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Abstract

Nuclear entry and exit of the NF-kB family of dimeric transcription factors plays an essential role in regulating cellular
responses to inflammatory stress. The dynamics of this nuclear translocation can vary significantly within a cell population
and may dramatically change e.g. upon drug exposure. Furthermore, there is significant heterogeneity in individual cell
response upon stress signaling. In order to systematically determine factors that define NF-kB translocation dynamics, high-
throughput screens that enable the analysis of dynamic NF-kB responses in individual cells in real time are essential. Thus
far, only NF-kB downstream signaling responses of whole cell populations at the transcriptional level are in high-throughput
mode. In this study, we developed a fully automated image analysis method to determine the time-course of NF-kB
translocation in individual cells, suitable for high-throughput screenings in the context of compound screening and
functional genomics. Two novel segmentation methods were used for defining the individual nuclear and cytoplasmic
regions: watershed masked clustering (WMC) and best-fit ellipse of Voronoi cell (BEVC). The dynamic NFkB oscillatory
response at the single cell and population level was coupled to automated extraction of 26 analogue translocation
parameters including number of peaks, time to reach each peak, and amplitude of each peak. Our automated image
analysis method was validated through a series of statistical tests demonstrating computational efficient and accurate NF-
kB translocation dynamics quantification of our algorithm. Both pharmacological inhibition of NF-kB and short interfering
RNAs targeting the inhibitor of NFkB, IkBa, demonstrated the ability of our method to identify compounds and genetic
players that interfere with the nuclear transition of NF-kB.
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Introduction

NF-kB is a family of dimeric transcription factors consisting of

homo- or heterodimers of different subunits (e.g. p65/RelA). It is

involved in cellular stress responses to stimuli such as cytokines,

free radicals, ultraviolet irradiation, oxidized LDL, and bacterial

or viral antigens [1,2,3,4,5]. In resting cells, NF-kB dimers are

located within the cytoplasm, bound to the NF-kB inhibitor IkB.

After NF-kB–activating stimuli such as TNFa or IL1b, the IKK

(the inhibitor kappa B kinase) complex is activated, which in turn

phosphorylates IkB [6] and NF-kB [7,8]. Phosphorylated IkB

proteins are then ubiquitinated and degraded by the proteasome,

thereby liberating NF-kB dimers that translocate into the nucleus

and regulate the transcription of the target genes. However, NF-

kB dimers do not stay in the nucleus permanently. IkBa, a

member of IkB family, is a transcriptional target of NF-kB [9].

Therefore, transcription of IkBa creates a negative feedback loop:

newly synthesized IkBa protein enters the nucleus and binds to

NF-kB, leading to the export of complex back to the cytoplasm

(Figure 1). This negative feedback loop creates an oscillation of

NF-kB nuclear-to-cytoplasmic translocation. Such a response

seems essential in modulating differential transcriptional responses

under transient or sustained cytokine signaling [10]. Given the role

of NF-kB in diverse (patho)physiological responses, understanding

the cell population dynamics of this process is essential.

The most common approach taken in NF-kB translocation

studies, which simply measures the NF-kB localization ratio

between the total nuclear and the total cytoplasmic region,

obscures the fact that not all cells respond to the stimulation

synchronously [10,11], (Figure 2A’ and 2A’’). Similarly, recent

studies of lipopolysaccharide-induced NF-kB activity showed that

only half of the cells responded to the secondary TNFa autocrine

signal, creating distinct subpopulations [12,13]. Such cell-to-cell

heterogeneity seems essential for the plasticity of tissue responses to

inflammation [14,15].

Furthermore, NF-kB responds to many different stimuli, each of

which may lead to different activation dynamics. To understand

NF-kB signaling under a wide variety of stimulation conditions, it
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is important to measure single-cell NF-kB dynamics in large cell

populations. Obviously, studies of NF-kB translocation in just

several individual cells are not sufficient for this purpose, although

dedicated and sophisticated image analysis methods have been

developed for this specific task [11,16,17]. In order to systemat-

ically determine factors that define NF-kB translocation dynamics,

high-throughput screens need to be developed in relevant cell lines

in the context of compound screening and functional genomics.

Our goal was to develop a methodology for quantification of

NF-kB translocation dynamics in single cells, suitable for high

throughput screening (HTS). For this, we used HepG2/GFP-p65

cells which show a dynamic nuclear-to-cytoplasmic translocation

response upon TNFa stimulation (Figure 2A). To derive quanti-

tative information of this shuttling in the entire cell population, we

set out a strategy for the image analysis (Figure 2B). We describe

two novel segmentation methods that are required for this

purpose: one for the segmentation of individual nuclei, and one

for the cell region. Next, cell tracking was done based on the

nuclear segmentation results. Finally, methods for the quantifica-

tion of NF-kB translocation dynamics and the extraction of

informative parameters from the NF-kB translocation time profiles

are described. In addition, procedures and results for the

validation of each step in the quantification methodology are

presented.

