is apparently an important enough capacity to receive redundant expression
within cognition. Researchers have described several interactions and tradeoffs among
different representational systems in categorization. For example, different processes
dominate categorization at early and late stages of category learning (Cook & Smith, 2006;
Reed, 1978; Smith, Chapman, & Redford, 2010; Wasserman et al. 1988), when categories
have small or large exemplar-set sizes (Blair & Homa, 2003; Homa, Sterling, & Trepel,
1981; Minda & Smith, 2001), and when the categorization rule is easy or difficult to
describe verbally (Ashby & Maddox, 2005).

Based on these interactions and tradeoffs, there is a growing consensus in the human
categorization literature that a comprehensive description of categorization requires a
multiple-system theoretical perspective that grants humans multiple categorization
capacities that specialize in different aspects of category learning (Ashby, Alfonso-Reese,
Turken, & Waldron, 1998; Ashby & Ell, 2001; Erickson & Kruschke, 1998; Homa et al.,
1981; Minda & Smith, 2001; Rosseel, 2002; Smith & Minda, 1998). The multiple-system
perspective has promoted rapid theoretical development within the human literature, but it
has barely been extended to comparative categorization research (Herbranson, Fremouw, &
Shimp, 1999; Smith, Beran, Crossley, Boomer, Ashby, 2010; Smith, Ashby, et al., 2011).
One goal of the present research is to further this extension.

An influential multiple-system theory (Ashby et al., 1998; Ashby & Ell, 2001; Ashby,
Ennis, & Spiering, 2007) distinguishes implicit and explicit categorization systems. The
implicit system is thought to derive response outputs using nonanalytic, multidimensional
processes that learn slowly to map responses to general regions of perceptual space. The
explicit system is thought to derive explicit dimensional rules using analytic, often
unidimensional processes that depend on working memory and executive attention (see also,
Miles and Minda, 2011).

Supporting the implicit-explicit distinction, Brooks (1978) found that incidental and
intentional categorizations by humans were, respectively, nonanalytic and analytic. Kemler
Nelson (1984) found that incidental and intentional category learners, respectively, solved
category problems using multi-dimensional similarity or single-dimensional rules. Other
researchers have shown that a cognitive load (Waldron & Ashby, 2001) or depression
(Smith, Tracy, & Murray, 1993) leave multi-dimensional category learning intact while
disrupting rule-based category learning.

The implicit-explicit distinction is also grounded in cognitive neuroscience. Humans’
implicit/nonanalytic system probably relies on the striatum and is based on the
reinforcement-mediated strengthening of dopamine-related synapses (Ashby et al., 1998;
Ashby, Ennis, & Spiering, 2007). Humans’ explicit/analytic system probably relies on a
broad neural network that includes the anterior cingulate gyrus, prefrontal cortex, the head
of the caudate nucleus, and medial temporal lobe structures that also serve declarative
memory. This system is also related to the neural complex that affords the executive control
of attention (Rossi, Pessoa, Desimone, & Ungerleider, 2009).

Evidence for these dissociable learning systems comes from rule-based (RB) and
information-integration (II) category tasks as shown in Figure 1. The exemplars in the tasks
illustrated are circular sine-wave gratings that vary in the spatial frequency and orientation
of the bars. In the present research, there are 300 exemplars for each category in each task.
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Figure 1 shows only a few illustrative stimuli. The participant must learn to make correct
Category A or B decisions through the successive presentation of single exemplars with
feedback following each stimulus-response pair.

In Figure 1 (top), the vertical category boundary shows that only bar frequency carries
information that supports a category decision. Bar orientation varies equivalently across its
whole range within both categories. This is an example of an analytic, rule-based task
because the category bound can be discovered through stimulus analysis and a
unidimensional rule that is easily verbalized (narrowly vs. widely spaced bars).

In contrast, in Figure 1 (bottom), the diagonal category boundary shows that bar frequency
and bar orientation carry useful category information, but that neither carries sufficient
category information. Here the participant must learn to integrate the information offered by
both stimulus dimensions to make a correct category decision, and accuracy will be
maximized only to the extent that this multidimensional integration is successful. There is
no simple way to verbally describe this category boundary.

The RB and II tasks are matched in category size, within-category exemplar similarity,
between-category exemplar separation, the a priori perceptual difficulty of the categorization
problem, and the maximum proportion correct achievable by an ideal observer. The tasks
represent a strong mutually-controlling pair within cognitive science, because they differ
only in the analytic-nonanalytic/unidimensional-bidimensional aspects that are crucial to
their theoretical framework and to the present research.

