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Abstract

Ecologists undertaking stable isotopic analyses of animal diets require trophic enrichment factors (TEFs) for the specific
animal tissues that they are studying. Such basic data are available for a small number of species, so values from trophically
or phylogenetically similar species are often substituted for missing values. By feeding a controlled diet to captive European
badgers (Meles meles) we determined TEFs for carbon and nitrogen in blood serum. TEFs for nitrogen and carbon in blood
serum were +3.060.4% and +0.460.1% respectively. The TEFs for serum in badgers are notably different from those
published for the red fox (Vulpes vulpes). There is currently no data for TEFs in the serum of other mustelid species. Our data
show that species sharing similar niches (red fox) do not provide adequate proxy values for TEFs of badgers. Our findings
emphasise the importance of having species-specific data when undertaking trophic studies using stable isotope analysis.
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Introduction

Stable isotope analysis [1] and the use of mixing models [2,3]

allow detailed investigations of the diet of wild animals. In

combination they provide estimations of the contributions of

different food sources to an animal’s overall diet. As an animal

metabolises the nutritional components of its diet, different

isotopes of the same element are processed in different ways. In

vertebrate species there is a tendency for heavier isotopes to be

retained [4]. This process applies most notably to the metabolism

of carbon and nitrogen, the essential building blocks of amino

acids and proteins [5]. There are higher ratios of 15N to 14N and
13C to 12C in animal tissues compared to those of their food. This

is referred to as trophic enrichment [2,6] (synonymous with

trophic fractionation, [7] enrichment, [8] fractionation [9] or

discrimination [10]). The trophic enrichment factor (TEF) is a

fundamental piece of information required by ecologists using

stable isotope analysis [2,3] to determine food sources and

diversity, but TEFs have been determined for very few animals

[11,12,13,14]. For those species where TEFs have not been

determined, researchers are forced to use values from trophically

or phylogenetically related species [15,16]. In the past few years,

researchers have conducted stable isotope studies on mustelids

without specific data for the species they were studying [17,18].

Due to the lack of information in the literature, they have used

animals as diverse as foxes, wolves, pigs and sea lions, as sources

for TEFs. The use of proxy TEFs may be inappropriate, as TEFs

may differ significantly between species of the same genus [19],

between species in the same ecological niche [20], and a single

species may show different TEFs depending on the specialisation

of their diet [21,22,23].

To determine the TEF for a species, study animals must be

maintained in a controlled environment, with a controlled diet,

and for a prolonged period of time [24]. Ideally, animals should be

fed on a single food source for a sufficient time to allow the isotope

ratios in their tissues to equilibrate with their control diet. The

time required to reach equilibrium varies between tissues, for

example, the equilibration time for serum is faster than that for red

blood cells (RBCs) [22]. After allowing sufficient time for

equilibration between the tissue and the control diet, the TEF

for each element can be estimated by a simple calculation: the

isotopic value from the tissue minus the isotopic value from the

food. However, it is not easy or convenient to maintain animals on

a constant, controlled diet in a controlled environment [25]. While

collecting tissues from animals across extended periods may assist

in the interpretation of their diet [26,27], such interpretations will

only be qualitative and will lack sufficient detail for use in trophic

mixing models. It is only when the TEF of the study animal is

known, along with the isotopic values of the available food sources,

that quantitative calculations may be undertaken [11,22,27].

The European badger (Meles meles) is a social mustelid found

across Europe [28,29]. In the UK and Ireland it is a reservoir for

Mycobacterium bovis, the cause of tuberculosis (TB) [27,30,31], and

hence the diet of badgers is of particular research interest in those

countries [32,33,34,35,36]. Badgers are omnivorous
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[37,38,39,40], opportunistic feeders [37,41], showing evidence of

seasonal specialisation [32].

The diet of wild badgers has been investigated using the analysis

of stomach contents collected post mortem [41,42] and the analysis

of voided faeces [37,43]. Recent work has demonstrated that the

analysis of stomach contents of badgers gives a better indication of

their diet than faecal analyses [44]. Stable isotope analysis of blood

offers a complementary technique for the determination of badger

diet. While gut contents and faecal analysis may provide

information on the species being consumed, stable isotope analysis

can provide information on the relative contributions of those

species to the diet [45]. Blood sampling is a mildly invasive

technique and offers a way of collecting time-series data on

individuals. However, in order to generate the data from blood

fractions, it is necessary to know the TEFs of those tissues.

