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Abstract

High-throughput sequencing has revolutionized microbial ecology, but read quality remains a 

significant barrier to accurate taxonomy assignment and alpha diversity assessment for microbial 

communities. We demonstrate that high-quality read length and abundance are the primary factors 

differentiating correct from erroneous reads produced by Illumina GAIIx, HiSeq, and MiSeq 

instruments. We present guidelines for user-defined quality-filtering strategies, enabling efficient 

extraction of high-quality data from, and facilitating interpretation of Illumina sequencing results.

Recent advances in high-throughput, short-amplicon sequencing are revolutionizing efforts 

to describe microbial diversity within and across complex biomes, including the human 

body1 and Earth’s biosphere2. The greater sequence coverage and lower per-base cost of the 

Illumina GAIIx, HiSeq, and MiSeq instruments aids this progress over more expensive, 

lower-coverage platforms. Given unknown sequencing error rates for amplicon data 

generated by these rapidly evolving instruments and changing chemistries, and the potential 
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for PCR error introduced during short-amplicon sample preparation, quality-filtering is 

integral to high-throughput sequencing data analysis, removing erroneous reads that 

otherwise overestimate microbial diversity. “Denoising”3,4, an approach employed to 

address this issue for amplicon sequencing by the 454 Life Sciences pyrosequencer, is 

specific to the 454 platform’s error profile, and does not scale to Illumina instruments, 

which generate tens (MiSeq) to hundreds (GAIIx) to thousands (HiSeq2000) of times more 

data per run.

Illumina systems provide per-nucleotide Phred quality scores representing the probability 

that a given base call is erroneous. How best to incorporate these scores in marker-gene-

based microbial ecology studies has not been thoroughly investigated, and stringent 

filtration that discards many reads has been recommended to avoid exaggerated diversity 

estimates5. Previous investigation into quality-filtering of Illumina data6 focused on whole-

genome sequencing applications, where error profiles are expected to differ from those in 

amplicon-sequencing runs. Additionally, the strategy discussed here differs from Illumina’s 

quality-filtering software CASAVA, which filters on a per-read basis, while our strategy 

works on a per-nucleotide basis, truncating reads at the position where their quality begins to 

drop.

To illuminate the “black box” of Illumina amplicon quality-filtering, we tested the effects of 

different quality-filtering parameters on taxonomic classification, α– diversity, and β-

diversity estimates using the Quantitative Insights into Microbial Ecology (QIIME)7 

pipeline (Table S1), outlined in Figure 1. To evaluate the effect of varying parameters in 

Figure 1, we tested four different ‘mock’ communities sequenced on the GAIIx (n = 1), 

HiSeq (n = 2), and MiSeq (n = 3) (Table S2). These comprised deliberately combined 

collections of 12 to 67 bacterial or fungal species whose genomes had been previously 

sequenced (Tables S3–S6). We also compared free-living and host-associated 

communities 5,8, representing samples with high β-diversity, and wine9 and spontaneous 

beer fermentation-associated communities10, representing samples with lower β-diversity, to 

evaluate the effects of filtering settings on β-diversity comparisons of different community 

types. Raw read counts and sample counts for all datasets are presented in Table S7.

We evaluated how primary (p, q, r, and n) and secondary (c; see Figure 1 for definitions) 

quality-filtering parameters affect analyses using five separate evaluations, defined here.

1. α– diversity and qualitative taxonomic composition, using mock communities, tests 

which settings best measure true community composition, minimizing spurious 

additional OTUs (Figure 2; Figure S1–S7).

2. quantitative taxonomic composition, using defined mock communities, tests 

whether different settings introduce biases in specific taxa (Figure S8–S10).

3. β-diversity, using mock communities, determines whether different settings cause 

significant differences in phylogenetic composition between identical communities 

(Table S8).
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4. β-diversity, using real communities, tests whether different settings affect our 

ability to differentiate sample types in principal coordinates (PCoA) plots (Table 

S9; Figure 2; Figure S11–S16).

5. β-diversity, using real communities, tests whether differences detected between 

communities on different sequencing platforms are consistent with one another.

Our results across Evaluations 1–5 reveal general patterns. First, parameters (p), (q) and (c) 

have a marked effect on α– diversity and estimates of taxonomic composition, but not (n) 

and (r) (Figure 2A–B; Figure S1–S7). The effects of (p) and (q) were variable across runs in 

an apparently platform-independent fashion (Figure S4–S5). All settings except high (q) 

values required secondary filtration with (c) to reach expected taxon counts, but the required 

level varied between 0.01% to 0.0001% of total sequences, dependant upon (q) and (p) 

settings.. Increasing (p) also decreased abundance of unassigned sequences and sequences 

given shallow taxonomic assignment. In all mock data sets studied, extreme settings of (q) 

and (p), but not (r) and (n), had a marked impacted on taxonomic distribution (Figure S8–

S10). These results are described in detail in Supplementary Text Evaluations 1–2. Second, 

weighted UniFrac11 distances between mock communities (see Supplementary Text 

Evaluation 3) were more robust to changes in parameter settings than unweighted UniFrac 

distances at low (c); however, these differences disappear at high (c). Thus as expected, 

differences in low-abundance OTUs have a larger impact on the unweighted metric. We 

note that any filtering strategies that remove low-abundance reads make it impossible to 

apply richness estimation metrics such as ACE and Chao1, which incorporate low-

abundance read counts in their calculations. These metrics are unlikely to be accurate, 

however, if many of these reads actually represent sequencing errors.