Results

Image Collection and Preprocessing
First, dual channel confocal images were collected (first channel:

Hoechst nuclear staining; second channel GFP-p65) in a six hour

time-lapse series with a recording interval of 6 minutes (see

Materials and Methods for details). Next, image preprocessing was

applied separately for each of the two channels (Figure 3A and 3E

respectively). For the nuclear channel, images were sharpened first

in order to enhance the edge (by ImageJ; http://rsbweb.nih.gov/

ij/). This was implemented by an unsharp filter which equals to

subtracting a Gaussian blurred copy of the image and rescales the

image to obtain the same contrast of large (low-frequency)

structures as in the input image. We empirically defined the

optimal radius of the Gaussian filter [18] to be 3.0, and the scaling

of the filter 0.6. Next, the so-called Rolling Ball method [19] was

used to remove unevenly illuminated background by subtracting

an averaged image intensity within a circular kernel around each

pixel (by ImageJ). The size of the kernel was chosen to be slightly

larger than the radius of the largest nucleus. The pre-processed

image of the nuclear channel is shown in figure 3B. To define the

overall cell region in the images, the GFP-p65 channel was

processed with a Median filter [20], resulting in smooth cellular

regions (Figure 3F).

Figure 1. NF-kB oscillation is regulated by an auto-regulatory negative feedback loop. Simplified schematic overview of the TNFa-
induced canonical NF-kB response. TNFa binding to the TNF receptor (TNFR) activates the inhibitor of kappa-B kinase (IKK) complex, leading to
phosphorylation of the inhibitor of NF-kB, IkB, upon which NF-kB is free to enter the nucleus to activate transcription of its target genes. One of the
primary NF-kB target genes is IkB, which may retrieve NF-kB from the nucleus to maintain inactive IkB::NF-kB complex in the cytoplasm. Ongoing
TNFR signaling can re-initiate the induction-inhibition cycle.
doi:10.1371/journal.pone.0052337.g001
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Figure 2. Image-based NF-kB nuclear translocation analysis. Time series images of GFP-p65 expressing HepG2 cells stimulated with 10 ng/mL
TNFa. (A’) Nuclear channel. (A’’) GFP-p65 channel. Examples of multiple nuclear translocations at 30, 150 and 270 minutes (white arrow) and at 30,
120, 210 and 330 minutes (yellow arrow). Example of only one, long, nuclear translocation event (red arrow). (B) Flowchart of the individual cell NF-kB
nuclear translocation analysis. 1. Splitting of the two-channel image time series of the NF-kB response 2. Nuclear image preprocessing and
segmentation. 3. Tracking of nuclear mask throughout the time series. 4. Segmentation of cell locations. 5. Definition of the best ellipse fitting within
a Voronoi cell (BEVC) as the cytoplasmic mask. 6. Quantification of the ratio of the nuclear and cytoplasmic GFP intensity per time-point, per cell. 7.
Analysis of the nuclear translocation profile of individual cells. 8. Categorization of responses to perform population analyses.
doi:10.1371/journal.pone.0052337.g002
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Nuclei Segmentation: Watershed Masked Clustering
(WMC)

The segmentation of the nuclei was accomplished by

watershed masked clustering [21,22]. This method uses a

watershed segmentation to divide images into separated regions

containing one nucleus per region. Subsequently, within each

region K-means clustering [23] was applied to define the

nuclear region (Figure 3C). This method is based on the

assumption that each nucleus is evenly illuminated and the

contrast between nuclei and background is sufficiently high.

Over-segmentation is a well-known issue of watershed segmen-

tation. In order to address this issue, preprocessed images

(Figure 3B) were convolved with a Gaussian filter to smooth

discrete intensity signals, using an optimized kernel size. Once

watersheds were obtained from this image, the preprocessed

images prior to Gaussian convolving (Figure 3B) were used to

apply K-means clustering.

Cell Tracking
The nuclear masks that were obtained from the segmentation

were used for the cell-tracking. In our NF-kB translocation

experiments, we observed that most of the cells moved over short

distances between two consecutive image frames, and also a

negligible number of cell divisions occurred during the image

acquisition period. Given these conditions, the maximum overlap

ratio (OLR; See Equation 1) is a feasible and applicable criterion.

For every labeled nuclear region in the current frame n
f
i , where i

represents corresponding label and f represents the frame index,

we identified the labeled nucleus in the next frame n
f z1
j which

maximizes with n
f
i :

Figure 3. Stepwise demonstration of the image analysis method. The original nuclear Hoechst channel (A) is pre-processed by image
sharpening and background subtraction (B), followed by WMC and nuclear mask definition (C). Subsequently, the Voronoi diagram (D) is generated
based on the disjointed nuclear masks. For the GFP-p65 channel, the original image (E) is preprocessed by a smoothing filter (F) for global cell
location definition (G). By multiplication of the global cell masks (G) with the Voronoi diagram (D), the Voronoi mask is defined for the each cell (H).
Within each Voronoi masks the cytoplasmic areas are redefined as the best-fit ellipse in each Voronoi cell (I). Figure (J) shows the composite view of
original Hoechst channel, GFP-p65 channel and the BEVC segmentation result.
doi:10.1371/journal.pone.0052337.g003
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Equation 1: Overlap Ratio.