Using captive badgers, fed on a controlled diet, we determined

the TEFs for carbon and nitrogen in the serum (a blood fraction

that turns over within a few days [46]). Lipid-extracted values were

calculated for d13C TEFs, as lipids have a lower d13C values,

relative to protein and carbohydrate [47,48].

Results and Discussion

Lipid Extraction values for samples
Lipid extraction significantly changed the d13C values of the dog

biscuit and peanut samples, but not the blood serum (Table 1). We

have provided data on the lipid-extraction of red blood cells

(RBCs) (Table 1), although we were unable to generate reliable

TEFs for that blood fraction. Where the lipid extraction process

generated a significant change in the d13C value, the differences

were adopted as transformations and applied to all appropriate

samples.

Trophic enrichment values for serum
The isotopic values of the biscuits and the badger serum samples

from November 2008, after one month on a biscuit-only diet, are

shown in Table 2. TEFs for d15N and d13C in serum were

+3.060.4% and +0.460.1%, respectively. These values were

compared with serum data gathered from earlier in the year

(between May and July 2008). The data for serum samples from

May, June and July 2008 (Figures 1a, 1b and 1c, respectively) were

plotted using Stable Isotope Analysis in R (SIAR) [2]. Figure 1

shows the isotopic values of the serum samples. No lipid-extraction

adjustments were made to serum samples, as there was no

demonstrable effect of lipid extraction (Table 1).

It is clear that the isotopic values of serum taken in May

(Figure 1a), June (Figure 1b) and July 2008 (Figure 1c) are located

roughly on a line joining the mean isotopic values of the biscuits

and peanuts. These data support the calculated TEFs and suggest

that the badgers were solely reliant on the provisioned food and

were not supplementing their diet with other food available from

the enclosures. Six earthworms sampled from the badger

enclosures showed distinct isotopic values (mean

d15N = 6.660.7%, mean d13C = 225.360.5%, n = 6), as did

those from beetles (1 adult and 1 larva - data combined) sampled

from the enclosures (mean d15N = 7.760.2%, mean

d13C = 226.360.7%, n = 2). Invertebrate samples were corrected

for lipids using a general invertebrate value [49]. It is clear that the

captive animals were not ingesting large quantities of earthworms,

beetles or beetle larvae, as their serum values would have been

shifted away from the line between the peanut and biscuit values

(Figure 1). This is an interesting finding, as earthworms have been

considered to be an important part of the diet of badgers in the

UK [39,50] and Ireland [51]. However, we cannot exclude the

possibility of a low level of ingestion of invertebrates.

The potential of blood fraction TEFs for future work
In mammals, the half-life of RBCs is related to body size [52].

The body weight of an adult badger (6–17 kg [53]) is similar to

that of a medium-sized dog. As the life span of RBCs in dogs is 90–

135 days [54], we believe that the life span of RBCs in badgers

would fall within a similar range.

The isotopic value obtained from serum is representative of the

diet of an animal during the preceding week, based on serum

protein turnover rates [22], whereas the isotopic value from the

RBCs represents the diet during a period of three to four months

[52,54]. As badgers have a seasonally variable diet [32,55], it

seems unlikely that they would remain on a fixed diet for many

months at a time. So, while the isotopic values of RBCs could

provide information on longer-term (e.g. inter-annual) trophic

shifts, studies using serum would probably be necessary to identify

dietary changes within any given calendar year.

Comparison of trophic enrichment values with other
species

While there are data for TEFs of bone collagen [56], muscle

[57], vibrissae [58] and RBCs [59], there is no data available on

TEFs of blood serum for any mustelid species.

The red fox has a similar body weight range (3–14 kg [60]) to

the European badger (6–17 kg [53]) and shares a similar trophic

niche, being an omnivorous and opportunistic feeder

[32,37,41,55]. TEFs for serum in the red fox are +4.2% for

d15N [24] (higher than our value for badgers of +3.0%) and

+0.6% for d13C [24] (slightly higher than our value for badgers of

+0.4%). The disparities in these data suggest fundamental

differences in the metabolism of the two species, as both datasets

used lipid-extracted samples derived from captive animals fed on a

controlled diet of dried food.

