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Abstract

Kernel density estimation and kernel regression are useful ways to visualize and assess the structure of data. Using these
techniques we define a temporal scale space as the vector space spanned by bandwidth and a temporal variable. In this
space significance regions that reflect a significant derivative in the kernel smooth similar to those of SiZer (Significant Zero-
crossings of derivatives) are indicated. Significance regions are established by hypothesis tests for significant gradient at
every point in scale space. Causality is imposed onto the space by restricting to kernels with left-bounded or finite support
and shifting kernels forward. We show that these adjustments to the methodology enable early detection of changes in
time series constituting live surveillance systems of either count data or unevenly sampled measurements. Warning delays
are comparable to standard techniques though comparison shows that other techniques may be better suited for single-
scale problems. Our method reliably detects change points even with little to no knowledge about the relevant scale of the
problem. Hence the technique will be applicable for a large variety of sources without tailoring. Furthermore this technique
enables us to obtain a retrospective reliable interval estimate of the time of a change point rather than a point estimate. We
apply the technique to disease outbreak detection based on laboratory confirmed cases for pertussis and influenza as well
as blood glucose concentration obtained from patients with diabetes type 1.
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Introduction

When presented with a signal or time series, the identification of

change points is often of high importance. Moreover, in live

surveillance systems such as disease surveillance, early identifica-

tion of changes in the system is a core task, where the early

warning component invariably is a tradeoff between early

detection and the false positive rate through the tuning of model

parameters. For weak changes there is also the chance that the

method does not detect a real change, a non-detection chance that

must be balanced with the other features of the method. In this

manuscript we consider two distinct types of processes, point data

and unevenly sampled measurements. In the first case, the

observations are a series of times ti where the interesting feature

is the frequency, or density of observations per time unit. For

measurements, observations are values yi measured at times ti,

and we would want to detect changes in the underlying process for

which yi are measurements. The two types of processes lead to two

associated methods. Point data are modeled by kernel density

estimation, and measurements modeled by kernel regression. The

density estimation approach assume observations ti independently

sampled from some density f (t) and our goal is to detect changes

in this underlying distribution similar to the approach in e.g. [1].

For the regression case, the measurements are values yi~f (ti)z[i

with ei *
iid N (0,s2

i ), and the interesting aspect is again changes in

the underlying value of f (t). In both cases i~1,2, � � � ,N and ti is

increasing with i, strictly increasing in the measurement case.

Change point detection has a long history in statistics [2]

originating in monitoring of industrial processes by way of control

charts as pioneered by Shewhart [3]. Later developments on

control charts which defined cumulative sums to improve

sensitivity, leading to the popular CUSUM algorithm [4]. Recent

developments include on-line tools for sequential detection using

Bayesian methods [5]. Change point detection has a large variety

of applications in a multitude of fields, a few examples include

fraud detection [6], climatology [7], and disease surveillance [8].

In the latter case spatio-temporal models are useful for detecting

clusters of disease cases [9]. Sequentially detecting changes in live

processes is closely related to the problem of detecting change

points in complete data, denoted batch detection. The latter was

pioneered in Hinkley’s algortihm for detecting change in mean

using likelihood ratios [10] or using a Bayesian approach [11].

In statistics causality is often formally defined in terms of

directed acyclic graphs as pioneered by Pearl [12] or in the

Granger sense [13], while in physics causality is usually imposed

on physical theories such that a cause always precedes an effect

regardless of the frame of reference. We use causality more in line

with the latter definition here. A point data signal is defined as as

S~ftig (or the equivalent for measurements S~fti,yig). An

investigator can choose to analyze the signal retrospectively in a

batch analysis, and in this setting causality is unimportant.
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However, if one wants to detect changes live, the analysis must be

strictly causal in the sense that any statistic T(S,t) computed at

time t cannot be dependent on future values, T(S,t)~T(Svt,t)
where Svt~fti Dtivtg or correspondingly for measurements.

Kernel methods have multiple applications in density estimation

and regression [14], classification and pattern recognition methods

such as support vector machines [15]. Using kernel density

estimation (KDE), the underlying distribution f (t) of an observed

set of data points ti is estimated as

f̂fh(t)~
1

N

XN

i~1

Kp(t{ti; h) ð1Þ

for some kernel Kp(t) parameterized by a parameter p and scale h

such that Kp(t; h)~h{1Kp(t=h). This is the KDE of the

distribution. For further details, see, e.g., [14]. The estimate (1)

is an asymptotically unbiased estimator of the true density when

limN?? h~0 and limN?? Nh~?. The estimator is unbiased

and with variance approaching zero if the true underlying density

is well behaved and the kernel is symmetric, bounded and has a

finite fourth moment [14]. We allow for different kernels to be

used, parameterized by the free parameter p. The scaling

parameter h, also known as the bandwidth, is a free choice in

these models. Note that the KDE definition (1) is not causal in the

sense of the preceding paragraph since f̂fh(t) depends on values of

tiwt as long as Kp(t; h)w0 for tv0.