OLRij~
n

f
i \n

f z1
j

max (Area(n
f
i ),Area(n

f z1
j ))

Given the short imaging interval, cells should not disappear

from one frame to another except when moving out of the frame

borders. Disappearing cells are thus likely to be caused by under-

segmentation. In order to avoid fragmented cell traces, as may

occur in the more condensed cell clusters, we applied an extra

tracking image buffer [24] to store disappearing cell regions until

they are recovered again in one of the subsequent frames that

maximizes the OLRs. As a result, nuclei that are not consistently

detected in every frame can still be tracked correctly.

Cell Segmentation: Best-fit Ellipse of Voronoi Cell (BEVC)
The objects that need to be extracted in this particular live cell

NF-kB imaging application are cells that grow in clusters. These

cells touch and may slightly overlap with each other thus making it

sometimes difficult to uniquely identify the cellular edges.

Therefore the classical edge detection methods which locate the

maximum intensity gradient are not applicable to this particular

case. Instead, we propose a single cell simulation algorithm called

best-fit ellipse of Voronoi cell (BEVC). The algorithm produces an

estimate of the single cellular areas based on the topology of the

cells, which is derived from the distribution of nuclei. In principle,

it consists of three steps:

Step 1, general topology of cell culture. A Voronoi

diagram [25] was generalized based on a set of disjointed nuclear

masks bnucleus
i for i = 1,2,3,…,D, (Figure 3C) with

bnucleus
i \bnucleus

j ~0 when i=j, where D is number of nuclear

masks. Each Voronoi cell Vi containing bnucleus
i (Figure 3D) is

defined as a region which includes all pixels r closer to the

Figure 4. Statistical validation of the automated image segmentation and NF-kB translocation quantification. (A) Comparison of 3
cytoplasmic segmentation methods based on the criterion of error rate. The error rate of the Dilation method is 14.5%63.2; of Voronoi it is
11.8%61.4; and of BEVC it is 10.3%62.2.* p-value,0.05; ** p-value ,0.005; Paired t test (B) Example translocation profiles of (i) cells without
translocation and cells with translocation, (ii) cells with and without a synchronized first round of NF-kB translocation, (iii) cells with NF-kB
translocation occurring only once and cells with more than one NF-kB translocation event. (C) Bias assessment of our quantification method by
comparison of the computational results with the benchmark for different subpopulation. No significant differences (P-value .0.1) were found
between the computational results and the benchmark for the different cell subpopulations within a 6 hour imaging timeframe.
doi:10.1371/journal.pone.0052337.g004
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boundary of bnucleus
i than to the other nuclear masks. The formula

is presented as following:

Equation 2: Voronoi Cell.

Vi(b
nucleus
i )~ r[H min

s[bnucleus
i

Dr{sDv min
s0[|D

j=i
bnucleus
j

Dr{s0D

9=
;

8<
:

Step 2, obtain the Voronoi diagram for the cluster of
cells. A global threshold was applied to the preprocessed images

of the GFP-p65 channel (Figure 3F) to obtain the binary masks

(Figure 3G). Subsequently the masks were multiplied (AND) with

the Voronoi diagram from step 1, so that only the Voronoi cells

within the binary mask were preserved (Figure 3H).

Step 3, obtain an estimate of cell shape per Voronoi
cell. The underlying model for BEVC is that cells are ellipsoid

shaped objects. Based on this assumption, we simulated the region,

or better, shape, of an individual cell as the best-fit ellipse in each

Voronoi cell Vi by calculating the major and minor axis from the

centralized moments (Figure 3I) [26,27].

Quantification of NF-kB Translocation Dynamics
Prior to establishing NF-kB translocation dynamics profile, both

cellular masks and nuclear masks were validated by a supervised

two-class classifier, based on morphological features (Table S1), in

order to exclude improper segmentation (file S1, Figure S2, Figure

S3). The training dataset consisted of manually discerned masks

(file S1, Figure S1). For each single cell i, the NF-kB translocation

dynamics is defined as a time-profile of the ratio of average

intensities of nuclear area bnucleus
i and cytoplasmic area, the latter

defined as total cellular area minus nuclear area bcell
i \bnucleus

i

Equation 3: NF-kB translocation dynamics of single cell i on

time point t.

Dt
i~

1
N

P
p[bnucleus

i
Intensity(p)

1
M

P
p[bcell

i
\bnucleus

i

Intensity(p)

where p represents pixel. N is the number of pixels in the nuclear

mask of cell i, and M is the number of pixels in the cytoplasmic

mask of cell i.