Humans show contrastive behavioral profiles within RB and II tasks (Ashby & Maddox,
2005, 2010). They strongly dimensionalize these stimuli in the sense of treating the
dimensions analytically and separably. They learn RB category tasks quickly through
explicit reasoning and rule-based processes. They declare verbally their task solution. In
contrast, humans integrate poorly across dimensions within II tasks. They learn II category
tasks more slowly. They cannot describe their solution verbally.

These different behavioral profiles raise many comparative or cross-species questions. Is the
multiple-system, implicit-explicit organization uniquely human? Is the explicit system
dependent on language and verbal rules, or on propositional/logical mental representations
that could be languageless and that might be possessed by animals as well as humans? What
was the phylogenetic origin of these multiple category systems during cognitive evolution,
and what is the phylogenetic depth of explicit categorization in particular? What does the
phylogenetic map of the multiple-system organization look like, and what is the
phylogenetic breadth of explicit categorization in particular? Is it a human thing, an ape
thing, a primate thing, a mammal thing, a vertebrate thing?

These comparative questions highlight the inferential power of the matched and diagnostic
RB and II tasks. These tasks support the evaluation of rule-based and nonanalytic task
solutions within a controlled and well-understood empirical framework. By rotating the
dimensional axis of category tasks, from II to RB, one can ask whether the minds of
different species are dimensionally polarized. If so, then the dimensional task orientation
will admit strong and rapid learning, just as a polarizing filter will strongly admit light when
it finds the axis of the light’s polarization. Human minds are dimensionalized in this way.
What about the minds of other species?

In Smith et al. (2010), a group of six rhesus macaques (Macaca mulatta) participated in
matched RB and II category-learning tasks with learning order counterbalanced. As is true
for humans, macaques strongly dimensionalized the frequency-orientation stimuli shown in
Figure 1 and learned the RB task more quickly. Figure 2 shows that this result was obtained
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whether the RB task was experienced first or second. These results demonstrated an
important empirical continuity between human and nonhuman primate cognition. They
suggest that nonhuman primates may have some structural components of humans’ capacity
for explicit cognition, though of course not necessarily all of those components. They
suggest preliminary answers to some of the comparative questions posed above.

In Smith et al. (2011), two large groups of pigeons participated in matched RB and II
category-learning tasks with learning order counterbalanced. These pigeons were run in
laboratories in New Zealand (NZ-Canterbury; R. Grace) and the United States (USA-Tufts,
R. Cook). Whereas humans strongly dimensionalize these stimuli and learn RB tasks more
quickly than II tasks, pigeons learned the two tasks equally quickly to the same level. These
results were obtained despite differences in experimental procedures across the two
laboratories, underscoring the convergence and robustness of the common findings. Smith et
al. suggested that pigeons illustrate a cognitive system in which the commitment to
dimensional analysis and category rules was not strongly made, and that pigeons’
performance reflects the character of the ancestral vertebrate categorization system from
which that of primates emerged.

The primary empirical purpose of this article is to illuminate further the distribution across
the vertebrates of a multiple-system organization to categorization. Macaques, as Old World
primates, cannot alone support the inference that the implicit-explicit organization is broadly
represented within the primate order. To the contrary, there is growing evidence that Old
World and New World primates may differ sharply along just the dimension of explicit-to-
implicit cognition that is at issue within the present article. For example, it has been shown
that macaques have a well-developed capacity for uncertainty monitoring, a basic form of
metacognition that appears to show similarities to humans’ executive-attentional uncertainty
processes (e.g., Kornell, 2009; Smith, 2009). However, research with several samples of
capuchin monkeys in several standard animal-metacognition tasks have thus far shown that
their metacognitive capacities are more poorly developed or absent (Basile, Hampton,
Suomi, & Murray, 2009; Beran & Smith, 2011; Beran, Smith, Coutinho, Couchman, &
Boomer, 2009; Fujita, 2009; Paukner, Anderson, & Fujita, 2006). Thus, there is a parallel
need to evaluate broadly across the primates the capacity for explicit, rule-based
categorization.

We tested capuchins monkeys (Cebus apella)—a New World primate. This group separated
from the Old World primates about 40 million years ago. They can provide a second crucial
data point in determining whether primates generally possess the implicit-explicit
organization. We gave capuchin monkeys the RB and II category tasks illustrated in Figure
1. We asked whether RB category learning would proceed faster than II category learning,
producing empirical support for a primate-broad dissociation between explicit and implicit
systems of category learning.

