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Abstract
What is the relationship between variability in ongoing brain activity preceding a sensory stimulus
and subsequent perception of that stimulus? A challenge in the study of this key topic in systems
neuroscience is the relative rarity of certain brain ‘states’—left to chance, they may seldom align
with sensory presentation. We developed a novel method for studying the influence of targeted
brain states on subsequent perceptual performance by online identification of spatiotemporal brain
activity patterns of interest, and brain-state triggered presentation of subsequent stimuli. This
general method was applied to an electroencephalography study of human auditory selective
listening. We obtained online, time-varying estimates of the instantaneous direction of neural bias
(towards processing left or right ear sounds). Detection of target sounds was influenced by pre-
target fluctuations in neural bias, within and across trials. We propose that brain state-triggered
stimulus delivery will enable efficient, statistically tractable studies of rare patterns of ongoing
activity in single neurons and distributed neural circuits, and their influence on subsequent
behavioral and neural responses.
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Introduction
Our interpretation of sensory stimuli can depend heavily on instantaneous levels of attention
to specific locations or stimulus features [1], presumably reflected in ongoing patterns of
endogenous brain activity, or ‘brain states’, at multiple temporal and spatial scales [2–6].
Much progress has been made in understanding the perceptual effects of trial-to-trial
variability in time-locked, post-target sensory brain responses (e.g. [7–10]). Interest in the
influence of pre-target, ongoing brain activity on perception is growing rapidly [3, 11–31].
However, systematic study of rare, endogenous states remains elusive because these states
rarely coincide with target stimulus presentation, and are not under the control of the
experimenter.
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Here, we propose a general approach to study the influence of targeted aspects of ongoing
activity on sensory perception with improved efficiency. Inspired by brain-computer
interface (BCI) algorithms for motor control [32], we employed techniques for online
analysis of spatio-temporal brain activity patterns, and triggered subsequent target stimuli
contingent on the presence of ongoing brain states of interest. In this way, the behavioral
influence of rare pre-target brain states can be assessed repeatedly in a time-locked fashion
(Figure 1A). Our proposed method for online triggering stimuli following arbitrary ongoing
spatio-temporal activity patterns of interest represents a generalization of methods
previously described in the limited context of online triggering of sensory stimuli at a
specific phase of an ongoing brain oscillation [18, 19, 33, 34].

As a proof of principle, we have applied this general method to the study of ongoing brain
dynamics in humans during a selective listening task using electroencephalography (EEG).
Successful implementation of brain state-triggered target presentation requires high-quality
estimates of instantaneous brain states of interest within single trials. As described below,
the spatial detection task we employed generates robust, selective biasing of average evoked
responses to sounds presented at the attended vs. non-attended ear [35], thus rendering it a
useful task for studying the perceptual effects of neural bias within and across single trials.
The largest auditory attentional modulation (and largest signal-to-noise ratio) is obtained in
paradigms involving difficult target stimuli and fast sound repetition rates [36–38]. One such
auditory EEG paradigm involves presentation of two rapid and independent streams of
standard tones with randomized inter-tone-intervals (mean: ~200 ms) and of differing pitch
at the left and right ear ([36]). In this study, subjects were cued to attend to a particular ear
and detect rare ‘deviant’ target sounds of slightly different intensity. When subjects attended
to a particular ear, the average neural response to a sound presented at that ear doubled in
amplitude (response latency of ~80–150 ms post-sound onset, likely localized to auditory
cortex; [39, 40]). However, studies of this kind could not assess drifts in ear-specific neural
response bias towards or away from the cued ear within or across single trials, due to the use
of randomized inter-tone intervals. More generally, such studies typically lack the statistical
power to examine the effects of target presentation during instants of largest neural bias
towards processing of inputs from a given ear, because such instants are rare and
unpredictable.

Here, we modified the above paradigm by presenting alternating sounds to the right and left
ears with a fixed inter-tone interval (Figure 1B, C). We could thus obtain a running estimate
of laterality of neural bias towards processing sounds from a given ear, by separating in time
the contributions to ongoing brain responses from left- and right- ear tones. We then asked:
Do fluctuations in neural bias within and across identically cued trials influence behavioral
detection of subsequent stimuli? We devised a simple, robust algorithm for online triggering
of ‘deviant’ target stimuli of slightly differing intensity following the presence of an
instantaneous ‘state’ of strongly lateralized bias towards or away from the cued ear (Figure
1B). We found that, for identical cue conditions, triggering target stimulus presentation
immediately following a strong, transient state of correctly directed bias influenced
behavioral performance, resulting in an increase in detection rates for target stimuli, as well
as an increase in false-alarm rates. Simulation results demonstrated that brain state-triggered
stimulus presentation can increase, by up to an order of magnitude, the incidence of a
stimulus co-occurring with a brief, rare brain state. This general method should facilitate the
study of influences of ongoing patterns of cellular and circuit activity on behavioral and
neural responses, as well as the development of cortically-guided sensory prostheses.
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Materials and Methodology
We conducted a single session of simultaneous psychophysics and EEG recordings in 21
healthy adult volunteers (17 males) following prior informed consent. All procedures were
in accordance with the Coordinating Ethics Committee of the Hospital District of Helsinki
and Uusimaa.

Auditory Stimuli and Psychophysics
Stimuli were presented in a sound-attenuated room using high-quality headphones
(Sennheiser HD590) at 48000 Hz. We presented two perceptually distinct 5 Hz trains of
‘standard’ tone pips to the left and right ear for 5 s (left ear tones: 1350 Hz, right ear tones,
350 Hz; Presentation software, Neurobehavioral Systems; Figure 1C) designed to allow
concerted focus on a given ear. We staggered left and right ear trains by 100 ms in order to
maximally separate in time the evoked responses driven by left and right ear stimuli. Tones
were 12 ms long, including 5 ms half-sinusoid tapers on either end.