For cells with tracks that disappeared in 3 or less than 3

consecutives frames, linear interpolation was applied to generate

missing data. For cells with tracks that disappeared in more than 3

consecutive frames, interpolation becomes too inaccurate and the

corresponding translocation profiles were removed from the final

data. Generally, ,30% of cells were removed by this procedure.

Quantification of NF-kB Translocation Analogue
Parameters

One advantage of the proposed analysis method is its ability to

automatically quantify analogue parameters for each individual

translocation profile (File S1, Figure S5, Table S2).

We first defined all translocation events. These start at a local

minimum of a profile, include the next local maximum, and end at

the next local minimum. We calculated the number of transloca-

tion events, various properties for each translocation event,

nuclear entry and exit rates and time between consecutive peaks;

in total 26 analogue parameters. More detailed information and

pseudo code are presented in the File S1,

Statistical Validation of the NF-kB Quantification Method
We validated our quantification method in a 3 step process

using 5 randomly selected time lapse movies. First, we compared

our BEVC method for cell segmentation with other segmentation

methods that are used to segment touching or overlapping cells.

One approach that is often used to define the cytoplasmic

topological region is to dilate the corresponding nuclear segmen-

tation mask by a few iterations. However, the extent of the dilation

requires fine-tuning for different cell sizes to avoid overlap

between individual cells. Another approach is to define the cell

region by only applying the Voronoi diagram. Our method

(BEVC) extends the topology information from the Voronoi

diagrams with a best-fitting ellipse, which leads to a more stringent

definition of the cellular area.

To compare these three methods (Dilation, Voronoi and

BEVC), we first generated the binary images from the different

methods. For the dilation, we used a circular kernel with a radius

of 3 pixels as a cytoplasmic structure element, based on the general

cell size in our images. Next, we assessed each result by human

perception. For this, 5 test frames from different series were used

with a total of 1116 nuclei. For each frame f, a score named ‘‘error

rate’’ was calculated to measure the segmentation accuracy:

Equation 4: Error Rate

Lf ~

PDf

i~1 B(bcell
i )

Df

|100% for binary indicator

B(bcell
i )~{

1,ifbcell
i [b

cell,Original
i

0,ifbcell
i =[b

cell,Original
i

where bcell
i is the cellular mask of cell i

obtained from one of three methods. b
cell,Original
i is the cellular

mask of i’th cell obtained by human perception. Df is the total

number of cells in image frame f, calculated by one of three

methods.

The use of the Voronoi combined with best fit ellipse (BEVC)

yielded the smallest error rate for cytoplasmic area definition

(10.3%62.2%), compared to a dilation or Voronoi method

(14.5%63.2% and 11.8%61.4% respectively) (Figure 4A).

Next, we validated our NF-kB translocation quantification

method by comparing automatically generated translocation

profiles with a benchmark that was produced from cells with

segmentation and tracking profiles that were validated by human

perception. 5 randomly selected time lapse movies each with 47

frames were used in this test. From each test movies, 3 benchmarks

were generated separately by 3 independent individuals (File S1,

Figure S4), in order to compensate for possible human bias.

Subsequently, a split-plot ANOVA [28] was applied (by Statistical

Computing Seminars Repeated Measures Analysis with R) to test

for the difference between the benchmark profiles generated by

the 3 test persons and the computational result, in total 4 groups.

The metric is the NF-kB Nuclear/Cytoplasmic intensity ratio, and

2 independent factors are time and group. The statistical tests

indicate that the variation between the 3 benchmarks is not

significant; moreover there are no significant differences between

the benchmarks and the computational result (File S1, Figure S4).

This indicates that the designed algorithm provides an accurate

estimation of NF-kB translocation profiles.

Computational Efficiency of the Algorithm
We tested computational efficiency of the algorithm on the

dataset obtained from HepG2/GFP-p65 cells (see Materials and

Methods for details). The computational complexity of this

algorithm is O(nlogn). We analyzed 6 sets of 60 time-lapse movies

(6 times 3.51 GB). Each 5126512 movie contains two channels,

and each channel consists of 60 frames. On average, 250 cells were

NF-kB Nuclear Translocation Kinetics in HTS

PLOS ONE | www.plosone.org 6 December 2012 | Volume 7 | Issue 12 | e52337



analyzed per movie. The analysis of this dataset was completed in

8362 minutes on a desktop PC (Intel Core i7-3770, 3.40 GHz

with 8 GB of RAM and Microsoft Windows 7 Professional, SP1).

The computationally most intensive part is the background

subtraction on the nuclear channel followed by the segmentation

of the nuclei by WMC. This takes ,64 seconds per movie.

Tracking of the nuclei is done in 6 to 7 seconds.