We identified only one major difference between the red fox

and badger protocols, being the sex ratio composition of the test

Table 1. Mean isotopic changes for d13C after lipid extraction (including P values and sample sizes from comparison T-tests) of
dog biscuits, peanuts and badger blood serum and badger red blood cells (RBCs).

mean d13C change (%) (± sd) effect of lipid extraction sample size

dog biscuit 0.9 (60.3) P,0.01 5

peanut 3.1 (60.2) P,0.001 5

badger serum n/a NS 5

badger RBCs 20.8 (60.2) P,0.001 5

Reported values are provided with only one decimal place, to reflect the accuracy and precision of the analytical machinery.
doi:10.1371/journal.pone.0053071.t001

TEFs for European Badgers
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groups. The red fox study (Roth & Hobson 2000) used groups with

nine males and one female, whereas our study group comprised

three females. While it is possible that there may differences in the

TEFs of male and female badgers, we have found no indication

that this has been recorded in other mammal species. Indeed,

TEFs have been assumed to be the same for males and females

when dietary differences have been identified between the two

sexes [61,62]. The red fox study group [24] and badger group 1

(this study) were both comprised of subadult animals.

TEF variability with diet
It is probable that free-ranging European badgers will show

clear variation in d15N values when their diet has significant

contributions from sources as disparate as carrion and fruit

[32,37,40]. Our values for badger TEFs were derived from dried

food with a mixture of meat, poultry and fish meal. It is likely that

TEFs derived from frugivorous badgers will differ [11]. However,

we were able to detect, using the TEFs we calculated for badgers

fed on a controlled (biscuit) diet, the high proportion of peanuts in

the diet of other captive badgers (Figure 1). This supports the

validity of our experimentally-derived TEFs for serum and

demonstrates they may be safely applied to badgers on an

omnivorous diet.

TEF variability with age
Roth & Hobson [24] showed that the TEFs of d15N for subadult

red foxes are greater than those for adult red foxes for liver, muscle

and fur. Unfortunately, that study has no comparable data for

blood fractions. In our study of blood serum, we have no directly

comparable data for subadult and adult badgers, as all badgers in

our study were subadults. If badgers exhibit the same trend as red

foxes, our data would be shifted right on the X (d15N) axes of the

isotope plots (Figure 1), a result of subtracting a lower TEF from

the d15N values of the adults. As this would take the data further

from an imaginary line joining the mean isotopic values for the

provisioned food sources, and the expected range of dietary

mixtures, we do not believe that the TEF of d15N in blood serum

for subadult badgers is greater than that of adult badgers.

Conclusions

Knowledge of the TEFs for the serum of badgers should allow

stable isotopic investigation of their trophic biology to be

conducted in much greater detail. Our data, and its comparison

with other species, demonstrates the risks that may be encountered

when ecological similarities are employed to ‘‘guesstimate’’ the

Figure 1. Stable isotopic values of serum from captive badgers
fed a diet of biscuits and peanuts. These plots use trophic
enrichment factors (TEFs) derived from three captive animals fed on a
biscuit-only diet. The TEF for each dietary source is represented by a
mean and standard deviation for both axes (d15N and d13C), plotted
using SIAR [2]. Additional data for earthworms are provided for
comparison. a. May 2008 (16 badgers). b. June 2008 (10 badgers). c. July
2008 (10 badgers).
doi:10.1371/journal.pone.0053071.g001

Table 2. Mean isotopic values for d15N and d13C (lipid
extracted) obtained from serum of three captive badgers fed
on a controlled diet for one month, and the calculated trophic
enrichment factors (TEF) for each animal.

Sample Badger Isotopic Value (%) TEF (%)

d13C d15N d13C d15N

Serum A 223.6 9.6 0.5 2.5

B 223.6 10.3 0.5 3.3

C 223.7 10.1 0.4 3.0

mean(6sd) 0.4(60.1) 3.0(60.4)

Biscuit 224.1(60.3) 7.0(60.1)

Isotopic values (with corrections for lipid extraction) are the mean of three
samples for each badger and nine samples of biscuit. Reported values are
provided with only one decimal place, to reflect the accuracy and precision of
the analytical machinery. TEFs for serum were calculated by subtracting the
mean stable isotopic values of the diet (biscuits) from that of serum.
doi:10.1371/journal.pone.0053071.t002

TEFs for European Badgers
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TEFs for a species where specific data are unavailable. We found

significant discrepancies between the TEFs of badgers and species

occupying a similar ecological niche (red fox). There appears to be

no satisfactory substitute for empirical studies to determine TEFs

for the tissues of a particular species [11]. While it may prove

perplexing for trophic ecologists, a clear understanding of the

differences in TEFs between animals of similar phylogeny, size and

diet will serve to improve our understanding of their specific

biologies.