Choosing a correct bandwidth in (1) is a difficult problem, and

indeed may be ill-defined if the true distribution is a mixed

distribution with significantly different bandwidths of the compo-

nents. There are plugin methods to find a bandwidth that are

optimal in a specific sense [16], but often the choice of bandwidth

remains ambiguous. In some cases not choosing a bandwidth is

more appropriate as one is interested in more than one scale. If

phenomena happen at different scales, and changes on any scale

(or with a large range of scales) are of interest, multiscale

approaches are more appropriate. In certain settings the scale is

not a priori known, or may change during monitoring, such that

using multiple scales is advantageous.

Over the last decade the emergence of scale space methods

inspired by similar ideas in image processing have become

popular, and a statistical framework has been developed. The

SiZer scheme as first described in [17] was developed to assess

which structures are significant in noisy settings, either for density

analysis or for kernel regression, by analyzing the data on all

relevant scales rather than picking out one specific bandwidth.

This can provide important information that emerges on different

scales and identify structure that might otherwise be missed. In this

technique one does not try to estimate the underlying density f (t),
but rather establish whether there is a significant derivative for any

time t and scale h. The space spanned by the two variables is

denoted the scale space, and the resulting significance map in scale

space gives a quick overview of at what time, and at which scale

the significant changes occur. The technique is a quick and

visually easily interpretable way to assess important aspects of the

data and see important structure. SiZer is not restricted to settings

where the predictor is temporal, but we will assume that this is the

case for the remainder of the article.

Disease surveillance is an important example of a live processing

system where the data are point data, i.e., time of first symptom,

confirmed diagnosis or similar. A common way to measure count

data is to perform binning, implicitly defining a scale for

investigation. Using scale space avoids this scale setting, and

adapts automatically to the relevant scale for the problem.

Surveillance systems may consist of several independent compo-

nents, such as laboratory reports, self reporting of symptoms, GP

diagnosis reports etc. Combining such heterogenous reports is

challenging both from an organizational point of view and for

understanding which trends belong to the same incident. For

example, a set of symptoms do not map directly to a set of

diagnosis. Thus information about the starting point for a trend is

useful in combining the sources and understanding the current

trends. Moreover, the scale on the outbreak data varies between

different infectious agents and even between seasons for seasonal

diseases. Thus multiscale monitoring can provide more informa-

tion compared to single-scale approaches.

Pertussis or whooping cough is a dangerous and highly contagious

disease for unvaccinated children, where it is important to identify

an outbreak at an early time. Lately, outbreaks in developed regions,

such as in California in 2010 have proven that the disease is still a

threat to public health, and surveillance of the disease is essential

[18]. The seasonal influenza is less severe to most people, but as it

affects a large number of people worldwide its consequences are

nevertheless large. The regular recurrence makes it useful to report

when an outbreak starts, and having estimates of the time an

outbreak initiated in each region is important for inference on the

progressive spread of the disease. Web based retrievals have become

a popular way for the public to be informed early on a prospective

outbreak [19]. Models for how communicable diseases spread in a

population can augment surveillance system, where recent examples

of models include wavefront modelling [20], compartemental

models [21] or efficient numerical sampling of Gaussian Markov

Random Fields [22].

In our final example we investigate blood glucose data from

patients with diabetes mellitus type 1. This is a chronic disease

where the pancreas produces insufficient to no amounts of insulin,

and most patients must self-administer insulin several times per

day. As a part of this self-treatment process, the patients must

measure their blood glucose concentration at least three times per

day [23], and according to guidelines should keep the concentra-

tion between 4–7 mmol/L. It is motivating and useful for the

patients to realize trends in their blood glucose, but such trends are

often difficult to see due to the high variability of the blood glucose

in this group of patients.

In addition to the examples investigated here, the methodology

presented is applicable in many setting where early change

detection is desirable, or visualization of current trends in real time

monitoring within in medical or telemedical systems.

SiZer
For completeness, we summarize the important aspects of SiZer

as formulated in [17] here, and the precise version of the

estimators used for the remainder of the paper. For more details,

the reader is referred to the original paper or other expositions

referenced here.

Density estimation. The SiZer (Significant Zero Crossings

of derivatives) methodology for nonparametric kernel density

estimation [17] abandons the idea of trying to establish a true

underlying distribution f (t) that a set of observations ftig have

been drawn from, and reformulates the problem in a hypothesis

testing framework. Throughout the two-dimensional scale space

spanned by time (t) and scale (h) we test the hypothesis

H0 : f ’h(t)~0 against H1 : f ’h(t)=0

based on f̂f ’h(t) which is the unbiased estimator of the derivative of

the kernel smooth (1) with scale parameter h. This test is done

Causality in Scale Space
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independently at each location in the scale space, such that a

color-coded significance map of significant positive change,

significant negative change, or no significant change is established.

The scale space version of the estimator f̂f ’h(t) is defined through

f ’h(t)~E½f̂f ’h(t)� such that f̂f ’h(t) is unbiased at every point in scale

space, and one can assume a normal distribution for f̂f ’h(t), and

thus perform the hypothesis testing with a proper estimate of the

variance. The precise form of the estimator is trivial,

f̂f ’h(t)~
1

N

XN

i~1

K ’p(t{ti; h), ð2Þ

while the estimated standard deviation is simply

cSDSD½f̂f ’h(t)�~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i~1

K ’p(t{ti){f̂f ’h(ti)
h i2

vuut : ð3Þ

The normality assumption relies on enough observations within

the kernel window, and for this purpose an effective sample size is

defined,

ESS(t,h)~

P
i

Kp(t{ti; h)

Kp(0; h)
ð4Þ

and the normal approximation is considered valid if ESS(t,h)wN0

where N0 is a choice to make, usually N0&5.

