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Abstract

Malignant gliomas are the most common form of primary neoplasm in the central nervous system, 

and one of the most rapidly fatal of all human malignancies. They are treated by maximal surgical 

resection followed by radiation and chemotherapy. Herein, we seek to improve the methods 

available to quantify the extent of tumors using newly presented, collaborative labeling techniques 

on magnetic resonance imaging. Traditionally, labeling medical images has entailed that expert 

raters operate on one image at a time, which is resource intensive and not practical for very large 

datasets. Using many, minimally trained raters to label images has the possibility of minimizing 

laboratory requirements and allowing high degrees of parallelism. A successful effort also has the 

possibility of reducing overall cost. This potentially transformative technology presents a new set 

of problems, because one must pose the labeling challenge in a manner accessible to people with 

little or no background in labeling medical images and raters cannot be expected to read detailed 

instructions. Hence, a different training method has to be employed. The training must appeal to 

all types of learners and have the same concepts presented in multiple ways to ensure that all the 

subjects understand the basics of labeling. Our overall objective is to demonstrate the feasibility of 

studying malignant glioma morphometry through statistical analysis of the collaborative efforts of 

many, minimally-trained raters. This study presents preliminary results on optimization of the 

WebMILL framework for neoplasm labeling and investigates the initial contributions of 78 raters 

labeling 98 whole-brain datasets.
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1. INTRODUCTION

We are investigating an alternative to expert raters for medical image labeling through 

statistical fusion of the collaborative efforts of many, minimally-trained raters using the 

Web-based Medical Image Labeling Language (WebMILL) system [1]. In this approach 

(illustrated by Figure 1), raters need not be located in a laboratory environment or even have 

ever met the investigating researchers: Labeling may be performed cooperatively over the 
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Internet by people who have no knowledge of each other. Furthermore, we have presented 

several extensions to the existing statistical image fusion theory that enable combining 

partially labeled images from many, unreliable raters. We will specifically validate the 

utility of the collaborative labeling methods in the assessment of clinical malignant gliomas 

cases.

Malignant gliomas are the most common form of primary neoplasm in the central nervous 

system with a symptomatic incidence of approximately 2 per 100,000 individuals in the 

United States. Numerous clinical studies have attempted to determine whether maximal 

surgical resection of high grade gliomas improves prognosis [2]. The degree of surgical 

resection and the grade of tumor strongly correlate with recurrence rate and survival 

likelihood. Imaging data routinely used for clinical planning, including magnetic resonance 

imaging (MRI) and computed tomography (CT), embody a rich characterization of brain and 

tumor morphometry with millimeter level resolution. Interestingly, while there is evidence 

that precise tumor morphometry might lead to stronger predictive power for outcome 

measures, e.g., [3, 4], current interventional best practices assess the pre-operative tumor 

volume through measurement of the RECIST criteria [5, 6], McDonald criteria (i.e., largest 

tumor diameters)[4], and post-operative degree of resection via qualitative judgment. 

Notably, quantitative morphometry is not done on a large-scale in brain cancer.

Existing measures involve substantial human expertise and have not been the target of high-

throughput automation as in computer aided diagnosis of mammography. Simply put, tumor 

cases tend to represent the extremes of abnormal brain formations. Therefore, standard 

automated methods from the neuroscience community (e.g., automated tissue classification 

[7, 8], sub-cortical parcellation [9, 10], voxel-based group statistics [11, 12], and cortical 

surface modeling [13, 14]) for morphometry in “near-normal” brains have not been 

validated to function reliably with cancer patients. There is ample opportunity to more fully 

characterize tumor morphometry (i.e., volume and shape) and evidence that more precise 

metrics might lead to stronger predictive power for outcome measures, e.g., [3]. The 

development of a rapid and reliable method to assess tumor volume would standardize 

radiographic assessment and allow for improved comparison between outcome and efficacy 

studies. Given the heterogeneous appearance of meningiomas, manual or semi-automated 

voxel-wise labeling is typically employed to assess tumor characteristics in research studies. 

Yet, qualified raters are a very limited resource given their extensive anatomical and 

imaging understanding.

We hypothesize that (1) high throughput tumor morphometry is possible through 

collaborative labeling and that (2) these measures would be more effective predictors of 

clinical outcomes than current metrics. The current research is investigating a novel, 

efficient alternative to manual labeling by expert raters and seeks to demonstrate the utility 

of this approach in the clinical assessment of menigoma. The proposed effort is the first 

application of our novel collaborative labeling system to interventional care. We posit that 

this system will enable large-scale, cost-effective assessment of the three-dimensional 

structure of malignant gliomas tumors. In this study, we specifically focus on tumors with 

“obvious” contrast relative that of surrounding tissue — time constraints are the primary 

deterrent to careful characterization of these structure. This manuscript presents preliminary 
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results established in recent pilot study. This research will enable informed design of 

subsequent research to broaden the collaborative efforts and tackle labeling protocols for 

tumors with more subtle or intricate appearances.

2. METHODS

2.1 Data

Pre-operative T1-weighted and T2-weighted brain MRI scans based on varied (but standard 

of care) imaging protocols were obtained retrospectively for 108 patients with malignant 

gliomas in anonymous form under IRB approval. To enable subsequent fusion of T1 and T2 

derived metrics, the T1 datasets were registered to the T2 datasets using a rigid body model. 

A representative healthy brain from the multi-parametric reproducibility study [15] was 

registered to each dataset using affine registration to provide a visual comparison.

To provide ground-truth labels, an experienced student manually labeled the datasets using 

an image-processing workstation and the NIH MIPAV software package [16].