2. Method
2.1 Participants

Four capuchin monkeys (Cebus apella) were tested: Logan (male, 5 years old), Lily (female,
13 years old), Liam (male, 7 years old), and Nala (female, 8 years old). All monkeys had
been trained to respond to computer-generated stimuli using a joystick-response input
(Evans, Beran, Chan, Klein, & Menzel, 2008).

2.2 Apparatus
The monkeys were tested using the Language Research Center’s Computerized Test System
—LRC-CTS (described in Rumbaugh, Richardson, Washburn, Savage-Rumbaugh, &
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Hopkins, 1989; Washburn & Rumbaugh, 1992)—comprising a personal computer, a digital
joystick, a color monitor, and a pellet dispenser. Monkeys manipulated the joystick to
produce corresponding movements of a computer-graphic cursor on the screen. Contacting
appropriate computer-generated stimuli with the cursor brought them a 45-mg fruit-flavored
chow pellet using a pellet dispenser interfaced to the computer through a digital I/O board
(KPCI-PDISO8A; Keithley Instruments, Cleveland, OH).

2.3 Stimuli
Each category exemplar was a circular sine-wave grating that varied on two dimensions: bar
frequency and bar orientation. The disks subtended 4.77 degrees of visual angle, viewed on
a 17-inch screen with an 800 × 600 pixel resolution from a distance of about 24 inches. In
the present experiments, spatial frequency varied from 0.366 cycles per degree of visual
angle to 1.408 cycles per degree. Orientation varied from 0.307 radians to 1.925 radians.
Exemplars were created using the randomization technique developed by Ashby and Gott
(1988). In accordance with this method, categories were first defined by bivariate normal
distributions along the two stimulus dimensions that each ranged along a normalized 0-
to-100 scale. Each stimulus was created by drawing a random sample (x,y) from the
Category A or Category B distribution. To control for statistical outliers, the random sample
was discarded if its Mahalanobis distance (Mahalanobis, 1936) was greater than 3.0. This
process was repeated until 300 Category A and 300 Category B exemplars had been
generated. The population parameters defining the Category A and Category B exemplar
distributions in the RB and II tasks are given in Table 1.

In the end, the 300 chosen Category A and Category B exemplars in the two tasks were
slightly adjusted so that their sample means and sample covariance matched the desired
population values for the two categories in the tasks as shown in Table 1. Finally, a linear
transformation was applied to each stimulus coordinate-pair to map its values from the
original 0-to-100 scale to a space representing actual values of spatial frequency (cycles per
degree) and orientation (radians) used in the experiment. These mappings were: Spatial
Frequency = 1.0 + X/30.0; Orientation = y * (pi/200) + pi/9.

2.4 Categorization trials
Each trial consisted of one disk presented in the center-top of a computer screen against a
gray background. A trial began with a black square presented in the same position as the to-
be-categorized stimulus. Animals moved their cursor to touch this square as a trial-start
response, indicating their readiness. The black square released to the disk, and the two
response icons were illuminated. The response icons were located on the screen’s lower-left
and lower-right. To avoid any confusion with past response icons used by the animals, the
A-response icon was a mirror-imaged TB. The B-response icon was a mirror-imaged QC.
These were both novel response stimuli. Monkeys responded by using the joystick to move a
small, red cursor to touch one of the response icons on the screen. For correct responses,
they received a computer-generated bridging auditory signal (a whoop) and the food reward
already described. For incorrect responses, they received a computer-generated penalty
sound (a buzz) and a 20-s timeout period, during which time the monkeys were not able to
move the cursor or get a new trial.

In the experiment’s pilot run of 6,000 trials, both correct and incorrect responses were
simply followed by the next randomly selected trial. However, it appeared that monkeys
were treating all the sine-wave stimuli indifferently and equivalently, as sometimes occurs
when monkeys encounter a distinctively new stimulus domain. Accordingly, we transitioned
to a method based on correction trials. By this method, time-out periods were followed by
correction trials in which the monkeys were presented the same stimulus from the previous
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trial, but their responses were not followed by reward or penalty. Correct responses for
correction trials were followed by the next regular trial. Incorrect responses for correction
trials were followed by a repetition of the correction trial. Only experimental trials (not
correction trials) were used in the data analyses.