One major difference between previous ‘dichotic’ listening tasks and the task employed in
the current study is our use of fixed 5 Hz trains of standard tones to each ear, shifted by 100
ms. The constant timing of left/right ear tone pairs was necessary in order to obtain an
ongoing estimate of ear-specific neural bias which would be confounded by use of variable
inter-tone intervals known to affect response magnitude [41]. This modification also enabled
us to assess dynamics of neural bias within an individual trial [42]. Note that, in using trains
of stimuli, the presumed response to an auditory stimulus at one ear (e.g. at 120 ms latency,
Figure 2A) may also contain a smaller response component evoked by the preceding
stimulus at the other ear (at 220 ms latency).

We adjusted the auditory intensity of standard tones by first determining ear- and tone-
specific hearing thresholds using a staircase procedure. Subsequently, tone intensity in either
ear was set to 60 dB above hearing threshold. Due to differential perceptual sensitivity to
high- and low-frequency tones, tone intensity was further adjusted (< 4 dB) until subjects
reported equal perceived intensity in either ear, minimizing potential for general perceptual
bias to a given ear.

Subjects were presented with a visual cue (large white arrow, persisting for the duration of
the trial) indicating the ear to which the subject should attend. After 400 ms, separate 5 Hz
trains of standard tones were presented for 5 s to the left and right ear, staggered by 100 ms
so that ear-specific response components could be identified. In a subset of trials (~80%),
one of the standard tones between 2 s and 4 s post-train-onset was replaced by a deviant
target tone of identical frequency but slightly higher intensity (Figure 1B). After the
stimulus train ended, subjects had 1200 ms to raise their right index finger to report having
detection of the deviant tone. The delay of 1–3 s between target tone and motor response
was important to ensure that pre-stimulus activity was not influenced by motor preparation.
The possible trial outcomes were hit (correct detection), miss, false alarm (F.A.: finger lift
when no deviant was present) and correct reject (C.R.: no finger lift when no deviant was
present). Subjects then received visual feedback (cue arrow turns red for miss/false alarm,
green for hit/correct reject; 200 ms duration).

A typical experiment lasted 1.5 hours and consisted of 1–2 training runs, followed by 6–8
test runs. Each run lasted approximately seven minutes and consisted of 48 target trials (24
trials cued to each ear), and 4–15 no-target ‘catch’ trials (see below). The sequence of trials
consisted of alternating blocks of six triggered trials cued to the same ear, in order to
facilitate sustained focused attention in a given direction, and to decrease spurious shifts in
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focus related to novel cue information. Breaks between runs (2–5 minutes) ensured
sustained concentration throughout the experiment.

The task employed here contained large numbers of both ‘hit’ and ‘miss’ responses for
statistical purposes. This difficult task also ensured large cue-dependent modulation of
neural responses. To this end, we used online adjustment of the intensity of deviant tones
separately for left- and right-ear tones to maintain ~50% success rate ((hits + correct
rejects)/(all trials)). At the onset of the first training run, a clearly audible (> 8 dB louder)
deviant target tone replaced a standard tone at a random time during the target period (2–4 s
post-train-onset). For each subsequent trial, if three hits and/or C.R.s occurred in a row, we
increased task difficulty by reducing deviant intensity by 1 dB (0.25 dB during test runs).
Likewise, three misses and/or F.A.s in a row resulted in a 1 dB (0.25 dB during test runs)
increase in intensity. This procedure prevented long stretches of only hits or misses, which
could not be included in assessments of the influence of local fluctuations in brain state on
local differences in behavioral response. Training runs were therefore crucial for subjects to
reach a fairly stationary performance ‘plateau’, at which point only small intensity
adjustments were made due to residual effects of learning/fatigue.

EEG Brain-Computer Interface
We modified a low-noise, 32-channel EEG brain-computer interface system previously used
for online brain imagery-guided cursor control in healthy subjects and tetraplegic patients
[43, 44]. The EEG cap was positioned on the subject’s head with a 20 cm separation
between the nasion and Cz electrode, and electrode impedances were decreased using
conductive paste. Placement of the cap was accelerated by the presence of multi-colored
LED lights for each electrode (ActiCap) providing rapid feedback of whether the impedance
was below the required 5 kOhm threshold, resulting in setup times of less than 15 minutes.
EEG acquisition involved ‘active shielding’ for automatic reduction of estimated line noise
and other external artifacts (ActiCap), followed by digitization at 500 Hz (BrainAmp
amplifier and BrainVision Recorder software, BrainProducts). These technological advances
were critical in facilitating the use of EEG in brain-triggered stimulus presentation.

To enable online estimation of brain states, the Recorder software passed EEG data from the
last 2 s to MATLAB (Mathworks) once every 20 ms via a custom-written C/C++ control
program and a TCP/IP connection. A MATLAB software program then determined whether
a brain state of interest had recently occurred, prompting the C/C++ program to send a TTL
trigger back to the stimulus computer, and causing the next standard tone to be replaced by a
deviant intensity tone with identical timing (see below). The main C/C++ control program
for the sensory brain-computer interface consisted of three threads, one for program
execution, one for data acquisition from the Vision Recorder through TCP/IP, and one for
signal processing and classification in MATLAB through a MATLAB Engine connection
[44]. As described in Figure 1, the BCI received triggers for each stimulus tone presented
(Presentation software), along with the most recent 2 s block of amplified EEG data, which
was then filtered with a 4th order Butterworth filter between (2–20 Hz). To decrease
artifacts, we instructed subjects to relax their facial muscles and blink between trials. We
identified eye blink, saccade and muscle artifacts as epochs where the maximum minus the
minimum EEG potential (in [−1.5 s, 0 s]) between contacts above and below left eye
exceeded a threshold. The threshold was calculated as two standard deviations above the
mean in 2–4 s post-stimulus onset in the training run. Rare epochs containing artifacts were
excluded from further analysis.