Statistical Validation of Cell Population NF-kB Dynamics
One of the main purposes of quantifying single-cell NF-kB

nuclear translocation dynamics, especially in the context of high-

throughput screens, is to study the heterogeneity between cell

subpopulations. Therefore it is necessary to validate whether our

quantification method correctly identifies specific sub-populations

of cells and does not create a bias towards any particular cell

Figure 5. Population analysis of NF-kB nuclear translocation perturbation by the IKKb inhibitor BMS-345541. Cells were pre-treated for
2 hours with increasing concentrations of BMS-345541 before TNFa stimulation. (A) Average nuclear translocation response graphs, calculated from
the translocation profiles of individual cells. (B) Average nuclear translocation response graphs with standard error bars for cells with one, two or
three translocation peaks. The total number of cells, the number (N) and percentage of cells which show responding number of peaks are presented
(C) Analysis of the time distribution of the median of 1st, 2nd and 3rd nuclear translocation maximum in TNFa stimulated and TNFa stimulated plus
0.5 mM BMS pre-treated cells. ns: No significant difference; *** p-value ,0.001; **** p-value ,0.0001.
doi:10.1371/journal.pone.0052337.g005
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population. To establish this, we benchmarked 5 time series

images (with 1116 cells) by manually counting the cell subpopu-

lations. We performed three separate tests, comparing the

computational results with the benchmark. In each test, cells were

clustered into two complementary categories. In the first test, cells

were clustered in cells without translocation response versus cells

with translocation response (Figure 4B(i)). In the second test, we

distinguished cells with a synchronized first peak of NF-kB

translocation, from non-synchronized responders (Figure 4B(ii)). In

this category, synchronization was defined as the first NF-kB

translocation peak occurring within three frames from the

averaged profile. The third test clustered cells into (a) cells with

only one (prolonged) NF-kB translocation event, and (b) cells with

more than one NF-kB translocation event (Figure 4B(iii)). The

reason for defining these three tests is their simplicity for human

counting. For all three tests, we obtained p-values greater than 0.1,

indicating that there is no significant difference between our

computational result and the benchmark. Therefore, we conclude

that our algorithm can efficiently be used to perform population

studies on NF-kB nuclear translocation profiles.

Biological Validation of the NF-kB Quantification Method
In order to establish the sensitivity of our algorithm for

perturbation of the biological system, a pilot experiment was

performed by pre-exposing the HepG2/GFP-p65 cells for 2 hours

with increasing concentrations of an IKK-inhibitor, BMS-345541

(0.5, 2.0 and 4.0 mM) before TNFa stimulation. Inhibition of IKK

will prevent NF-kB nuclear translocation (see Figure 1). The

experiment was performed in 96-well plates on two different days,

with two replicates per plate. In the first analysis step, the average

GFP-p65 nuclear/cytoplasmic ratio profiles were generated from

our quantification method. Already at very low inhibitor

concentrations (0.5 mM), the second and third NF-kB nuclear

translocation maxima were delayed and the amplitude of the first

peak was decreased. Increasing the concentration of BMS-345541

to 2.0 and 4.0 mM prolonged the first nuclear translocation event.

Without TNFa stimulation, no NF-kB oscillation was observed

(Figure 5A).

Next, the individual GFP-p65 nuclear translocation profiles

were analyzed for the number of translocation events within the 6

hours imaging period after TNFa stimulation. In non-stimulated

cells, 5% of the cells show spontaneous nuclear translocation,

which is non-synchronous (Figure 5B). After TNFa stimulation,

there is nuclear translocation with either one, two or three peaks,

in 90% of the cells (Figure 5B). The average nuclear translocation

response graphs for individual cells with either one, two or three

peaks, clearly show that the percentage of cells with only one

transition peak increases with the concentration of BMS-345541

(Figure 5B), and that the percentage of cells with 3 transition peaks

decreases.

In addition, we compared the time distribution of each

translocation maximum between control and BMS-345541 pre-

treatment. This indicated that already at a low concentration

(0.5 mM) a significant delay occurred for the second and third

translocation maxima (Figure 5C).

In conclusion, these data indicate that the quantification

method can be used to perform cell-population studies, to identify

rare events, and to study drug-dependent effects, even at low

concentrations.

Application of the NF-kB Quantification Method in High
Throughput Screening Assays

Having validated our NF-kB nuclear translocation quantifica-

tion approach for segmentation accuracy, for correct sub-

population analysis, and for sensitivity to biological perturbation

of the system, we validated whether our quantification method can

successfully be applied in the context of high-throughput

functional genomics screening. For this screening, the approach

of gene silencing by transient transfection of short interfering

RNAs (siRNAs) was applied. We used three different siRNAs as

control: positive control siNFKBIA that targets IkBa, upon which

knockdown the NF-kB response will be affected [11]; negative

control siCASP8 that targets caspase 8, which is a downstream

effector of the TNFR, but does not affect the NF-kB activation;

and siRNA control #1 (targeting luciferase) which also should not

affect the NF-kB activation These siRNAs were tested in 12

different 96-well plates (2 replicates per plate) on 4 different days,

allowing an accurate analysis of the robustness of the assay.