Because observations in microbial ecology are often based on PCoA of samples, we applied 

Procrustes analysis to compare PCoA plots from different parameter settings on both 

biological and mock communities. We found that conclusions derived from PCoA plots 

were also robust to differences in parameter settings: the only notable differences occurred 

at stringent (q), (p), and (c), which result in extreme levels of read filtration that blur the 

known major distinction between host-associated and free-living communities (Figure 2C–

E; Figure S11–S12) and closely related wine and beer fermentation-associated communities 

(Figure S13–S16). These results are described in detail in Supplementary Text Evaluations 

3–4.

Finally, these observations generalize from the GAIIx to the HiSeq2000 and MiSeq 

platforms. The same β-diversity trends (e.g., separation in host-associated and free-living 

communities) were observed on all three platforms, and heavily decreased (p) (e.g., p = 

0.25) and increased (q) (e.g., q ≥ 20) were the only factors that caused these sample types to 

erroneously cluster together on the HiSeq2000. These results are described in detail in 

Supplementary Text Evaluation 5.

Strategic quality-filtering of Illumina sequence data is necessary to retrieve reliable 

assessments of α- and β-diversity and taxonomic distribution of microbial communities. 

These results confirm the need to apply appropriate (q), (p), and (c) filters to eliminate 

erroneous OTU assignments, regulating these parameters depending upon raw sequence 
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length and quality to reach the necessary balance of stringency and sequencing depth. To 

calibrate optimal filtering settings, we highly recommend including a standardized mock 

community in each individual sequencing run. We believe this will be necessary for 

confident comparison of samples from multiple sequencing runs in order to normalize run-

to-run PCR and sequencing error, but further work is needed to evaluate which factors (e.g., 

community composition and complexity) define optimal mock communities for filter 

calibration under different experimental conditions. For datasets where a mock community 

is not included for calibration, we recommend the conservative threshold of (c = 0.005%). 

Further work is also required to address the impact of filtering strategies on the analysis of 

paired-end reads.

These results also enable users to process sequencing data under specific filtering conditions 

to support different downstream analyses. For example, users with a majority of high-

quality, full-length sequences may wish to increase (q) and (p) in lieu of using (c), thereby 

retrieving only full-length sequences with low error rates, potentially increasing the 

discovery rate of rare OTUs (as sequence selection will be based on length and quality, not 

count). Alternatively, users with shorter reads or reads truncated by early low-quality base 

calls may wish to increase (r), lower (p), and use a higher (c) threshold. In this way, lower-

quality but taxonomically useful reads will be retained, and reliable sequences selected 

based on abundance rather than error probability. Other users may be more interested in 

maximizing read count for implementation of machine-learning tools, identifying OTUs 

with significantly different abundances across metadata categories or treatment regimes, or 

jackknifing/permutational tests for β-diversity, all of which benefit from increased sample 

sizes. In this scenario, reads should be filtered using primary filters (q) and (p) instead of (c), 

which greatly reduces read count. Experienced users can adjust their filtering parameters to 

control the primary source of filtration (read length, error probability, or abundance) based 

on the idiosyncrasies of each sequencing run and the demands of the downstream analysis.

These conclusions serve as a benchmark for informed quality-filtering of Illumina amplicon 

sequence data. With these guidelines, users can confidently extract more, higher-quality 

sequences and decrease OTU filtration thresholds (c), increasing acuity for rare OTU 

discrimination and β-diversity comparisons. The Earth Microbiome Project (EMP)2 is 

adopting these guidelines for routine analysis of all SSU rRNA gene sequencing on the 

Illumina HiSeq and MiSeq systems, facilitating deeper, more efficient insight into how 

microbial diversity varies over spatial and temporal scales across our planet. The 

conclusions drawn from this study are conserved across the HiSeq2000, MiSeq, and GAIIx 

systems, supporting confident cross-platform data handling. In addition, we recommend new 

default settings for Illumina processing in QIIME (r = 3; p = 0.75 total read length; q = 3; n 

= 0; c = 0.005%; see Supplementary Text: Default recommendations for QIIME parameters 

for additional details), incorporated in the recent release of QIIME 1.5.0. Finally, although 

quality parameters tested here were evaluated using QIIME, these conclusions are relevant 

to Illumina amplicon quality-filtering across all bioinformatics pipelines for improved 

diversity estimates in all taxa and environments.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Quality Filtration Process Flow in QIIME v1.5.0.
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Figure 2. 
α- and β-Diversity comparisons of mock community reads filtered using select 

phred_quality_score (q) settings (dataset 1). A, B: Family-level (A) and genus-level (B) 

taxon counts for mock communities filtered with variable (q) values at multiple OTU 

minimum abundance thresholds (c) (as %). Arrows below color key indicate expected 

genus- (blue) and family-level (red) taxon counts. C, D, E: Procrustes PCoA biplot of GAIIx 

weighted UniFrac distance comparing variation in (q). Comparison of (q) setting listed in 

bottom-right corner to (q) = 3. Top-right corner indicates Bonferroni-corrected p-value for 

Procrustes goodness of fit. Red, human feces; Magenta, mock community; Cyan, human 

skin; Dark cyan, human tongue; Blue, freshwater; Orange, freshwater creek; Purple, ocean; 

Yellow, estuary sediment; Pink, soil. All other settings represent defaults in both α- and β-

diversity comparisons.
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