We calculated a measure of the overall neural bias to left vs. right ear stimuli, termed the
neural bias index, as described below. First, during the training run(s), we estimated the
peak amplitude of the evoked response (between 110–190 ms post-tone) for all 29
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electrodes, averaged across 20 left and right ear tones (in [1 s, 5 s] post-stimulus onset)
within each trial and across all 48 trials in the training run(s). We then generated a steady-
state evoked response vector from the mean of each channel in the range ±10 ms
surrounding the peak response. This vector served as a spatial set of weights that was
subsequently convolved with the incoming single-trial data to generate a single time-series
on each trial. We note that the spatial distribution of the EEG responses was qualitatively
similar following left and right ear tones (data not shown), and so to simplify our metric we
averaged left- and right-ear spatial response profiles together. Future studies could
potentially derive more information on selective bias by using different weights for
convolution with left- and right-ear responses (see Discussion).

One additional step used to focus the online analysis to relevant EEG channels was to
exclude channels that did not, on average, demonstrate clear cue-dependent response
modulation during the training runs (Figure 2A, B). Specifically, we defined the measure
Rbias = (right-ear response − left-ear response) for each channel and single trial, and only
used channels where (mean(Rbias | attend right) − mean(Rbias | attend left))/std(Rbias) was
greater than 0.15. This resulted in 83 ± 13% of channels used (mean ± std. dev., N = 21
subjects; 100% for subject in Figure 2). The final weighting vector was then used for all test
runs without modification. We then averaged the resulting single timeseries across right- and
left-ear cued trials, and found the 30 ms time interval (interval center between 100 and 150
ms post-tone) that generated the largest response modulation (i.e. (Rbias | attend right) −
(Rbias | attend left)). The neural bias index at any given instant was defined as the right ear
response (averaged over this optimal 30 ms interval following right-ear tones) minus the left
ear response (averaged over the same interval following left ear tones; see Figure 2A), and
this difference was further averaged across ~6 pairs of successive tones from −1.5 s to −.25 s
(to increase signal-to-noise ratio).

The neural bias index should be positive when attention is directed to the right ear, negative
for attention to the left ear, and near zero for ‘split attention’ or low levels of attention or
focus. As discussed above, while it was not possible to uniquely ascribe the response at any
moment to right- or left-ear stimuli, the response ~130 ms following left ear sounds (Figure
2A, gray box, green outline) is far greater for the attend-left than for the attend-right
condition, whereas the converse is true in the same interval following the average right-ear
sounds (Figure 2A, gray box, yellow outline; recall that the 5 Hz trains of left and right ear
tones were staggered by 100 ms).

We determined thresholds for states of correctly or incorrectly directed neural bias towards
or away from the cued ear, respectively, as follows: Using neural bias index values obtained
during the training run(s), we simulated the estimated percentage of non-artifact trials
containing correctly and incorrectly directed neural bias ‘states’ exceeding a threshold, for
different choices of upper and lower thresholds (Figure 2 C, D). We chose threshold values
such that correct/incorrect neural bias states (in [2 s, 4 s] post-stimulus onset) would each
trigger deviant stimulus presentation on ~45% of all trials. The selection of 45% incidences
for each state was a trade-off between obtaining sufficient a number of triggered trials for
statistical purposes vs. including only mildly laterally biased states (see Discussion). The
actual percentages of trials in a test run containing each state was calculated following the
run, and thresholds adjusted slightly to ensure equal incidence of left-ear and right-ear
neural bias state-triggered stimuli (on average across cue conditions; see Figure 3A). In
addition to these selected thresholds, we also avoided triggering on extremely rare and
unusually large ‘outlier’ neural bias index values exceeding ±3 standard deviations from the
overall mean. Upon offline inspection, these rare cases often appeared contaminated by
undetected artifacts.
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We employed several criteria for excluding non-relevant or uninterpretable trials from
analyses described in Figures 3 and 4. First, all non-triggered catch trials (~10% of all
trials), which could result from detected EEG artifacts or due to inattention or unbiased
attention (no threshold crossing), were excluded. These trials were, however, useful in
encouraging subjects not to guess. In addition, we excluded trials where behavioral
decisions were strongly predicted by performance on recent trials (of same cue type), as the
behavioral outcome in these trials were not likely to reflect local, within-trial fluctuations in
perceptual bias. Specifically, we observed a marked increase in miss trials following false-
alarms, and so discarded the next two trials following a false alarm from further analysis. In
addition, we omitted hit/C.R. trials if these trials were both preceded and followed by
another hit or C.R., and omitted miss/F.A. trials preceded and followed by a miss or F.A.,
because these trials reflected epochs in which target stimuli were far from the 50% detection
threshold. These criteria resulted in exclusion, across subjects, of ~31% of all trials (min
23%, max 38%). The smaller final number of ‘usable’, artifact-free trials of comparable task
difficulty and behavioral state further emphasizes the importance of state-triggered stimulus
presentation for efficient study of ongoing activity.

Simulating Gain in Efficiency Using State-Triggered Presentation
State-triggered stimulus presentation decreases the total number of experimental trials
required to observe a target stimulus co-occurring with a given ongoing brain state, thereby
increasing experiment efficiency over random presentation (Figure 5). We simulated this
gain in efficiency across states of various durations, ‘D’, and likelihood of occurrence, ‘L’,
as follows: We generated a random sequence in which brain states of fixed duration, ‘D’
(200, 400, 800 or 1000 ms) could occur once every ‘D’ milliseconds with a fixed likelihood,
‘L’ (x-axis, Figure 5). For comparison with the task employed in this study (Figure 1B), we
considered the situation where a target stimulus can be presented at one of 10 moments in
time (200 ms apart) during a 2 s trial, and simulated 1000 such trials. For state-triggered
presentation, trials containing at least one moment in which a state is present are counted as
successful state-stimulus coincidence trials (Nstate-triggered trials). For random target stimulus
presentation, all trials in which an ongoing state occurring at any of 10 moments in time
coincides with the (random) time of target stimulus presentation are counted as successful
(Nrandom trials). The gain in efficiency using online triggering was thus defined as:

.