First, we calculated the average GFP-p65 nuclear/cytoplasmic

ratio profiles for each control, as well as for the cells that were not

transfected with siRNAs, but exposed to the transfection reagent

(mock) (Figure 6A). We did not detect an effect of caspase 8

knockdown on NF-kB oscillation compared to mock treatment;

yet surprisingly, siCntrl#1 slightly decreased the peak amplitude.

IkBa knockdown however, strongly impaired NF-kB oscillation as

expected.

Next, for each well, we calculated the average of the 26

analogue parameters for the cell population and derived further

sub-population information, such as the average GFP signal

intensity, the absolute difference between treatment and control

graphs, as well as the percentage of cell profiles showing 0 to 4

transitions: in total 32 parameters (Figure 6B). To validate the

reproducibility of the controls and the quality of assay, we

calculated the Z’-factors which quantify the stability of both

positive and negative control, as well as the distance between

positive and negative controls [29] for each individual parameter.

The conventional methods for assay quality control and hit

identification in high-throughput functional genomics screens were

developed for assays with only a single readout; however, our

quantification method provides readouts for multiple parameters.

To enable the comparison of our assay with assays using only a

single readout, we integrated multiple parameters into one value

by Fisher’s linear discriminant [30,31] as suggested recently for

integration of multiple readouts for quality control in high-content

screening [32]. Before calculating the Z’-factors, all the data were

normalized to the plate average and plate standard deviation by

calculating the Z-score (the number of standard deviations from

the mean). In order to calculate Z’-factors, a direction v was first

identified where maximum separation between positive and

negative control occurs (Equation 5). The multidimensional data

Figure 6. Application of the individual cell NF-kB nuclear translocation analysis in siRNA screening assays. (A) The average nuclear
translocation response graphs for negative controls siCASP8, siCntrl#1, transfection reagent without siRNA (mock), and positive control siNFKBIA.
Inset: representative images of mock and siNFKBIA treated GFP-p65 cells, at 0 and 30 minutes after TNFa stimulation (B) Table showing the univariate
Z’-factors of all 32 individual parameters. The definitions of the 26 analogue parameters are given in Table S2. Absolute Curve Difference: the
absolute point-by-point difference between control and treatment averages. (C) Multivariate Z’-factor calculation based on top-scoring univariate Z’-
factors. Both the conventional as well as the robust multivariate Z’-factors exceed the confidence threshold of 0.5 by combining $5 top-scoring
univariate Z’-factors by linear projection.
doi:10.1371/journal.pone.0052337.g006
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were then linearly projected onto this dimension (Equation 6) and

a multivariate Z’-factor can be calculated from the projected

values. We calculated both classical Z’-factors and robust Z’-

factors (Equation 7) by estimating the mean and standard

deviation, and the median and median absolute deviation

(MAD), respectively.

Equation 5: Projection direction.

v~(SpositivezSnegative){1(mpositive{mnegative)

Where Spositive and Snegative is the covariance matrix of positive

control and negative control. mpositive and mnegative is the mean

vector of positive control and negative control.

Equation 6: Linear projection of multi-parametric dataset.

Pi~
XD

j~1

vj � xij

Where xi is a multi-parametric vector with D parameters.

Equation 7: Robust Z’-factor.

Z0{factor~1{
3(MAD(Ppositive)zMAD(Pnegative))

DMedian(Ppositive){Median(Pnegative)D

The univariate Z’-factors for all 32 parameters are presented in

the Figure 6B. The highest univariate standard Z’-factor was 0.32,

and the highest robust Z’-factor was 0.54, both for the parameter

‘‘% 3 or more peaks’’, in concordance with the strong reduction of

the number of oscillations upon IkBa knockdown. According to

established criteria [29], a Z’-factor .0.5 indicates an assay

suitable for HTS. The high values for the robust Z’-factors that

were obtained therefore may validate our method for HTS. By

calculating the linear projection for the parameters with Z’-factor

.0, in this case 6 parameters, a satisfactory multivariate Z’-factor

of 0.61 and a very good robust Z’-factor of 0.78 were obtained

which further validates our assay for HTS (Figure 6C).

Discussion and Conclusions

Controlling cellular fate in response to external stimuli is an

important event in many physiological and pathological processes

and in the action pharmacologically active compounds. Signaling

routes that are involved herein frequently modulate gene-

transcription by activation of nuclear transcription factors, such

as NF-kB. In order to obtain a better insight in underlying

processes that lead to the activation of these transcription factors.

their subsequent translocation to the nucleus, and in the

downstream events that follow their activation, methods need to

be developed that enable the study of such events at the individual

cell level and in high throughput fashion. In this study, we

successfully developed such a methodology based on a novel

method for cytoplasm definition (BEVC) and nuclei segmentation

(WMC). Our method can easily be adapted to study the activation

and nuclear cycling of other nuclear transcription factors as well.