Since data are reused within a kernel’s support, one must make

a correction for multiple testing, where the common choices in

SiZer include an assumption of independent tests by introducing

the concept of independent blocks at each point in scale space.

The number of independent blocks provides an estimate of how

many independent tests are performed and is computed as a single

number for each scale,

m(h)~
N

avgtESS(t,h)
,

such that each of these blocks of data are considered independent.

The simultaneous quantile is thus

q(h)~W{1 1z(1{a)1=m(h)

2

" #
:

Alternatively one can perform bootstrapping over either t or

both t and h, but this option is very computer intensive and usually

provides little new information compared to the independent

blocks approach which is hence preferred in most cases.

Finally, the results are presented in a scale space diagram,

spanned by t and h, and where each point is color coded according

to either significant derivative, not significant derivative, or not

enough samples for testing. For further details, see [17,24,25].

Regression. For regression type problems, with valued

observations (ti,yi), the estimate (1) is replaced by a local linear

estimator [14],

f̂f h(t)~
argmin

a

XN

i~1

yi{½azb(ti{t)�f g2
Kp(t{ti; h)

~
1

N

XN

i~1

ŝs2(t; h){ŝs1(t; h)(ti{t)½ �Kp(t{ti; h)yi

ŝs2(t; h)̂ss0(t; h){ŝs1(t; h)2

ð5Þ

where

ŝsr(t; h)~
1

N

XN

i~1

(t{ti)
rKp(t{ti; h):

Now the exact same methodology as for density estimation is

applied to determine significant changes. The precise form of the

estimator for the derivative is, using the unbinned version from

[17],

f̂f 0h(t)~
argmin

b

XN

i~1

yi{½azb(t{ti)�f g2
Kp(t{ti; h)

~

PN
i~1

Kp(t{ti; h) ŝs0(t; h)(ti{t){ŝs1(t; h)½ �yi

ŝs0(t; h)̂ss2(t; h){ŝs1(t; h)2

~
XN

i~1

Wh(t,ti)yi,

ð6Þ

where in the last terms the sum is written as a weighted sum of the

observed responses, such that we have defined an equivalent

kernel Wh(t,ti):

Wh(t,ti)~
ŝs0(t; h)(t{ti){ŝs1(t; h)

ŝs0(t; h)̂ss2(t; h){ŝs1(t; h)2
Kp(t{ti; h)

~Sh(t,ti)Kp(t{ti; h):

ð7Þ

Thus, the derivative estimator is the convolution of the equivalent

kernel with the original signal yi, and the equivalent kernel is the

original kernel modified by the factor Sh(t,ti). The standard

deviation estimator follows directly from the weighted sum in (6)

such that [17]

cSDSD½f̂f ’(t)�~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i~1

s2(yi Dti)½Wh(t,ti)�2
vuut ð8Þ

where s2(yi Dt) is a smoothed version of the sum of residuals,

s2(yi Dt)~

PN
j~1

½yj{f̂f h(tj)�2Kp(t{tj ; h)

PN
j~1

Kp(t{tj ; h)

,

and Wh(t,ti) is the weights in the sum of the estimator defined

above. The estimated sample size is computed as in the density

estimation case. For the estimated sample size it is possible to use

Causality in Scale Space
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the equivalent kernel rather than the original kernel in (4).

However, we choose to keep the definition consistent for both the

density estimation and regression.

Methods

Scale space as defined in the previous section cannot be applied

meaningfully in live systems where the data set changes as time

increases. Then future estimates of the regression curve or density

estimates are not meaningful. This is a consequence of scale space

not being causal in a physical sense. We define causality as having

a strict relationship between an effect and the event that causes the

effect such that the event strictly precedes the effect in time [12]. In

SiZer-type scale spaces any data point affects both future and past

values of the density estimate. This is not a problem if one is doing

a retrospective analysis or analysis of non-temporal data. For

change detection the goal is to, as quickly as possible, be able to

determine if there is a change given the most recent observations

available. Indeed, if the chosen kernel has infinite support, as is the

case for the Gaussian kernel, causality will not be obeyed since any

data point will affect the density estimate for all future and past

times. So even though the Gaussian kernel has appreciable

features such as a monotone decrease in zero crossings with

increasing bandwidth [26], we need to abandon the Gaussian

kernel. Kernels that obey causality need to have left-bounded or

finite support. Considering causality alone, we could use an

asymmetric kernel, such as in [27] where a one-sided kernel has

been used to discriminate spike trains. However, asymmetric

kernels are no longer asymptotically unbiased estimators, and

would lead to different properties of estimators for increases and

decreases in the signal. Therefore we consider symmetric kernels

exclusively in this paper. Hence we suggest a modified version of

the SiZer scheme for early change detection.