Statistical Metrics and Tests
Unless otherwise stated, statistical tests were unpaired t-tests. For comparison of response
rates (Figure 3B, C), we employed a non-parametric shuffle test. For example, a hit rate was
considered significantly greater in condition A (N trials) than condition B (M trials) if the
difference in actual hit rate exceeded the difference in shuffled hit rate at least 95% of the
time. A distribution of 1000 shuffled hit rates was obtained by combining all trials in A and
B, shuffling, reassigning N trials to A′ and M trials to B′, and re-computing hit rates in A′
and B′. According to the method of Green and Swets [45], we defined discriminability
index d′, an corrected estimate of the discriminability of deviant from standard stimuli given
a non-zero likelihood of false-alarms, as d′ = z(hit rate) − z(false alarm rate), where z() is
the inverse standard normal cumulative distribution function.

Results and Observations
Methodological Results

Proof of Principle: Auditory Spatial Detection Task—We employed a GO/NOGO
auditory deviant detection task modified from previous studies [36], with concurrent EEG
recordings, in twenty-one volunteers (Figure 1B; see Materials and Methods). Subjects were
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cued to attend to the left or right ear. Two spectrally separable streams of auditory tones
were presented to the left and right ear at 5 Hz, staggered by 100 ms so that ear-specific
neural response components could be identified (Figure 1B). In ~80% of trials, one of the
standard tones at the cued ear was replaced by a deviant target tone of identical frequency
but slightly higher intensity (Figure 1B). To avoid confounds in interpreting neural signals
due to motor preparation, subjects were instructed to wait until the stimulus train ended (5
s), and raise their right index finger to report detection of the deviant tone, followed by brief
visual feedback. The possible outcomes were hit (correct detection), miss, false alarm
(finger lift when no deviant tone present), and correct reject (no finger lift when no deviant
present).

Auditory Sensory Brain-Computer Interface—To obtain a rapid, online neural
estimator of the instantaneous neural bias towards stimuli at either ear, we modified a low-
noise, 32 channel EEG brain-computer interface system [43, 44]. Additional EOG electrodes
were used for online rejection of eyeblinks and muscle artifacts (see Materials and Methods)
– an important consideration in any brain-computer interface. We used a simple and robust
neural bias index at each instant within a trial, defined as the ‘brain response’ to recent right-
ear tones minus the response to recent left ear tones (the difference in average response to
the ~6 right- vs. left-ear tones in the previous 1.25 sec; see Figure 2 and Materials and
Methods). We computed the brain response to a tone as the weighted average of ‘steady-
state’ evoked responses across EEG channels, at peak latency, ~100–190 ms post-tone-onset
(Figure 2A and Materials and Methods). The selected weights and time intervals were
optimized during initial training runs to ensure maximal difference in the neural bias index
between right-and left-ear attentional cue conditions, and did not change during subsequent
test runs (see Materials and Methods).

The above procedure is illustrated for a single subject in Figure 2. Following training runs,
average brain responses to left- and right-ear standard tones were calculated during the
attend-left and attend-right cue conditions (weighted average timeseries across channels,
filtered and further averaged across 20 tone pips presented 1–5 s post-train-onset; see
Materials and Methods). For initial assessment of cue-specific task modulation of neural
activity, these within-trial peri-tone timeseries were further averaged across all artifact-free
trials for each cue condition (Figure 2A). As shown for this subject, tones at a given ear
evoked substantially larger responses when attention was cued to that ear (N = 21/21
subjects, data not shown), suggesting that cue-dependent changes in the neural bias index
may reflect, in part, attentional modulation of neural responses, consistent with previous
studies of attention that employed similar tasks [36].

We assessed the fluctuations in neural bias within and across trials by calculating the bias in
response magnitude for each successive pair of right- and left-ear tones (see Figure 2A and
Materials and Methods). Interestingly, the cue-specific modulation of the average neural
bias index (Figure 2A) is also apparent for this subject at each individual 200 ms epoch
during the trial (Figure 2B, left). Due to inherent physiological and hardware noise
associated with EEG-recordings, we increased our signal-to noise ratio by employing a
running average across multiple tone-pairs (1.25 s boxcar smoothing of ~6 successive tone-
pairs; see Figure 2B, right; see Materials and Methods), thus limiting our investigation to
fluctuations in neural bias on the scale of ~1 s or slower.

Fluctuations in Neural Bias Within and Across Single Trials—In contrast to the
temporal stability in neural bias throughout a trial on average (Figure 2B, right), neural bias
index timeseries within and across identically cued single trials were highly variable (Figure
2C). While many trials did indeed demonstrate strong response bias towards the cued ear
(e.g., Figure 2C, dark blue trace), other trials showed no bias or strong bias towards the non-

Andermann et al. Page 7

Open J Neurosci. Author manuscript; available in PMC 2012 December 27.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



cued ear (Figure 2C, lighter blue traces). In addition, these traces demonstrated rapid,
endogenous fluctuations even within single trials, which were hypothesized to reflect rapid,
implicitly driven shifts in attention within a trial, akin to neural correlates of explicitly cued
shifts in attention observed in previous studies (see Discussion). The dispersion in
instantaneous neural bias within and between identically cued trials can also be observed in
the broad distributions of neural bias index values during attend-left (blue) and attend-right
(red) cue conditions (Figure 2D).

We sought to efficiently examine the behavioral influence of the extrema within these broad
distributions of neural bias index values, as these instants in time could reflect extreme
momentary biases in the subjects’ attentional focus towards one or the other ear. For
purposes of online-triggering, we discretized these (unimodal) distributions of neural bias
index values, identifying two “states” in which neural bias index values exceeded upper or
lower thresholds (Figure 2C, D). Thus, we classified neural bias index values at each
moment in time during a trial as corresponding to a state of high neural bias to left ear
sounds or right ear sounds (state “L”/state ”R”, green/yellow areas in Figure 2D,
respectively), or to a state of low neural bias (Materials and Methods). The threshold for an
L or R state was selected such that, combined across both cue conditions, each state would
occur in approximately 45% of all trials (between 2–4 s post-train-onset). The choice of
threshold levels involves an important compromise between targeting only the most
pronounced neural bias states exceeding a high threshold (likely the most perceptually
influential states), while maintaining a sufficiently low threshold to ensure an adequate
number of trials containing at least one state of interest (see Discussion).