2.2 Training

Herein, we assume that the raters have no prior experience with imaging or anatomy. As 

such, the anatomy of the brain and the characteristics of MRI images had to be presented to 

the raters so that they could rapidly become knowledgeable of the appearance of gliomas. 

We note that gliomas appears differently in T1 and T2 images – in T1 images the objective 

is to define the extent of any gadolinium enhancing regions corresponding to the tumor core, 

while, in T2 images the goal is to define the extent of both tumor and edema appearing as 

enhanced signal intensity.

Upon logging into the system, users had the option of reading a brief one page training 

manual for each type of image. Users were then required to perform at least one practice 

labeling session. In the practice mode, the correct answer appeared after the user provided 

an answer. Preliminary experience showed that it was critical to provide spatial 

characteristics (e.g., correctly colored tumor areas) along with additional annotations. On the 

practice areas, large yellow marks and text highlighted features that were not cancer (e.g., 

eyes, ventricles, sinuses) as illustrated in Figure 2. Additionally, large bold text reminded 

users to use the correct label color for the tumor and to fill in the extent of the tumor. In a 

configuration study prior to these additional instructions, a substantial portion of raters (two 

of seven) systematically performed incorrect labels (e.g., “ugly” in Figure 3). In the 

presented study, no individual rater was consistently incorrect.

2.3 Raters

In a two week period, 78 volunteers were recruited from the Vanderbilt campus student and 

staff populations via flyers. Compensation was set to campus minimum wage for up to 10 

hours of participation with incentive bonuses paid to the top three volunteers in terms of 

total productivity (including both accuracy and number of datasets). In an initial ten minute 

face-to-face visit, volunteers were consented and walked through the process of signing up 

for a WebMILL account and using the system. After the introduction process, users had a 
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basic understanding of what to label and how to label each area and completed the 

remainder of the study without supervision.

3. RESULTS

Herein, we report on preliminary results from this study. Thus far, the 78 individuals 

contributed 14,640 datasets on T1 labeling (111 hours 55 minutes) and 8,545 datasets on T2 

labeling (68 hours 11 minutes) out of a total expected participation of approximately 500 

hours based on historical retention rates. Median time per task was 17.8 seconds for T1 

datasets and 19.0 seconds for T2 datasets. Raters used an average of 3.7 clicks and 8.0 

seconds of coloring time for T1 and 3.2 clicks and 10.6 seconds of coloring time for T2. 

Datasets were compared to the results of an experienced rater based on Dice similarity [17] 

and plotted in Figure 2.

Preliminary statistical fusion was achieved on a slice-by-slice basis using majority vote and 

accuracy of the fused results was plotted in Figure 3. Evaluation of modern statistical fusion 

approaches is ongoing, e.g., [18–21]. To approximate what could be achieved with statistical 

fusion, weighted voting was evaluated with weights proportional to the true Dice similarity 

squared. We note that this is not a statistical fusion approach, but rather anecdotal evidence 

that statistical fusion using a measure of rater reliability can improve performance if rater 

accuracy could be measured. To emphasize this limitation, this method is labeled ideally 

weighted vote as opposed to an achievable weighted vote.

4. DISCUSSION

These preliminary results demonstrate that minimally trained raters can often accurately 

(>0.8 Dice similarity compared to an experienced rater) label the extent of malignant 

gliomas on T1 and T2 weighted MRI on a slice by slice basis. As expected, slices where 

rater behavior is poor tend to be on the boundary of the tumor where image intensities can 

be ambiguous. Nevertheless, even for these very difficult cases where the median accuracy 

was low, many individuals achieved accurate results.

For approximately 95% of T1 slices and 80% of T2 slices, majority vote was able to achieve 

high accuracy. Using information related to rater performance to form a weighted vote 

roughly halved the number of slices with sub-par performance. Hence, one could reasonably 

expect that statistical methods that account for variable rater performance would improve 

fused label sets over majority vote.

Here, we have shown evidence that inexperienced individuals can reliably identify and label 

major brain abnormalities with minimal labeling time per slice (<30 seconds). Yet, full 

collection and characterization of this dataset is ongoing. Early efforts at fusion show 

reasonable performance; however, full characterization of three-dimensional gliomas 

structure is still pending. Additionally, the complete study will enable us to address open 

problems in statistical fusion including characterizing temporal aspects of rater behavior and 

statistical fusion of nested structures.
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Figure 1. 
The WebMILL system provides a flexible framework to allow remote individuals 

(“millers”) to asynchronously participate in an image labeling task. Expert knowledge is 

conveyed to the millers via a series of exemplar cases and catch trials. A statistical fusion 

algorithm simultaneously assesses performance of millers and estimates an optimal truth 

label for each image.

Singh et al. Page 7

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2012 December 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Illustration of the WebMILL system run in training mode. In both training and final model, 

image labeling and display adjustment tools are shown to the left, while instructions and a 

comparative preview image are shown to the left. The user may view up and down one slice. 

In training mode, additional color overlays are presented (red, yellow, green text) after the 

user has complete her task.
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Figure 3. 
Figure 1. Observed rater behavior spanned the gamut of their observations. The good 

classification represents observations that are high quality observations given the original 

image slice. The bad classification represents observations where the rules were followed 

but the labeled images are not necessarily close to the ground truth. The ugly classification 

represents blatant rule breaking and observations that are inconsistent with the instructions.
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Figure 2. 
Illustration of minimally rater performance relative to an experienced rater for T1 data (A) 

and T2 data (B). The top row shows 200 slices which have been expertly labeled sorted by 

the median overlap with minimally trained raters. The center row shows the number of times 

each slice has been labeled. The final row illustrates an arbitrary example from the lowest, 

median, and highest accuracy slices.

Singh et al. Page 10

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2012 December 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