The observation that standard kernel density estimation and

kernel regression, and hence SiZer, are not causal in the sense that

any data point influences the resulting smoothed curve without

Figure 1. Schematic definition of the causal scale space. An event at time t0 has a causal region in the light gray area and an effective causal
region in the dark gray area between the dashed lines. If we detect significance in the interval shown by the vertical thick bar, the past causal region
common to all points in this region of scale space infers an originating event in the region indicated by the horizontal bar below the t-axis, which
encompasses the true event. The definitions of bU and bL are illustrated by drawing the kernel at one scale h~h’. The definition of the effective
causal region and hence the bs follow accordingly as described in the text.
doi:10.1371/journal.pone.0052253.g001

Table 1. Examples of kernels in the quartic family.

p Hp(0) bL bU Kernel type

0 1/2 1 1 Uniform

1 3315/4096 .677 .820

4/3 70/81 .663 .828

2 15/16 .659 .856 Quartic

2.382 1 .615 .818

3 35/32 .556 .761 Triweight

5 693/512 .438 .624

10 .541 .298 .449

‘ ‘ 0 0 Dirac delta

Normalization constant Hp(0) and the parameters of the causal region, bL and
bU for a selection of values of the kernel parameter p in the quartic family of
kernels.
doi:10.1371/journal.pone.0052253.t001
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Figure 2. The fitted values of bU and bL for various p. The inset shows the quality of the fit measured by the root mean square error over the
same range of p. p~2 is highlighted by a dashed vertical line.
doi:10.1371/journal.pone.0052253.g002

Figure 3. Cumulative plot of confirmed cases of Pertussis and Influenza A 2002–2008. The upper and lower rugs show the individual cases
of Influenza A and Pertussis respectively.
doi:10.1371/journal.pone.0052253.g003
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regard to the time line challenges the application in live systems. A

naive approach for KDE is to include a new term in the sum (1) as

new data points are revealed, but this would result in a highly

discontinuous KDE and a curve that is almost always decreasing

except for the places with measure zero where a new datapoint is

included. To remedy these issues, we suggest to construct a

smoothed curve by using a kernel with finite support, and that is

lagged by 1=2 of the support. We define the bandwidth h such that

the support of the kernel is 2h since we will deal exclusively with

kernels with finite support. We define the forward KDE (fKDE) as

�̂ff�ff h(t)~
1

N

XN

i~1

Kp(t{ti{h; h), ð9Þ

with

Kp(t; h)~0 for DtDwh:

Similarly, for regression estimation, the equivalent kernel Wh in

Eq. (7) is replaced by

�WWh(t,ti)~Wh(t{h,ti),

and the regression estimate accordingly. The pointwise variation is

�ss2(yi Dt)~s2(yi Dt{h):

The estimated sample size (ESS) must be corrected using a time

shifted kernel, such that the definition (4) still holds replacing

t.t{h. However, the correction for multiple testing must be

reconsidered. In c-SiZer, one evaluates a single time point, and as

such estimating the number of independent blocks over all prior

observations on a single scale is not reasonable. This would imply

that the significance tests become increasingly restrictive with time.

Hence, we only correct for multiple testing using the data inside

the kernel at the time point, i.e., the number of independent blocks

is estimated as

m(t,h)~

P
i

1ti[Dh

ESS(t{h,h)
ð10Þ

where Dh~½t{2h,t� is the region where the past kernel is

supported, and the denominator is the number of observations in

this region. With this estimate, the significance quantile is as

before,

q(t,h)~W{1 1

2
1z(1{a)1=m(t,h)
h i� �

, ð11Þ

where W{1(:) is the inverse standard Gaussian distribution. With

these modifications, the standard SiZer computation will yield a

significance plot, but where for each bandwidth, the results are

progressively shifted by h. We denote the significance plots that

arise from this time-shifted kernel density estimate as causal SiZer

plots, or c-SiZer plots.

We can define a causal structure in scale space such that an

event can only affect future estimators bounded by a causal region

that is defined by the kernel’s support. An event in scale space is

defined as a location in time, and at zero scale, i.e., when scale

space is defined by coordinates (t,h), an event is a location (t0,0).
Since the kernel has finite support, the effect of an event can only

be measured at a later time, and on scales hw(t{t0)=2. The lines

t~t0 and h~(t{t0)=2 therefore limit the region in scale space

where an event at t0 can have an effect. We denote the region

inside these lines as the event’s causal region. For most kernels

significance can never be determined at the edges of the kernel,

and we therefore define a more restricted effective causal region. The

kernel may be effective in an interval ½{bh,bh� for some

parameter b. In practice it turns out that it is necessary to

distinguish between the lower and upper limits of this region such

that the kernel is considered effective in a region ½{bLh,bU h� for

some bL,bU[(0,1�. Since a positive change is more likely to arise

within the increasing part of the kernel, and vice verse for a

negative change, the parameters will be different for the two types

of gradient, such that we have four parameters that need to be

determined. We use positive change as a reference point, and thus

use the notation that bL and bU specify the causal region for a

positive change, while b
({)
L and b

({)
U specify the causal region for a

negative change. If using a symmetric kernel, which we use

exclusively in all examples, the symmetry implies that bL~b({)
U

and bU~b({)
L . The effective causal region (for a positive change) is

delimited by the lines

hL~
t{t0

1zbU

hU~
t{t0

1{bL

for twt0,bLv1

and correspondingly for a negative change. If bL~1, the upper

causal region limit is a vertical line, and hU is undefined. The

choice of b’s is free to make, and should be large enough to

accommodate the significant region, while small enough to be

effective in the event specification.