The cell line used in this study (HepG2) is an epithelial-like

hepatoma cell line, showing clustered and stacked cell growth.

This influences the readout for GFP-p65 translocation by

epifluorescence microscopy: superimposed, yet out of focus nuclei

decrease the accuracy of single cell tracking and measurements. By

adopting confocal microscopy in this study, the resolution and

accuracy of single cell measurements are increased. Furthermore,

we introduced the BEVC algorithm for accurate cytoplasm

definition based on cell topology. Combined with WMC

segmentation for the nuclear mask, and a series of quantification

processes such as linear interpolation, the NF-kB translocation

profile of each individual cell can be constructed. In order to

validate our method, three sets of tests were applied on 5 time-

lapse image series. These tests evaluated the proposed quantifica-

tion method from three different perspectives, i.e. (1) accuracy of

BEVC algorithm, (2) accuracy of calculated NF-kB translocation

profiles, and (3) correct identification of cell sub-populations. In

our test, only 10% of cells were segmented incorrectly by BEVC

algorithm. Compared with a 14% error rate obtained by the

dilation method and a 12% error rate by the Voronoi method, we

can state that the BEVC algorithm provides sufficiently accurate

cell segmentation. The BEVC algorithm is also highly efficient,

which is a key consideration for HTS analysis. Other algorithms,

such as contours derived from an active shape model [33], would

possibly define a more precise cell edge, yet at the cost of analysis

speed. Moreover, due to the uniform distribution of GFP-p65 in

the cytoplasm, exact detection of cell boundaries is considered less

relevant.

In the second and third validation test, we evaluated the

accuracy of the calculated NF-kB translocation profiles and the

accuracy of cell sub-population identification respectively. Our

results indicate no significant differences between human gener-

ated benchmarks and the results obtained from the automated

computational procedures, thereby validating our methods for

studying NF-kB translocation, not only in the context of overall

effects on the translocation response, but more importantly, also at

the individual cell level.

In order to establish the sensitivity of our algorithm for

perturbation of the biological system, an experiment was

performed by pre-exposing the HepG2/GFP-p65 cells for 2 hours

with an IKK-inhibitor, BMS-345541 before TNFa stimulation,

which will prevent NF-kB nuclear translocation. The results show

that already at the lowest concentration of the IKK-inhibitor that

was used, perturbation of nuclear translocation of NF-kB was

observed, thus validating our method for studying factors that

affect this translocation. We also validated that our quantification

method can successfully be applied in the context of high-

throughput functional genomics screening. For this screening, the

approach of gene silencing by transient transfection of short

interfering RNAs (siRNAs) was applied. Based on calculation of

multivariate Z’-factors, we demonstrated that our NF-kB quan-

tification method can be used in HTS assays to identify genetic

players that interfere with the nuclear translocation of NF-kB.

Here we demonstrated the effect of IkBa silencing by

siNFKBIA treatment on NF-kB oscillation. Theoretically the

expected effect of IkBa loss would be persistent nuclear presence

of NF-kB, however, this is not observed. The 3-day siRNA

treatment instead led to an increased expression of the GFP-p65

construct, which was strongly retained in the cytoplasm, even

upon TNFa stimulation (Figure 6A). Western-blot analyses

showed that the loss of IkBa had resulted in a basic upregulation

of NF-kB target genes, including A20 and IkBa itself (data not

shown), indicating that upon siNFKBIA treatment, the reporter

cells had undergone multiple rounds of NF-kB translocation that

most likely prevented further activation at the time of imaging.

NF-kB signaling is a complex process, and the balance of

cytokine production and intracellular signaling transduction

controls cellular fate in innate immunity and inflammation

responses [14,34]. It has been established by several groups that

the individual cell response to cytokines may be very heteroge-

neous and is characterized by a full response of a few cells at low
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TNFa concentrations, and a similar response, but now from

almost all cells, at high concentrations, thereby creating distinct

sub-populations of cells [10,14,15]. We show that in the HepG2

cells used in this manuscript, in a non-stimulated population, 5%

of the cells will oscillate spontaneously. Spontaneous nuclear

translocation has also been reported in neuroblastoma cells,

although at a slightly higher level (18%) [15]. It is thought that this

cellular variation serves biological important goals such as stability

in acute tissue responses that are made up from highly

heterogeneous individual oscillatory cell responses [14]. Therefore,

it is an important goal and a major challenge to quantify cell sub-

populations within the NF-kB response pathway. Several methods

have been described that partially meet this demand

[10,14,15,35]. However, none of these is suitable for HTS because

they either lack fully automated image analysis and require human

intervention at some point, or require special equipment that

prohibits massive parallel screening. The development of a

methodology suitable for HTS in the context of NF-kB signaling

as presented in this study, whereby time courses of NF-kB

translocation can be recorder in hundreds of individual cells over a

period of many hours, presents a major breakthrough in this field.