Evaluating Algorithm Performance: Cue-Dependent Modulation of State
Selection—Before addressing the effect of ongoing states on target detection, we assessed
the robustness of the state-triggering algorithm. Figure 3A describes the incidence of
triggered states as a function of cue direction (towards right or left ear) and state direction (R
or L), across all 21 subjects. As expected, we observed a greater number of correctly vs.
incorrectly directed neural bias states, both for attend-left and attend-right cue conditions, as
well as for data combined across conditions (% correctly directed attentional states for
attend-right trials: 60.0%, attend-left trials: 58.1%, combined: 59.1%, see Figure 3A). In
other words, R states were more frequent than L states when subjects were cued to attend to
the right ear, and vice versa. This excess incidence of correctly directed states across the
population (gray arrow, Figure 3A) was observed in 20/21 subjects when considered
individually (Figure 3B). Thus, incidence of extreme states was modulated as expected by
attentional cue condition during test runs, despite freezing of parameters for calculating the
neural bias index following initial training runs (see Materials and Methods).

Experimental Results
Behavioral Influence of Correctly/Incorrectly Directed Neural Bias States—
Brain state-triggering of deviant tone presentation occurred upon detection by the brain-
computer interface of either an L or R state (within 2–4 s post-trial onset), at which point a
deviant tone of identical tone frequency and timing but slightly higher intensity replaced the
next standard tone presented at the cued ear (Figure 1B). Below, we consider the behavioral
consequences of deviant stimulus presentation triggered by instants of strong, correctly/
incorrectly directed neural bias.

Across cue conditions, the detection rate (hits/(hits+misses)) was significantly greater when
the neural bias state was directed towards the cued ear (4.4% greater, P = .001, non-
parametric shuffle test, N = 21 subjects, Figure 3C, see Materials and Methods). When
considering individual cue conditions, we observed a significant increase in hit rate in the
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attend-right cue condition for R vs. L states (6.3% increase, P = .003), and a similar but non-
significant trend for the attend-left cue condition for L vs. R states (2.5% increase, P = .127).
Thus, instants of strong neural bias towards the correct vs. incorrect ear do influence
subsequent detection performance on identically cued trials. These data further show that
pre-target, state-related effects on performance are spatially specific and likely not caused by
global effects, such as arousal. In other words, the presence of the same state (e.g., a state of
strong pre-target neural bias towards the right ear) had opposite effects on cued detection of
targets at the right or left ear.

We also analyzed catch trials in which a pre-target neural bias state occurred, but triggered a
standard tone rather than a deviant. We observed significant differences in false alarm rates
(false alarms/(false alarms + correct rejects)) depending on which state occurred during that
trial (Figure 3D). Specifically, subjects mistakenly reported hearing deviant target sounds
more often on catch trials containing correctly vs. incorrectly directed states (attend right
cue condition: 12.1% higher false alarm rate, P = .038, attend left: 10.9%, P = .047,
combined: 11.5%, P = .008, N = 21 subjects, non-parametric shuffle test). These data
suggest that ear-specific ‘hallucinations’ may be driven in part by instants of strong neural
bias directed towards the cued ear (see Discussion).

The state-specific increases in both behavioral detection and false-alarm rates ultimately
carry opposite consequences for target discriminability. We calculated an estimate of
discriminability [45], for each cue/state combination, pooled across all trials and subjects.
Surprisingly, the target stimuli were more discriminable in both cue conditions when the
subjects’ prior brain state was incorrectly directed away from the target ear (attend-right cue:
d′ for incorrect vs. correct state: .79 vs. .56; attend-left: .74 vs. .47; combined: .76 vs. .51).
This finding may be explained in part by the comparatively greater increase in false-alarm
rates than in hit-rates following moments of correctly directed neural bias (Figure 3 C, D).

Additional Neural Factors Influencing Perception—The above experiment
represents a proof of principle demonstration that differences in ongoing brain activity
detected in real-time can be efficiently correlated with behavioral responses to subsequently
presented stimuli. We deliberately used a method where the ‘pre-target state’ was assessed
by changes in the relative brain response magnitude following right vs. left ear tones. This
ensured that the dynamic estimate of neural bias was highly similar from subject to subject,
stable throughout the course of each experiment, and interpretable as the result of selective
processing of inputs at a specific ear. While the states examined here helped explain some of
the trial-to-trial variability in behavioral performance, considerable behavioral variability
remained (Figure 3). Some of this variability could potentially be explained by other
overlapping pre-target brain states, such as non-ear-specific brain oscillations reflecting
global or modality-specific vigilance or arousal [13–15, 46, 47]. Therefore, we performed
post-hoc analysis of the influence of pre-target oscillatory activity on perception.