We report data from 6,000 RB trials and 6,000 II trials for monkeys Logan, Liam, and Nala.
Through experimenter error, Lily was given only 5,675 trials in her II condition. To address
this situation, her data are graphed and were analyzed using only 5,675 trials from both her
RB and II tasks. Accordingly, her 57th trial block in both tasks contained 75 trials, not 100
as for all other trial blocks for all other monkeys.

In all cases, the trials were successive, random permutations of the 300 Category A and 300
Category B stimuli available for a task. To allow this succession of permutations, stimuli
were sampled without replacement until the supply of 600 stimuli was exhausted, and then
the 600 stimuli were re-introduced.

All monkeys were given—in counterbalanced order—the RB task with a vertical decision
bound and the II task with a positive-diagonal decision bound (Figure 1).

2.5 Categorization modeling
The following models were fit to the last 1,000 trials of each monkey’s performance in each
task, thus allowing their mature performance strategy to be analyzed. The trials modeled
were 5,001–6,000 for Logan, Liam, and Nala, and 4,676–5,675 for Lily. More details of the
modeling procedures in this article can be found in Maddox and Ashby (1993).

The Rule-Based Model assumed that the participant set a decision criterion on one stimulus
dimension (either bar frequency or orientation). The outcome of modeling was to specify the
vertical or horizontal line drawn through the stimulus space that would most systematically
partition the participant’s Category A responses from his or her Category B responses. This
model had two parameters (a criterion on the relevant dimension and perceptual noise
variance).

The Information-Integration Model assumed a general linear classifier strategy in which
participants divided the stimulus space using a linear decision bound. The outcome of
modeling was to specify the line drawn through the stimulus space, of any slope and
intercept, that would most systematically partition the participant’s Category A responses
from his or her Category B responses. This model had 3 parameters: the slope and intercept
of the linear decision bound and a perceptual noise variance.

Finally, two random-response models assumed random guessing. One model assumed
unbiased guessing and thus had zero parameters. The other guessing model assumed biased
guessing and thus had one bias parameter.

The procedures for selecting the best-fitting model were as follows. Parameters were
estimated using the method of maximum likelihood. That is, modeling evaluated which
model would, with maximum likelihood, have created the distribution within the stimulus
space of Category A and B responses that the participant actually produced. Then the
Bayesian Information Criterion (Schwarz, 1978) determined model selection:

where r is the number of free parameters, N is the sample size, and L is the likelihood of the
model given the data.

Smith et al. Page 6

J Comp Psychol. Author manuscript; available in PMC 2013 August 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



3. Results
3.1 Logan and Lily (task order RB-II)

Figure 3A and 3B, respectively, show the results from Logan’s and Lily’s RB and II tasks
over 60 and 57 trial blocks. Though the RB task was their first task, and they may have still
been familiarizing themselves with the stimulus domain, they showed a strong acquisition of
the RB task, with initial low performance levels that soon rose above 90% and 85%,
respectively. Over their last 2,000 trials (Logan--Blocks 41–60) or 1,975 trials (Lily—
Blocks 38–57), they were 91.4% and 85.4% correct, respectively.

By the time of their II (second) task, stimulus familiarization was complete, and Logan and
Lily could (and did) perform above chance from the beginning. It is an interesting feature of
Logan’s and Lily’s data that their performance dipped in the early phases of their II (second)
task. They seem to have become confused, as though they were processing that the stimulus-
reinforcement contingencies of the task had changed for them. Nonetheless, despite this
possible recognition, their performance hardly improved across thousands of trials. Over the
last 2,000 trials (Logan--Blocks 41–60) or 1,975 trials (Lily—Blocks 38–57) in the II task,
Logan and Lily, respectively, were 80.8% and 78.2% correct, respectively, a 10.6% and
7.2% performance disadvantage compared to the RB task. For both animals, we calculated
the p=.01 lower confidence interval for the RB task, and the p=.01 upper confidence interval
for the II task, using procedures described in Hays (1981, pp. 224–226). The two confidence
intervals were non-overlapping as shown in Figures 3A,B, confirming that there is almost no
chance that their RB and II performances were underlyingly equivalent.