The effective causal region is a future causal region from the

event at t0, but any region in scale space with hw0 also has a past

causal region. If we assume that at some time t~te we see a

significant change at some scale h, this must arise from an event

inside the past causal region. An event at some past time t0 may

give rise to a continuous significance area in an interval h[½hl ,hu�
at time te. Assuming that the entire continuous area originates

from the same event, that event has to be in the past causal region

of all points in the interval. If we wish to estimate the time t0 from

the information at te, we must find the overlap of all these causal

region. Any point (te,he) in scale space has a past causal region

that gives the time interval t[½te{he(1zbU ),te{he(1{bL)�. If we

consider the interval of significant scales assumed to originate from

the same singular event, this event must have happened in the time

interval ts~½te{hL(1zbU ),te{hU (1{bL)�. We see that there is

a critical value of the ratio �hh~hU=hL, such that if

�hh~
1zbU

1{bL

~�bb,

the resulting estimate of the event has zero length, i.e., the event is

completely determined. If �hhv
�bb, the resulting region in time has a

finite length, and we say that the event is specified. If �hh~�bb, the

region is completely specified. Lastly, if �hhw
�bb, the significance area

cannot have resulted from a single event but must be the overlap

from several events. We call these unspecified events, since without

further information estimating or distinguishing these change

points is impossible. In practical applications we have not found

Causality in Scale Space
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this to be a problem. The ideas from this section are summarized

in Figure 1.

When analyzing a c-SiZer plot with respect to change detection

we ignore all significance areas of the same kind in the future

causal region of that first instance, assuming they arise from the

same event. However, for a complete picture an analyst could

visually examine the full significance map for a more complete

understanding of the signal. For example, the magnitude of an

instantaneous change will be reflected in how large scales the

significance area is translated into, while simple change detection

will not provide information about this. The retrospective estimate

of the event time automatically reflects the scale at which the

change was first detected; a smaller scale means a more precise

estimate.

Kernel
The results may be sensitive to the choice of kernel, and there is

a large degree of freedom in choosing the kernel. For both density

estimation and regression it is true that the estimators (1) and (5)

are asymptotically unbiased for symmetric kernels with finite

fourth moment (density estimation) or bounded derivative

(regression) [14]. Thus we would prefer kernels that obey these

restrictions. Unbiasedness ensures by the central limit theorem

that the normality assumption holds. Additionally, we require that

the kernel is continuous in value and first derivative, and have

finite support. To investigate the effect of the type of kernel, we

suggest a family of kernels parameterized by p, given as

Kp(t; h)~
1

h
Hp(t=h)1½{h,h�(t) ð12Þ

where 1L(t) is the indicator function over the interval L, and the

defining functions are

Figure 4. Detection of change in constructed time series. The detection time for a small change (D~1:5, top panel) and large change (D~3,
bottom panel) versus false positive rate for the c-SiZer algorithm with p in the range 20 (left in plot) through 0.5 (right in plot). The mean detection
time is shown as black line for the two cases, while the surrounding shaded regions show the 30/70 percent quantiles for the fitted C distribution.
The FPR for p~2 is indicated. The colored lines show the corresponding values for the comparison algorithms cpt (red), bayes (blue), and
cusum(green) for three different binwidths, b~(0:5,1,5) with (dashed, full, dotted) lines. Note that for cusum, the D~1:5 change is never detected
using binwidth b~0:5.
doi:10.1371/journal.pone.0052253.g004
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Hp(t)~Hp(0)
1{DtD4=p
� �4=p

for pv2

1{t2
� �p

for p§2:

0@ ð13Þ

Normalization requires

Hp(0)~

2

p
B(p=4,4=pz1)½ �{1

for pv2

B(1=2,pz1)½ �{1 for p§2

0B@
where B(x,y) is the Beta function, and p[(0,?). We denote this

family the Quartic Family of Kernels (QFK) since the crossover

between the two cases, p~2 corresponds to the quartic kernel.

This definition is motivated by the fact that all these kernels have

continuous derivative at t~+h, and it smoothly parameterizes

distributions ranging from (but excluding) the uniform distribution

(p~0) to a Dirac delta distribution (p~?). The (qpr{1) st (p§2)

or q4=prs t (pv2) derivative of the kernel is continuous at t~+h.

For large and small values of p, the kernels becomes essentially

discontinuous, and hence the conditions for unbiasedness may no

longer hold, thus leading to the normality assumption to be

violated. We constructed data with only noise, and confirmed that

normality was satisfied within the limits 0:5vpv20, and thus we

will use only values in this range for the examples.

An attractive property of this family of kernels is that the entire

family is log-concave for all p, which guarantees a number of

properties such as preservation of this property under convolution

[28] and that there is a unique likelihood estimator for the

underlying multidimensional distribution [29].