We found that EEG power at frontal-temporal electrode sites F7 and F8 in the high gamma
range (60–100 Hz, multi-taper spectral analysis) was significantly lower in the 1 s interval
preceding ‘hit’ trials vs. ‘miss’ trials, for both attend-left and attend-right cue conditions
(attend-left: P = .001; attend-right: P = .008; Figure 4; combination of trials across 21
subjects; similar but somewhat weaker effects were observed on the majority of electrodes,
data not shown). Thus, in contrast to ear-specific bias states, which carried opposite
behavioral consequences depending on which ear was cued (Figure 3C), decreases in
gamma oscillatory activity led to increases in response rate irrespective of cue conditions
(Figure 4). Other frequency bands demonstrated less consistent effects across subjects that
were not statistically significant (data not shown).
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Gain in Efficiency Using Brain State-Triggered Stimulus Delivery—To study the
interaction of ongoing brain states with target stimuli, these stimuli must be presented
coincident with or immediately following a state of interest (Figure 1A). We used a simple
simulation to estimate the increase in likelihood of capturing state-stimulus coincidences
when using state-triggered stimulus presentation compared to random stimulus presentation
(Figure 5; Materials and Methods). We found that the utility of our proposed technique
increases dramatically 1) for brain states of shorter duration, and 2) for brain states that
occur more rarely (i.e. states that are present for a small fraction of the experiment). Thus,
our EEG study of states with ~1 s duration that each occurred ~25% of the time (Figure 2D)
led to a two-fold increase in likelihood of capturing state-stimulus coincidences, a major
advance considering the limited duration of human psychophysiology experiments (see
Discussion). Using other recording techniques that have increased signal-to-noise ratios and
information rates, such as magnetoencephalography and large-scale invasive multi-electrode
recordings or two-photon calcium imaging, it will be possible to study states that are more
rare (present 1–5% of the time), and of more brief duration (e.g. 200 ms). For states of this
nature, state-triggered target presentation should afford a 5–10 fold increase in efficiency
(Figure 5), with potentially transformative implications.

Discussion
We have proposed a general method to efficiently study the influence of rare ongoing
patterns of pre-target brain activity on perception, using online identification of brain states
and state-triggered target presentation. We applied this method to the study of auditory
selective listening, and found significant effects of ear-specific and non-specific pre-target
brain activity on both detection and false-alarm rates. Below, we discuss our results and
methodology in the context of previous auditory studies, and consider potential
improvements. We then review previous work regarding brain state-triggered sensory
stimulation, and discuss the potential for applying the proposed method to a broad range of
neurophysiological recording modalities in humans and animal models.

Behavioral Influence of State-Triggered Target Presentation
Our data demonstrate considerable variability in neural activity (Figure 2C, D), within and
across trials with identical cue conditions. The behavioral relevance of the moment-to-
moment fluctuations in the neural bias index is supported by the observed perceptual
correlation of these neural fluctuations with detection rate and false alarm rate. Specifically,
for identically cued trials, we observed a ~10% increase in detection rate and a ~20%
increase in false alarm rate for trials where target stimuli were triggered following the
presence of strong neural bias towards cued ear, compared to targets following moments of
strong neural bias towards the non-cued ear.

State-Dependent Illusory Percepts
The observed increase in hit rate following moments of correctly directed neural bias was
expected given previous behavioral [48] and neurophysiological [8, 9] studies linking neural
measures of attention with performance. However, we were surprised to observe increased
false-alarm rates (i.e. increased incidence of mis-perceiving ‘deviant’ sounds when only
‘standard’ tones were presented) following moments of strong, correctly directed neural
bias. This suggests that pre-stimulus activity may contribute to subjects’ percepts, perhaps
reflecting internally-generated expectation [49]. Consistent with our findings, recent fMRI
studies have reported correlates of detection in early auditory [50] and visual [51] cortex, in
which neural responses during ‘hit’ and ‘false alarm’ trials were of similar magnitude, while
responses to ‘miss’ and ‘correct reject’ trials were significantly smaller. Our findings
suggest that certain components of the slower, fMRI-based neural predictors of perception in
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previous studies may arise not only from post-target differences in brain activity, but also
from pre-target differences. Several auditory fMRI studies have also demonstrated auditory
cortical activity correlating with auditory hallucinations, in schizophrenic patients [52] as
well as in healthy subjects during illusory percepts [53] and silent auditory imagery [54].

Using brain state-triggered stimulus presentation, an additional factor that might drive neural
correlations with behavior is the subjects’ potential ability to monitor their own mental state,
leading to increased internal expectation of an upcoming target. One subject who had
frequently volunteered for brain-computer interface studies prior to the present study
provided a subjective report of her ability to predict, in some trials, whether and when a
target would arrive based on self-assessment of ear-specific attention. However, this
sensation was not reported by any of the other twenty subjects. In future, such effects could
be examined explicitly by comparing behavioral responses following similar patterns of pre-
target activity between blocks of trials involving state-triggered vs. random target
presentation.

Optimal Targeting of Brain States: Timescales, Efficiency and Information Rates
An exciting promise of the proposed technique is the ability to assess the influence of
ongoing fluctuations in neural activity at multiple timescales, by triggering on brain states
lasting hundreds of milliseconds to seconds. In this first proof of principle, we decided to
focus on states of longer duration (~1 second), because consideration of left- and right-ear
signals from the previous 1.5 s of data permitted signal averaging and a higher signal-to-
noise ratio. However, potential improvements in measurement and analysis techniques could
allow robust detection of neural states using single left/right tone pairs, enabling assessment
of the influence of transient, non-cued fluctuations in neural bias at the 200 ms timescale
(Figure 5). Cued attentional shifts are already known to cause rapid changes in neural
activity at this timescale in humans [55, 56] and non-human primates [57].

Several software and hardware methods could be employed in future studies to increase
signal-to-noise ratios sufficiently to obtain robust estimates of neural states at the timescale
of 200 ms. For example, online adaptive algorithms such as independent components
analysis could improve artifact rejection [58, 59]. The application of online stimulus-
triggering to magnetoencephalographic signals would offer both higher signal-to-noise ratio
and spatial resolution, and online retrieval of these signals is now possible [7, 60–62].
Invasive brain-computer interfaces involving large-scale neuronal recordings can provide
even richer and more robust readout of patterns of activity at short timescales [63].

It will be interesting, in future studies, to trigger target stimuli conditional on EEG activity
from different spatial locations, though such spatial targeting may be best reserved for
online triggering using real-time magnetoencephalography [60–62] or real-time fMRI [64].
Indeed, the brain state-triggered stimulus delivery method presented here is quite general,
and could be used to efficiently probe the interaction between evoked neural and/or
behavioral responses and transient patterns of sparse ongoing brain activity recorded from
ensembles of individual neurons using multi-electrodes [63, 65, 66] or two-photon calcium
imaging in vivo [67] and in vitro [68].