The performance of both animals in their last 2,000 trials was modeled using the procedures
described above. They placed their RB decision boundary optimally (Figure 4), choosing the
vertical decision boundary that best differentiated the Category A and B stimulus classes.
Figure 4 uses plus and circle symbols, respectively, to indicate an animal’s Category A or
Category B responses for stimuli that are plotted veridically within the spatial frequency-
orientation stimulus space The best-fitting decision boundaries in the RB task accounted for
91.4% of Logan’s responses and 85.6% of Lily’s responses in the RB task. In Logan’s case,
for example, this means that 1,806 of his 2,000 modeled trials produced responses consistent
with his rule-based decision bound. One sees in Figure 4’s top-left panel that there were
only a few “circle” (Category B) responses made for stimuli to the left of his boundary, and
only a few “plus” (Category A) responses made for stimuli to the right of his boundary.

Logan’s and Lily’s II data were best fit by the Information-Integration model, and this best-
fitting decision boundary accounted, respectively, for 89.1% and 84.4% of their responses in
the II task. Therefore, both animals showed true II learning and an ability to integrate
information across the two dimensions in the task. However, the parameters of both model
fits were nonoptimal because the decision boundaries were closer to vertical. This implies
that even though Logan and Lily showed information integration in the task, they continued
to dimensionalize the stimuli to the detriment of their II performance. This is another
confirmation of the psychological hold that dimensional foci exert on capuchins’
categorization performance.

It is not a viable interpretation of the present results to say that the stimulus space was
asymmetrically salient, so that one overridingly salient dimension was in control of
perception. To illustrate this, we went on to give Logan a third task, the RB task with a
horizontal optimal decision boundary through the spatial frequency-orientation stimulus
space. Now, Logan showed a flexible shift in his attention to emphasize the orientation
dimension. His performance quickly rose above 90%, and, over his last 2,000 trials, he
performed at 92.9%. Modeling revealed that he placed his RB decision boundary optimally,
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using essentially the horizontal decision boundary that best differentiated the new Category
A and B stimulus classes.

Accordingly, the present results are not consistent with salience asymmetries within the
stimulus space, or with associative inertia from task to task. To the contrary, the results are
consistent with the preference and psychological privilege of rule-based processes that bring
capuchins selective performance advantages within RB tasks. Logan easily and flexibly
moved his decisional boundary into the next dimensional polarity. What he and Lily did not
do nearly as well was move their decision boundary optimally into an information-
integration, diagonal polarity.

3.2 Liam and Nala (task order II-RB)
Figure 3C shows the results from Liam’s II and RB tasks. Now the II task was Liam’s first
acquisition, so possibly some residual familiarization with the stimuli was still occurring.
Liam’s II acquisition was very weak, only carrying him from chance performance early on
to performance just above 60% later on. Over the last 2,000 trials (Blocks 41–60) in the II
task, Liam was 62.9% correct.

In sharp contrast, Liam’s appreciation of the RB task appeared to be almost immediate, and
he learned to high levels by the RB task’s end. Over the last 2,000 trials (Blocks 41–60) in
the RB task, Liam was 89.4% correct, a 26.5% performance advantage compared to the II
task. As before, we calculated the p=.01 confidence intervals for both tasks. The two
confidence intervals were non-overlapping (Figure 3C), confirming that the two
performances were samples drawn from very different populations.

Liam’s performance for his last 2,000 trials was modeled using the procedures already
described. Liam placed his II decision boundary vertically (Figure 4), confirming that he
performed the task as a rule-based task even though it was not so constituted. The best-
fitting decision boundary accounted for 68.3% of his responses in the II task. This vertical
decision boundary illustrates again the psychological privilege with which capuchins apply
rule-based frameworks to category tasks. Eventually a near-vertical decision boundary came
to serve Liam well, when he transitioned into his second, RB task. Now the best-fitting
decision boundary accounted for 89.5% of Liam’s responses.

Nala was the weakest learner of the four capuchins. Figure 3D shows the results from her II
and RB tasks. The II task was Nala’s first acquisition, and she may have still been
acclimating to the stimuli during it. Nonetheless, her II acquisition was extremely weak—
she essentially never learned anything. Over the last 2,000 trials (Blocks 41–60) in the II
task, Nala was 52.8% correct.

In contrast, Nala did make progress with her RB acquisition. Over the last 2,000 trials
(Blocks 41–60) in the RB task, she was 68.6% correct, a 15.8% performance advantage
compared to the II task. As before, we calculated the p=.01 confidence intervals for both
tasks. They were non-overlapping (Figure 3D), confirming that the two performances were
sampled from very different populations.