Figure 5. Fit of observed lags to the C distribution. Q-Q plot for p~2 versus the fitted C distribution. The p-value for a Kolmogorov-Smirnov
test in this case is p~:85.
doi:10.1371/journal.pone.0052253.g005

Table 2. True positive rate for detection algorithms.

b D cpt bayes cusum

0.5 1.5 .68 .45 .0

0.5 3 1.0 .97 1.0

1 1.5 .83 .48 .67

1 3 1.0 .98 1.0

5 1.5 .82 .48 .75

5 3 1.0 .98 1.0

Number of times each algorithm eventually detected a change for the
combinations of magnitude of change D and binwidth b. Note that for cSiZer all
changes were found, giving a true positive rate of 1.
doi:10.1371/journal.pone.0052253.t002
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The variance of the kernel is

s2
p~

ð?
{?

t2Kp(t; h)dt
~h2|

B(3p’,p’{1z1)=B(p’,p’{1z1) for pv2,p’~p=4

(2pz3){1 for p§2,

 
ð14Þ

Figure 6. c-SiZer KDE analysis of incidence of Pertussis in North Norway in the period 2002–2007. Upper panel: Kernel density estimates
of confirmed cases of pertussis with varying bandwidths, p~2. No vertical scale is indicated since the live signal cannot be consistently normalized.
Middle panel: The c-SiZer plot, where in shades of gray from light to dark (color online) indicate ESSv5, no significant derivative, significant decrease
(red), and significant increase (blue). No significant derivative means that the null hypothesis is not rejected. The horizontal line corresponds to the
bandwidth used in the black line of the kernel density plot. Logarithm is taken base 10, h has units days in this and subsequent plots. The underlying
data have a resolution of one day here and in Figure 7. Lower panel: Indication of the detected changes with the specification of the event interval
after clustering. The horizontal colored lines indicate the inferred region for the change point, while the connected vertical line is the detection point.
Vertical gray bars, show that the intervals are clustered and indicate the range in which the detections are made. For clarity the height of the change
indicators in the lower panel are jittered.
doi:10.1371/journal.pone.0052253.g006

Causality in Scale Space

PLOS ONE | www.plosone.org 9 December 2012 | Volume 7 | Issue 12 | e52253



which is seen by identifying the integral with the definition of the

Beta function [30]

B(x,y)~

ð1

0

tx{1(1{t)y{1 dt:

For large p, the QFK closely approximates the Gaussian kernel

with the same standard deviation, an approximation valid for

roughly pw10.

Some special cases of the kernels, their normalization constant

and parameters for the causal region are given in Table 1.

Causal Region
The parameters of the causal region, bU and bL were

determined by constructing a deterministic regular series with a

significant change at t~0. The observations were equally spaced

in time with some frequency f0 for time tv0 and frequency 20f0

for tw0. The choice of 20f0 as the discrete jump in frequency for

determining the causal region was motivated by making a large

jump that creates a distinct causal region, while still keeping the

Figure 7. c-SiZer KDE analysis of the number of confirmed laboratory cases of influenza A in North Norway in the period 2002–
2007. The structure of the figure is as in Figure 6. The regular recurrence of the influenza is clearly shown. Also note that the large outbreak in the
2003/2004 season give significance on details in the plot due to test patterns in the laboratory and the high volume of data here.
doi:10.1371/journal.pone.0052253.g007
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jump within a realistic magnitude. Thus, the large change point at

t~0 generated a causal region of positive change. We used a

linear regression without intercept on the lower and upper ranges

of the apparent causal region such that the parameters are

determined. The analysis is done for a range of kernel parameters

p and the values fbU (p),bL(p)g were stored in a dictionary for

reference when detecting change points. The resulting values of

bU (p) and bL(p) are shown in Figure 2. Note that these estimates

were done for a positive change, such that the for a negative

change, bU (p)~b({)
L (p) and bL(p)~b({)

U (p).

Interval Clustering
At any time point, there may be more than one region of

significance, and it might be ambiguous how to merge these to

determine or estimate which regions emerge from the same event

if they are not all mutually overlapping. For example, it is possible

to have three or more regions where number 1 and 2 overlap,

Figure 8. Blood glucose measurements for one patient with type 1 diabetes over 82 days, along with c-SiZer regression analysis.
The structure of the figure is as in Figs 6 and 7. The raw data are self-measured blood glucose with time stamp resolution of one second as reported
by the blood glucose meter.
doi:10.1371/journal.pone.0052253.g008
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number 2 and 3 overlap, but number 1 and 3 do not. Then clearly

there are at least two specified events, but it is ambiguous how to

merge the events. The clustering of intervals is important to obtain

bounds of the events, and we use the following iterative algorithm

to merge events.

At any time, a significance region that extends beyond the

future causal region of any previously detected event will give rise

to a new retrospective estimate of an event. In this way, we will as

time increases get a set of estimates ri~½rL
i ,rU

i � for events of a

specific type. Unless they are all mutually exclusive, one would like

to merge them to attain more precise information on the

retrospective estimates. Assume i[f1, � � � ,Kg for K§2. Then,

for each pair of regions i and j, one can compute the overlap

between the regions,

Oij~ max min (rU
i ,rU

j ){ max (rL
i ,rL

j ),0
h i

:

We assume now that at least one off-diagonal element in O is

non-zero. The length of region i is denoted Li~rU
i {rL

i w0, and

we define the fraction of the overlap between the regions and their

total length through the symmetric matrix

Dij~
Oij

LizLj

:

The pair (i,j) that corresponds to the largest off-diagonal

element of D (with ties broken randomly), are merged into a new

interval

ri’~½max (rL
i ,rL

j ), min (rU
i ,rU

j )�,

and the procedure is iterated until all Dij(i=j) are zero. This

procedure reduces the number of identified events as more data

becomes available.