The current study demonstrates an estimated doubling in efficiency of recording trials
containing ongoing states that coincide with the target stimulus. Thus, our method allows a
given number of state-stimulus coincidences to be collected in half the time required by
previous studies, a major improvement given the limited duration of non-invasive recordings
in humans. However, far greater gains in efficiency will be obtained by applying state-
triggered stimulus presentation in studies using higher-resolution recording techniques
outlined above. In this context, triggering stimuli during states of short duration and sparse
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occurrence (e.g. 200 ms states present 5% of the time) should lead to an order of magnitude
increase in efficiency compared with traditional stimulus presentation schedules (Figure 5).

Another important consideration when studying the neural correlates of behavior (e.g.
lateralized detection, in our proof of principle experiment) is the choice of neural metric and
task. The neural metric we used (bias index) was easy to calculate and to tailor to each
subject during training runs, and was modulated strongly by attentional cue condition in a
similar manner across subjects, simplifying online extraction of states following a relatively
brief training time (15–25 minutes). To increase cue-dependent modulation of lateralized
neural bias, we employed a difficult detection task (Woldorff and Hillyard, 1991) using
near-threshold target stimuli and high-rates of sound presentation (5 Hz). Note that correct
detection rates (Figure 3C) were roughly two-fold greater than false alarm rates (Figure 3D),
suggesting that subjects performed well above chance on this deliberately difficult task.

The degree to which distinct neural ‘states’ are selectively correlated with perception will
generally depend on how these states are defined. To study extrema of neural bias to a given
ear, we discretized the (unimodal) distribution of neural bias values into different categories,
or states, using upper and lower thresholds (Figure 2C, D). As discussed above, we
determined state thresholds such that states ‘L’ (leftward neural bias) and ‘R’ each occurred
on approximately 45% of trials. As with motor brain-computer interfaces [32], the state-
triggered stimulus presentation approach is faced with the challenge of maximizing
information rate, a combined measure of both the frequency and distinct nature of defined
states occurring during an experiment. For example, increasing thresholds would lead to
larger differences in neural bias index between L and R states, potentially improving
prediction of subsequent behavioral responses. However, these larger effects would come at
a cost of more ‘wasted’ trials that lack any state occurrence on which to trigger target
presentation. Similarly, a ‘watering down’ of the influence of different states will occur
when using very low thresholds, as well as a bias in the distribution of target times to earlier
timepoints within a trial, with the unwanted consequence of increased predictability of target
timing.

Attention-Guided Motor and Sensory BCIs: Previous Studies
Our proposed technique was inspired by recent human brain-computer interface (BCI)
studies demonstrating robotic control using invasive single- or multi-unit activity [66] and
non-invasive EEG activity [32]. The ability to observe modulation of neural response bias
on single trials using two concurrent streams of rapidly presented stimulus trains has been
reported for EEG-guided motor BCIs using auditory [69, 70] and visual [71, 72] attention.
The current study is unique in that ongoing fluctuations in neural bias, likely reflecting, in
part, fluctuations in selective listening (Figure 3), were used to trigger presentation of
sensory stimuli rather than to guide motor output.

The concept of online stimulus triggering following ongoing brain activity has been
previously employed in a limited number of neuropsychological studies. The only studies
that have employed this concept to study sensory perception focused on online triggering on
the phase of ongoing theta or alpha oscillations, and correlated phase-specific stimulus
presentation with subjects’ reaction time [18, 19]; similar versions of this protocol are used
in [33] and [34]. Guttman and Bauer focused on brain state-triggered presentation of
complex stimuli during associative learning rather than sensory perceptual tasks, and were
limited by technical and design considerations to slow EEG timescales ([22]; DC potentials,
averages of ten seconds). Rahn, Basar and colleagues demonstrated enhanced auditory and
visual evoked responses when stimuli where selectively presented following states of low
oscillatory activity (alpha and theta bands) on a single EEG electrode, though no behavioral
task was used [47]. In post-hoc analyses, we observed that decreased pre-target oscillatory
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EEG activity (albeit in a high frequency range) correlated with increased detection rates,
independent of cue condition (Figure 4). The correlation between oscillatory EEG power
and detection performance suggests that global fluctuations in pre-target oscillatory
amplitude due to arousal or concentration effects may also contribute to trial-to-trial
behavioral variability, consistent with previous reports [3, 13–16, 20, 21, 23, 24, 28, 31]. In
future, experiments employing state-triggered presentation could benefit from using
conjunctions of concurrent, predictive ongoing brain states for triggering target stimuli,
similar to methods used for visual attention-driven motor BCIs [72].

The potential application of our proposed method to global brain state-triggered stimulus
presentation shares similarities with efforts at NASA employing arousal-related EEG
information for adaptive automation of flight-control programs for jet pilots. However, the
timescale for neural feedback and sensori-motor task changes was quite slow (tens to
hundreds of seconds, [73]. Several other promising efforts towards vigilance-based adaptive
automation using EEG are currently underway [74, 75]. Our method differs from previous
‘neurofeedback’ studies that aim treat disorders of attention or cognition by asking subjects
to directly regulate their brain activity in various frequency bands towards ‘normal’ levels
[76, 77]. In these neurofeedback studies, subjects’ strategies for modulating their brain
activity are typically unrelated to the behavioral task, rendering it difficult to gauge the
origin and task-relevance of induced fluctuations in brain activity.