Methods

Ethical statement
The studies on badgers were approved by the Animal Research

Ethics Committee at University College Dublin and carried out

under licence by the Department of Health and Children, Ireland

(B100/3187).

Animals
The badgers were held in outdoor pens, each ,200 m2 with

earthen floors covered in grass and shrubs. The group size within

the pens varied from 1 to 4 animals. While 17 badgers were

available for study between April and October 2008, only three

individuals (all females, born in captivity in 2008), constituting one

group, (group 1) were available through October and November

2008. By October 2008, all three of these animals had reached

weights comparable with adult females in the wild (data from

Department of Agriculture, Food and the Marine).

Dietary variation
Between May and November 2008, the badgers were provided

with a mixture of dog biscuits (Connolly’s Red Mills, Goresbridge,

Ireland) and shelled peanuts (Murtagh & Sons, Ashbourne,

Ireland). Samples of peanuts and biscuits were taken for analysis

from each new batch as they were used. Access to water was ad

libidum. For the month of October 2008, the three badgers of

group 1 were fed only dog biscuits. Biscuits were selected as the

single-source diet as they were preferred to peanuts and showed

less variation in their isotopic values (Figure 1).

Blood Sampling
Blood serum was collected routinely (every four to five weeks)

from each animal between May and November 2008. This

sampling protocol allowed for a minimum of four half-lives of

serum between samples [46]. Serum samples collected in

November (after five weeks on a single-source diet) were used to

calculate the TEF for blood serum. This value was compared to

values obtained from serum collected earlier in the year, when

animals had access to two food sources, dog biscuits and peanuts.

Any changes to the diet of the badgers took place after the

collection of blood samples.

Invertebrate Sampling
A range of invertebrates, earthworms (Lumbricidae) (n = 6),

beetle larvae (n = 1) and adult (n = 1) beetles (Carabidae), were

sampled from the badger enclosures in October and November

2008. These invertebrates represented potential alternative food

available to the badgers.

Sample preparation
Blood samples were collected in serum separator tubes (SST,

BD VacutainerH) and centrifuged at 1400 g for 10 mins to

separate the serum from the RBCs and stored at 220uC. The

blood fractions were dried at 60uC for 24 h then ground into a fine

powder with a mortar and pestle. Invertebrate, peanut and biscuit

samples were similarly dried and ground. Analysis of serum was

performed in triplicate, while ten samples of the peanuts and

biscuits were used to derive mean isotopic values. All invertebrate

samples were analysed only once. Analysis was conducted in a

Thermo Deltaplus Continuous Flow Isotope Ratio Mass Spec-

trometer (CFIRMS) with a CE Instruments 1112 Flash Elemental

Analyser. Nitrogen and carbon isotope ratios are reported relative

to primary standards, atmospheric air (VAIR) and Peedee

Belemnite (VPDB), respectively, using a working standard, l-

Alanine (d15N = 27.767%, d13Corganic = 225.119%). Our isoto-

pic values are reported to one decimal place, to reflect the

precision and repeatability of the analytical technique.

Lipid Extraction
As lipid is depleted in d13C relative to protein and carbohydrate

[47,48], lipid was extracted from subsamples of the blood fractions

and food sources. Using five paired replicates, lipid-extracted

samples of dog biscuit, peanut and serum were compared to

untreated (no lipid extraction) samples. By comparing the d13C

values of the untreated and lipid-extracted samples, a series of

correction factors were identified.

Lipids were extracted from dried, homogenised samples using a

Soxholet apparatus with a refluxing 2:1 chloroform:methanol

solution [63]. The lipid-extracted samples were dried in an oven at

60uC until mass remained constant and ground to a fine powder.

Carbon (d13C) and nitrogen (d15N) isotope values were determined

using a Fissons 1108 elemental analyser (EA) linked to a

continuous-flow isotope-ratio mass spectrometer (Isoprime – GV

instruments). These analyses were conducted at the Food and

Environment Research Agency mass spectrometry facility in York,

UK.
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