Implementation
c-SiZer and associated methods are implemented in the open-

source statistics software package R [31] with some computation-

ally expensive elements implemented in C with an R interface.

Data Sources
To evaluate the performance of c-SiZer we constructed

simulated time series for use in the KDE method. We sampled

from a Poisson process with l~1 for {100vtv0, while for tw0
we sampled from a Poisson process with l~D for D~(1:5,3).
These two values of D thus indicate a small and large change

respectively. The first detection of the change was deduced from

the point in the c-SiZer diagram (td ,hd ) where a positive change

was labelled inside the effective causal region of t~0 and outside

the full causal region of t~{100, and finding the upper estimate

of the event time, tdetect~td{hd (1{bL). This time will be the

first instance where the positive change is detected in the c-SiZer

diagram for a live process. For validation we used three

comparison methods, a single change point method [10] and

CUSUM [4] as implemented in the R-package changepoint [32],

and the Bayesian method bcp in the R-package by the same name

[33]. For all methods we investigated times up to 100 time units

after the change, and concluded that the change point was found if

the method estimated a change point within the range of +10
time units from the true change point. For the Bayesian method,

we used a threshold for the posterior probability of 0.1, such that

the first instance of a posterior probability above the threshold

indicated a change, and if there were multiple values above the

threshold, the maximal was used. For the three comparison

techniques, a binwidth must be set, and three different binwidths b

of the data were used, b[(0:5,1,5). The binning regions were

randomly selected such that no prior information about the actual

change point was being used.

We used 100 realizations of the Poisson processes, and first

detection times were modeled as C distributed, tdetect*C(a,h). To

benchmark the results, we used the same realization scheme as

input to the three competing algorithms.

For validation of the false positive rate (FPR) we constructed

data sets by randomly sampling 50 numbers from U½0,50�,
computed the c-SiZer diagram and determined how many of

these indicated a positive change outside the full causal region of

t~0. The same method was used to estimate the FPR for the

comparison methods. Thus we were able to compare the

performance in terms of FPR, true positive rate (TPR), and

detection lag for the kernel density estimation approach.

As realistic data we used two examples of disease outbreak data

and one for self-measurements of blood glucose. Disease outbreak

data were obtained from the microbiology laboratory at the

University Hospital of North Norway reflecting tests done on

samples from the two northernmost counties in Norway, i.e.,

Troms and Finnmark. These data are adapted for use in the Snow

agent system deployed in the Norwegian Health Net, where the

current methodology is intended as a key ingredient [34]. These

data serve as useful proxies for the real number of cases of the

diseases. We have identified all cases of positive tests for the

infectious respiratory diseases pertussis and seasonal influenza A in

the years 2002 through 2007. Cumulative plots of the raw data for

the infectious diseases are shown in Figure 3. For both cases the

KDE version of c-SiZer was employed with each confirmed case

as a data point.

Lastly we used data gathered from one patient with insulin-

regulated diabetes type 1 who was part of a larger cohort of

patients in an exploratory study on a mobile phone application for

this patient group [35]. The patient used self-measured blood

glucose as part of the treatment process, and we used the data for

self-measured blood glucose as input for the regression version of

c-SiZer.

Results

Simulated Data
The parameters a and h in the C distribution model were fitted

to the realizations of waiting times, and found the mean m~ah
which is plotted along with upper and lower 30% quantiles of the

fitted Gamma distribution in Figure 4. Corresponding values for

the three comparison methods are also shown. The validity of the

C distribution was confirmed by doing Kolmogorov-Smirnov tests

and Q-Q plots. The Q-Q plot for p~2 is shown in Figure 5, and

the p-values for the Kolmogorov-Smirnov tests are above.01 for all

relevant values of p, most above.1, and range up to.9. In Figure 4

we show the relation between the detection time and false positive

rate for c-SiZer for the range of p and the chosen values of D along

with results for the comparison methods using three different

binning widths. In Table 2 we show the TPR for the comparison

methods for chosen binning and D. c-SiZer eventually detected all

changes, thus having a TPR of 1.
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Real Data
The kernel density estimate for pertussis and the corresponding

significance plot are shown in Figure 6. In this and all subsequent

examples the kernel (12) with p~2 is used. Also shown are the

identified change points after clustering. We clearly see two

important outbreaks in the period, starting late 2002 and mid

2005, and there is much important structure in the data. From an

early disease detection standpoint it is obviously important to give

warnings both at an early phase, and also at a later point if there

are further significant increases or decreases. Note that causality

emerges in the c-SiZer plot, as significance regions deflect to the

right, into the respective events’ causal regions. Note that the

initial increase at top left is likely to emerge because the ESS
abruptly raises above the threshold at one time point, giving

significance at many more scales than would be justified from the

efficient causal region of the event. This effect is likely to arise in all

cases using KDE from the start of the recording and must be

accounted for, e.g., by excluding the full causal region of the start

of recording in an analysis.