It now becomes possible to identify factors that govern NF-kB

signaling at a genome wide scale. We are currently performing

siRNA screening using this model to identify novel kinases and

ubiquitinases that affect TNF-induced NK-kB nuclear shuttling.

Finally, the analogue parameters that we acquire of all the

individual translocation profiles can be used as variables to model

the sinusoidal oscillation of NF-kB translocation by systems

biology approaches [14,15,35].

Materials and Methods

Cell Line and Cell Culture
HepG2 cells stably expressing N-terminally GFP-tagged p65

(GFP-p65) [36] were maintained in Dulbecco’s modified Eagle’s

medium (DMEM) with high glucose, 10% (v/v) FBS and 25 u/mL

penicillin/25 mg/mL streptomycin. HepG2/GFP-p65 cells were

seeded on Greiner micro-clear 96well black plates (20,000 cells/

well) and grown at 37uC, 5% CO2 for 2–3 days.

Treatment of Cells
The human cytokine TNFa (R&D Systems) was used in all

experiments at 10 ng/mL. The IKK inhibitor BMS-345541 was

from Sigma-Aldrich. Transient knock-down of NFKBIA was

achieved using siGENOME NFKBIA SMARTpool siRNA

(50 nM; Dharmacon Thermo Fisher Scientific, Landsmeer, the

Netherlands) and transfected into the HepG2 cells 3 days before

imaging with INTERFERin (Polyplus transfection, Leusden, the

Netherlands). Transfections with siGENOME SMARTpool

CASP8 siRNA were used as negative controls in these experi-

ments. Prior to imaging, nuclei were labelled with 100 ng/ml

Hoechst 33342 in culture medium for 45 minutes. For confocal

fluorescence microscopy, upon recording the first frame of the

time-series, TNFa was added as 10 mL to each well containing

190 mL medium.

Fluorescence Microscopy
The NK-kB nuclear translocation in the HepG2/GFP-p65 cells

was imaged using a Nikon TiE2000 microscope equipped with a

Perfect Focus System at 37uC with 5% CO2 delivery to the sample

plate location. Both the Hoechst-nuclear channel (excitation

405 nm, emission: 450 nm) and the GFP-p65 channel (excitation

488 nm, emission 515 nm) were recorded with the laser excitation

confocal system. Images were acquired with a 20x (NA 0.75) dry

Plan Apochromat objective and the image acquisition was

controlled by EZ-C1 software (Nikon). In each well, an image

from the same position was acquired every 6 minutes for a period

of 6 hours. The time-lapse series were exported in TIFF files as 16-

bit digital images with 5126512 pixel frames.

Image Analysis and Statistical Analysis
Image analysis was implemented using ImageJ (http://rsbweb.

nih.gov/ij/). In-house plugins were written for quantification of

both translocation profile and analogue parameters (see file S1). R

(http://www.r-project.org/) was used to calculate the ANOVA

test, t-test and multiparametric Z’-factor.

Supporting Information

Figure S1 Nuclear mask validation. (A) accurately identi-

fied nuclear masks overlapping with nuclei and (B) incorrect masks

manually identified.

(TIF)

Figure S2 10-fold cross validation result for 7 different
classification methods. The best result was obtained from

quadratic Bayes normal classification when 2 features were

selected (marked by red box).

(TIF)

Figure S3 Cellular mask validation. (A) Out focus region

are formed when cells are clustered on top of each others (in the

red box). (B) No nuclear masks were identified in those out of focus

regions. (C) Very big Voronoi cells were generated due to the

missing nuclear masks, and consequently big ellipses were

generated (D). Overlap of the GFP channel with ellipses (D)

clearly showed that those big ellipses contained multiple cells. An

area threshold was trained to discard incorrect cellular masks.

(TIF)

Figure S4 Validation of the automated NF-kB translo-
cation quantification method. (A–E). The cell numbers (#),

standard deviation and mean of the time profile of the intensity

ratio obtained from different individuals and computational result.

(F) The accuracy validation results from the split-plot ANOVA

analysis. Df: degrees of freedom. Sum Sq: sum of squares. Mean

Sq: mean of squares.

(TIF)

Figure S5 The outline to quantify the analogue param-
eter from individual time course profiles. (A) One example

time course profile of one cell. (B) Smoothed profile on which we

defined the local maximum (peak of translocation) and local

minimum (valley of translocation). (C) Afterwards, parameters

were measured to characterize the profile dynamic.

(TIF)

File S1 Validation of nuclear masks, cellular masks,
and NF-kB translocation quantification method, and
quantification of analogue parameters.

(DOC)

Table S1 Morphological parameters for training the
nuclear classifier.

(DOC)

Table S2 Definition of analogue parameters measured
for each individual cell translocation profile.

(DOC)
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