Nala’s performance for her last 2,000 trials was modeled as already described. Because Nala
learned nothing in her II (first) acquisition, the random-guessing model fit her data best. For
this reason, a decision boundary is not shown in Figure 4 for Nala’s II performance, because
she did not learn to apply a systematic strategy in her II task. In her RB (second) acquisition,
Nala was able to place her decision boundary vertically, appropriately to the structure of that
task. The best-fitting decision boundary accounted for 68.5% of her responses in the RB
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task. Even though Nala was not the strongest performer, for her, too, the RB task was more
psychologically approachable.

Because Nala learned nothing within her first II task, we thought it was important to give her
a second opportunity to master the II category structure after she had fully familiarized
herself with the stimulus space. Accordingly, Nala participated in a third task, the
complementary II task to that shown in Figure 1B, in which the Category A and Category B
stimulus ellipses followed the negative diagonal of the stimulus space and there was an
optimal decisional boundary extending from 10 o’clock down to 4 o’clock. She was able to
perform generally above chance in this task, and performed at 70.5% correct over her last
2,000 trials. However, modeling revealed that she did so by maintaining her vertical RB
boundary, treating the task as rule-based even though it was not so constituted. That Nala
failed her first II task, succeeded with her RB task, and construed her second II task
analytically are all demonstrations of this article’s main finding, which is that capuchins,
like humans, approach RB tasks with psychological privilege and greater learning potential.

4. Discussion
Four capuchin monkeys participated in RB and II category-learning tasks using an
established methodology. All animals experienced difficulty learning tasks that required
perceptual integration over two dimensions to make a categorization decision. Their learning
in these tasks was slower to lower terminal performance levels. All four animals
dimensionalized the spatial frequency-orientation perceptual space, attended well to single
dimensions, and learned RB category tasks faster to higher terminal performance levels.
Dimensional rules clearly have an important role in human categorization (Ahn & Medin,
1992; Ashby & Ell, 2001; Erickson & Kruschke, 1998; Medin, Wattenmaker, & Hampson,
1987; Nosofsky, Palmeri, & McKinley, 1994; Regehr & Brooks, 1995; Smith et al., 2004).
Here, capuchins demonstrated their use of dimensional categorization processes that appear
in humans to be explicit, rule-based, conscious, and declarative. The results join the results
from Smith et al. (2010) to demonstrate a new continuity between nonhuman primate and
human cognition.

Our results demonstrate continuity in the analytic, dimensional-rule aspects of explicit
categorization, not necessarily in the awareness or consciousness aspects of explicit
categorization. However, it is an exciting prospect that the present findings might eventually
lead to paradigms that explore more fully monkeys’ declarative systems of categorization.
For example, current theory suggests that explicit category rules held in working memory
should be robust to delays in the reinforcement signal following category trials, because the
animal could hold in mind its rule, and the response it had made, and bridge the temporal
gap so that the reinforcement was still meaningful. In fact, Maddox, Ashby, and Bohil
(2003) showed this robustness of humans’ RB learning. In contrast, II learning was
disrupted even if reinforcement was only delayed by 2.5 s. Demonstrating this result in
nonhuman primates would ground further the idea that the primates broadly share important
elements of humans’ explicit category-learning system.

Likewise, if category rules are evaluated in immediate memory using executive attention,
they should be disrupted if the subject is denied the time to deliberately process the
reinforcement. In fact, Maddox, Ashby, Ing, and Pickering (2004) showed that RB category
learning in humans was disrupted by limitations in the time to process the feedback signal.
Demonstrating this result in nonhuman primates would suggest that they also deliberately
process the reinforcement given. Though the present results do not allow one to infer that
nonhuman primates share all aspects of humans’ capacity for explicit categorization, they
ground a research program that may be able to illuminate this issue more fully.
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The present results also shed light on the sufficient conditions for aspects of explicit
categorization in monkeys and humans. In early formulations of multiple-system theories,
from Shepard et al. (1961) to Ashby et al. (1998), there was some conflation of the construct
of explicit categorization and rules with language and verbal descriptions of those rules. The
emerging results from nonhuman primates show that this conflation must be qualified.
Neither verbal rules nor language are necessary for the privilege of unidimensional category
rules to develop. (Recent discussions of implicit-explicit categorization have avoided this
error—see Ashby & Valentin, 2005). Nonetheless, it is possible that there are synergistic
interactions between explicit category rules and verbal coding. Verbal coding could augment
the privilege of explicit rules in cognition, by facilitating their formulation or evaluation, or
by facilitating their maintenance across trials. Conversely, and this could be an important
point about cognitive evolution, the pre-existing privilege of unidimensional attention and
category rules could have generally promoted the development of the verbal coding and
language communication of those rules.