The resulting c-SiZer analysis for influenza A is shown in

Figure 7. Every outbreak is identified with a proper retrospective

estimate of the outbreak time. Note that the large outbreak in the

season 2004/2005 have small time frames of the retrospective

outbreak (and correspondingly detection at small scales), which

indicated a high transmissibility of that year’s outbreak. This was

again reflected in the large outbreak that subsequently happened.

Finally, the c-SiZer analysis for one patient’s self recorded blood

glucose values for three months is shown in Figure 8. We see that

important information that could be valuable for the patient

emerges on different scales as time progresses.

Discussion

We have shown how imposing causality on the scale space

constructed by SiZer-type plots gives a way to early detect

significant changes in a temporal data set with observations, and

by adjusting the kernel used one can achieve an appropriate

tradeoff between false positive rate and early detection. In

particular, the technique has low false positive rate and early

detection time compared to the popular CUSUM technique. We

have demonstrated the technique for both point data and

regression type problems.

The causal structure carries the added benefit that it makes it

possible to retrospectively infer an estimated range for the change

points in a statistically meaningful way. While often not of critical

importance, this may be of value in many applications. In

particular when collecting data from heterogenous sources

comparing the initiating point from these sources can add

evidence to hypotheses of how and when the change originated,

disease surveillance being an important example.

In both regression and point data problems, the issue of scale is

important, and is often reflected in a binning for temporal data.

Binning automatically sets a scale that is believed to be relevant for

the data. Hence, structures on other scales are missed. Using a

scale space approach eliminates this issue since all relevant scales

automatically are scanned.

When comparing to other methods, c-SiZer is not uniquely

better in all respects, and e.g. the Bayesian method is preferable for

the case of a small change for all binwidths investigated. However,

this reflects a prior knowledge of the scale of operation, and often

that is not the case. Also, a signal may consist of both small and

large scale changes, such that any one parameter setting for a

method is not applicable. c-SiZer for a large part avoids this choice

depending only on a single kernel parameter. Notably, c-SiZer is

the only investigated method where the true positive rate was one

throughout, i.e., all changes were eventually detected. Finally, c-

SiZer provides a significance plot that, if interpreted properly,

gives rich insight into the structure of the data set beyond a simple

assessment of the change points. Hence just a comparison with

other change point methods does not convey the method’s full

potential since the visual structure inherited from SiZer signifi-

cance maps is still available. In particular, when studying live data

such as the blood glucose data, a snapshot of current significant

derivatives on different scales gives more information to the user

than simply investigating a single scale, and irrespective of the

change point analysis.

The kernels investigated here are obviously not unique, and

other kernels can easily be conceived. In particular, the restriction

of the kernel to be symmetric may not be necessary, dependent on

the specific setting. For preservation of causality, the kernel’s

support does not need to be finite, but left-bounded, though that

would loose the structure necessary for interval change point

estimation. Using a non-symmetric kernel leads to different

detection times and false positive rates for positive and negative

changes, i.e., the positive and negative tests are at different points

in the diagram of Figure 4. Moreover, an asymmetric kernel

means that the kernel density estimate no longer necessarily is an

unbiased estimator of an underlying density or regression curve, so

the results must be interpreted with care in these cases.

The method described in this paper relies heavily on the

assumption of normally distributed residuals outside the change

regions. Ideally, normality follows from the central limit theorem

provided a well-behaved kernel. However, for kernels that are not

sufficiently smooth this assumption may no longer hold, and

should be carefully assessed if other kernels are being applied.

For both the examples of infectious disease outbreak detection

the method can be useful for detecting changes and outbreaks in

itself or as part of a larger framework for disease surveillance. For

diabetes patients, both type 1 and 2, c-SiZer can be a useful tool

for the patients in their self-treatment process such that they are

warned or informed of changes in the blood glucose pattern, and

when the cause of the change happened. If significant changes in

the patient’s lifestyle occur, the blood glucose pattern may also

change, and alerting the patient of the changes along with the time

of likely cause will help the patient identify the cause of the pattern

and take suitable action to correct the blood glucose levels, if

appropriate. Notably, inferring which changes are significant or

not is difficult based on the raw values in the upper part of

Figure 8. The full c-SiZer plot provides much more information

on the signal, which in turn are summarized in the change point

estimation.

Note that in Figure 6 there are overlapping regions of positive

and negative change. This may occur in any data set, and can arise

in two different ways. Firstly, the regions are simply estimated

ranges of a change point, and thus there may be one positive and

one negative change point at different times within the respective

estimates. Secondly the change points may indeed be overlapping

in time but at different scales. Thus there may be a significant

negative change on one scale simultaneous with a significant

positive change at another scale. If the reason is considered

important to the problem at hand, a careful investigation of the c-

SiZer plot would reveal the likely cause. For the case of the

overlapping regions in Figure 6, it is clear from the c-SiZer plot

that the overlapping regions happen where the negative changes

are on much smaller scales than the positive changes, thus

reflecting small scale variation contained within a larger positive

trend.
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In all examples here we have used raw data, but correcting the

data for, e.g., seasonal or other periodic variation is easily

conceivable depending on the usage. For example, diabetes

patients’ blood glucose may have significant variation through

the day and correcting for these will alert them to trends above

these variations, and possibly give earlier alerts by reducing noise.
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