Clinical Applications: Sensory Prostheses?
Brain state-guided stimulus presentation may augment the utility of currently available
sensory prostheses. For example, individuals that use hearing aids still have trouble hearing
in noisy environments that require increased attention [78], likely due in part to persistent
deficits in spatially specific cortical regulation of gain control in the inner ear [79]. In
addition, peripheral auditory impairment may cause a subsequent degradation in the capacity
for central selective attention [80]. The selective listening paradigm used in the current study
could be adapted to track the biases in cortical attention to speech streams at a given ear. In
this way, EEG-triggered synthetic filtering of incoming sound intensity and other sound
features could underlie a cortically guided hearing aid. Other sensory modalities and remote-
sensing applications (e.g. tactile feedback during robotic surgery) would also likely benefit
from state-triggered stimulus presentation.
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Figure 1. Brain state-triggered target presentation: General approach and application
A: Neurophysiology experiments often involve target stimuli presented at constant or
random intervals (‘block’ or randomized design, black vertical lines), and address stimulus
interactions with ongoing brain states (blue schematic timecourse) using offline analyses. To
more efficiently assess the influence of ongoing brain activity on behaviorally relevant
stimuli, we propose presentation of stimuli triggered online by particular brain states of
interest (green lines). B: We tested this approach using an auditory detection task. Subjects
were presented with 5 Hz trains of tones (black rectangles) to the right ear (at 350 Hz) and
left ear (at 1300 Hz, 100 ms delayed onset). Subjects were cued to attend to the right or left
ear and to detect slight increases in intensity of a deviant tone (green rectangle) at the cued
ear. Detected deviant tones were reported after the stimulus train ended, visual feedback was
provided, and deviant tone intensity threshold was updated to maintain 50% detection
performance for both attended ears. C: Electroencephalographic voltage potentials (EEG)
were recorded from 29 electrodes on a whole-head EEG cap (Brainproducts.com) and sent
to a computer for online analysis of responses to sounds occurring in the previous 1.25 s (i.e.
sliding window of six left/right tone pairs). Emergence of a ‘brain state’ corresponding to
strong directed neural bias towards stimuli at the cued or non-cued ear triggered immediate
presentation of a deviant tone at the cued ear.
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Figure 2. Dynamic measurement of neural bias ‘states’: Analysis stream for a typical subject
A: Average EEG response to identical left-ear tones (green square, top), for attend-left (blue
trace) and attend-right (red trace) cue conditions. Briefly, responses where generated by
deriving a single time-series (weighted average of the 29 EEG channels) for each trial, and
then averaging across the last twenty tones in each trial ([1 s, 5 s] post-onset), and across all
trials of a given cue condition. Note that the average response to a left-ear sound (at ~120 ms
latency, gray with green border) is much larger when attention is cued to the left-ear.
Similarly, following right ear sounds (yellow square), responses (gray with yellow border)
were greater for the attend-right cue condition. The neural bias index in subsequent panels
was calculated as the difference between responses to a pair of right/left tones. B: Left
Average neural bias index for individual pairs of tones at various times following trial onset
(from data in A). Right Same data, smoothed with a boxcar filter (1.25 s duration). Error
bars indicate standard error. Note small increase in response modulation during the interval
where targets were expected ([2 s, 4 s]). C: Using this boxcar filter, fluctuations in neural
bias could be observed within single trials. Despite identical cue conditions (attend-left),
three different single trials indicate strong moments of leftward bias (darkest blue, filled
circles), rightward bias (lighter blue, larger circles), or no strong selective bias (lightest blue,
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no circles). D: Distribution of neural bias indices for various moments in single trials, for
attend-left (blue) and attend-right (red) cue trials. We labeled moments of strong left-ear and
right-ear selective bias as “L” and “R” states, respectively, as illustrated by green and yellow
areas in D and corresponding thresholds in C (see Materials and Methods).
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Figure 3. Triggering target stimuli on specific brain states influences behavior
A: Incidence of neural bias states co-vary with attentional cue, confirming the robustness of
the online state selection algorithm during test runs. Despite fixed thresholds and parameters
for selecting brain states for each subject, leftward neural bias (“state L”) occurred more
often than rightward neural bias (“state R”) during the attend-left condition (“cue L”, 1st and
2nd bars from left). Similar results were obtained for attend-right condition (middle bars),
and when combined across cue conditions. Thus, moments of correctly directed neural bias
(“STATE=CUE”) occurred more frequently than moments of incorrectly directed neural
bias (“STATE≠CUE”). Data combined from 21 subjects. B. Excess incidence (above
chance) of correctly directed bias states (gray arrow in A), across subjects. C. Despite
identical cue conditions, detection of a target at the cued ear (‘hit rate’) was higher when the
target was triggered by a correctly vs. incorrectly directed neural bias state. D. Reported
detection of targets on catch trials lacking deviant sounds (‘false alarm rate’) was also
increased following strong neural bias towards the cued ear. Panels B and C have same
nomenclature as in A. Note that the same neural bias state had opposite effects on behavior
for attend-left and attend-right cue conditions.
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Figure 4. Endogenous EEG oscillations can improve prediction of hit rate irrespective of cue
Offline-analysis of average EEG power across subjects revealed significant increases in
power in the 1 s interval prior to ‘hit’ trials vs. ‘miss’ trials, for both attend-left and attend-
right conditions (60–100 Hz band; less consistent results were observed in other bands, data
not shown). This oscillatory activity may reflect generalized states of concentration or
arousal, and could be used in combination with ear-specific neural bias states in future. Data
were normalized by mean power across conditions for each subject prior to group averages.
White numbers indicate total number of trials per condition, summed across twenty-one
subjects. Error bars indicate standard error.
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Figure 5. Simulation of gain in efficiency using brain state-triggered stimulus delivery
The advantages of state-triggered stimulus delivery for efficient study of the neural and
behavioral effects of state-stimulus interaction increase for rare or brief ongoing states (for
simulation details, see Materials and Methods). For example, for 200 ms duration states that
are present 5% of the time (dark blue), state-triggered stimulus presentation leads to eight-
fold more trials with a state-stimulus coincidence than random stimulus presentation.
Neurophysiological techniques with higher single trial signal-to-noise and dimensionality
can robustly identify such brief states online, and thus can benefit greatly from the proposed
method.
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