The results from capuchin monkeys were not predetermined. From the perspective of task
difficulty, RB and II tasks are carefully matched to one another to the point that they are
mutual controls. This is their empirical elegance and theoretical power. The categories in the
RB and II tasks have identical within-category similarity relationships. The exemplar clouds
in each task are spread out in stimulus/perceptual space to exactly the same degree.
Moreover, the categories in the RB and II tasks have identical between-category similarity
relationships. The exemplar clouds in each task are separated in stimulus/perceptual space to
exactly the same degree. Therefore, the two category tasks are matched in every aspect
relating to the inherent perceptual difficulty of the categorization problem and the maximum
proportion correct achievable by an ideal observer. Pothos and Close (2008) took an
alternative formal approach toward showing that—to an organism that was not
dimensionally tuned or focused—the RB and II tasks would be equally difficult and
learnable. For this reason, one might have expected equivalent RB and II performance by
capuchins. Of course they did not show this equivalence.

In considering this result, one must treat the concepts of task difficulty and performance
difficulty psychologically and theoretically. All of the essential sources of difficulty are
equated between the RB and II tasks except one—the tasks’ dimensional alignment.
Therefore, the only explanation for the performance difficulty by capuchins in the II task,
compared to the RB task, is that the RB task is dimensionally tuned or aligned, and that the
capuchins respond to this alignment with strong psychological privilege. The II task is not
difficult. It is dimensionally difficult, a very different psychological conclusion. One’s
theoretical explanation must explain not just that RB learning occurred, but that RB learning
occurred more quickly and that RB strategies were even sometimes favored in the II
condition.

From a neuroscience perspective, there is evidence that II learning is managed in humans
(and perhaps in monkeys) by an implicit-striatal system that uses a form of procedural
learning. This implicit system relies on the low-level association of responses to locations or
regions in perceptual space. Because it relies on such nonanalytic, multidimensional
processes, that system would be indifferent to the rotation of the task in perceptual space and
to the dimensional alignment of the task’s axes. Capuchins could have learned both II and
RB tasks using this system, and then one would have predicted equal RB and II
performance. Smith et al. (2011) provided—in pigeons—a concrete example of a vertebrate
species that appears to have only a unitary system for category learning that treats RB and II
tasks equivalently in the sense of learning both category tasks to the same level at the same
speed. In contrast to pigeons, capuchins have some category-learning system that is sharply
tuned dimensionally.
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From a perceptual-representation perspective, capuchins might have perceived
multidimensional stimuli less separably and more integrally than humans (Foard & Kemler
Nelson, 1984; Garner, 1974; Garner & Felfoldy, 1970; Handel & Imai, 1972; Lockhead,
1972). This would also leave the processes of categorization indifferent to the rotation of the
task in perceptual space and to the dimensional alignment of the task’s axes. There is also a
concrete model for this—young human children sometimes perceive multidimensional
stimulus combinations more integrally than adult humans do (Shepp & Swartz, 1976; Shepp,
Burns, & McDonough, 1980; L. Smith & Kemler 1977, 1978; Smith & Kemler Nelson,
1984; Ward, 1983). From the perspective of comparative psychology, the configural theory
of Pearce (1987, 1994)—that presumes that multidimensional stimulus compounds in their
entirety enter into associations with outcomes and responses—would also allow one to
predict equivalent RB and II performance.

Indeed, there might even be inherent advantages to having a unitary category learning
system based in the nonanalytic integration of multiple dimensions. There could be a neural
economy that might especially suit nervous systems constrained in size. Organisms could
reduce strategy competition during category learning that arises from multiple systems
engaging the same task, and avoid the adventitious rules that humans sometimes obey
during category learning (Jitsumori, 1993). A unitary, nonanalytic system might also be
especially adept at learning non-linear category boundaries that would defeat a rule-based
system. And, if natural kinds are normally multidimensionally organized, with instances
presenting task-relevant information along diverse and changing dimensions, then broad or
configural attention would be adaptive for reducing the chance that attention would be
misdirected away from relevant information.

For all the foregoing reasons, capuchins might have been found to possess a unitary
category-learning system of parsimony, generality, and power that always, simply associated
responses to stimuli, without overlaying axes, dimensions, and rules. But that is not the
category-learning system revealed by the present results. Though one study can never
demonstrate conclusively that nonhuman primates have an exact match to humans’ explicit
category-learning system, the present results, viewed together with results from macaques,
and contrastively to results from pigeons, indicate strongly that nonhuman primates have at
least the beginnings of such a system.

Therefore, the capuchin results that were actually obtained raise important theoretical
questions regarding the phylogenetic distribution of the multiple-system, implicit-explicit
categorization system. Who has the overlay of axes and dimensions? When did it emerge in
cognitive evolution? Why?

The results from pigeons show clearly that the multiple-system organization is not a
vertebrate-wide cognitive adaptation. The results from capuchins, macaques, and humans
suggest that this organization could be a primate-wide cognitive adaptation. Therefore, one
likely possibility is that the privilege of rule-based systems emerged as part of the cognitive
repertoire of the primates.

However, comparative research in this area is only beginning, and therefore we point out
that there are other possibilities as well. Pigeons are not the rocket scientists of the class
Aves—crows and parrots are. In addition, some marine-mammal species (dolphins, sea
lions) are known to be cognitively sophisticated though they lie outside the order Primates.
So, it remains possible that explicit, rule-based cognition could arise generally as the last
frost that settles on the highest peaks of cognitive sophistication, including primates, marine
mammals, corvids, and, of course, journal reviewers. Our research would naturally be
followed up with crows or dolphins, providing critical tests of the evolutionary breadth of
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explicit category learning. If rule-based cognition is a primate invention, that would have
profound implications for considering the cognitive evolution of the primates. If rule-based
cognition is a broader-based, ultimate achievement of mind, that would be equally
interesting in a different way.

Finally, we address the “why” of the emergence of an explicit categorization utility. Explicit
categorization also has distinct advantages. It allows for economical, quickly learned, easy
to maintain, and easy-to-generalize category representations (i.e., rules). It brings cognitive
flexibility and attentional agility arising from dimensional analysis. Perhaps most important,
it opens up the possibilities for cognitive analysis, rules, inferences, symbolic
representations, and eventually even language. Therefore, the processing preference and
privilege that developed for dimensional analysis and category rules may have been one of
the premier adaptations that fostered cognitive evolution within the primate-hominid
lineage.
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Figure 1.
Examples of rule-based and information-integration category structures. The stimuli are
sine-wave disks varying in bar spatial frequency and orientation. For each task, three
illustrative Category A and Category B stimuli are provided. In addition, the open circles
and pluses illustrate the distribution of the experiment’s stimuli as represented in an abstract
space. The text specifies how these abstract values were converted into physically realized
stimuli. The pluses and circles, respectively, are Category A and Category B exemplars. In
the top panel, only variation in bar frequency carries diagnostic category information, so
optimal performance would be governed by a one-dimensional, bar-frequency rule
(narrowly vs. widely spaced bars). In the lower panel, bar frequency and orientation carry
useful but insufficient category information—information from both dimensions would have
to be integrated into a category decision.
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Figure 2.
A. Proportion of correct responses in each trial block for three macaques who performed
6,000 trials of a rule-based (RB) and information-integration (II) category task in that order.
B. Proportion of correct responses in each 100-trial block for three macaques who
performed 6,000 trials of an II and RB category task in that order. Square and triangle
symbols, respectively, denote performance in RB and II tasks.
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Figure 3.
A–D. Proportion of correct responses in each trial block for the four capuchin monkeys.
Square and triangle symbols, respectively, denote performance in RB and II tasks. The
larger symbols at the graphs’ far right reflect the animals’ average performance over their
last 2,000 trials (Logan, Liam, Nala) or 1,975 trials (Lily). For the RB average, we
calculated the p=.01 lower confidence interval using procedures described in Hays (1981,
pp. 224–226). For the II task, we calculated the p=.01 upper confidence interval in the same
way.
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Figure 4.
The decision bounds that provided the best fits to the last 1,000 responses of the four
capuchin monkeys in the rule-based (RB) and information-integration (II) tasks. Plus and
circle symbols, respectively, indicate an animal’s Category A or Category B responses for
stimuli plotted veridically within the spatial frequency-orientation stimulus space. The line
represents the best-fitting decision boundary as determined by the modeling procedures
described in the text. The animals’ first and second acquisitions, respectively, are shown in
the top and bottom row. The absence of a decision bound for Nala’s first acquisition
indicates that her purely chance performance led to the superior fit of a random-guessing
model.
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