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Abstract
One of the most basic biostatistical problems is the comparison of two binary diagnostic tests.
Commonly, one test will have greater sensitivity and the other greater specificity. In this case, the
choice of the optimal test generally requires a qualitative judgment as to whether gains in
sensitivity are offset by losses in specificity. Here we propose a simple decision-analytic solution
in which sensitivity and specificity are weighted by an intuitive parameter, the threshold
probability of disease at which a patient will opt for treatment. This gives a net benefit that can be
used to determine which of two diagnostic tests will give better clinical results at a given threshold
probability, and whether either is superior to the strategy of assuming that all or no patients have
disease. We derive a simple formula for the relative diagnostic value, which is the difference in
sensitivities of two tests divided by the difference in the specificities. We show that multiplying
relative diagnostic value by the odds at the prevalence gives the odds of the threshold probability
below which the more sensitive test is preferable, and above which the more specific test should
be chosen. The methodology is easily extended to incorporate combination of tests, and the risk or
side-effects of a test.
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Introduction
One of the most basic biostatistical problems is the comparison of two binary diagnostic
tests. Common metrics for the performance of a single test include sensitivity, specificity,
positive and negative predictive value and positive and negative likelihood ratio.
Application of these metrics to the comparison between two tests is rarely straightforward.
Our choice is clear if one of the tests has higher sensitivity and non-inferior specificity, or
higher specificity and non-inferior sensitivity. Furthermore, if Youden’s index, that is,
sensitivity plus specificity - 1, for the tests was identical, we would choose the more
sensitive or specific test depending on whether sensitivity or specificity was more highly
valued in the clinical context to which the test would be applied. It has also been argued that
both the positive and negative likelihood ratio of one test can be superior to another, even if
it has higher sensitivity but lower specificity, or vice versa[1].

Yet such situations are rare. Far more common is where one test is more sensitive, the other
more specific, Youden’s index is non-identical and the positive and negative likelihood
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ratios discordant. As a typical example from the literature[2], the sensitivity and specificity
of a repeat Pap smear and a HPV test for high-grade cervical lesions are, respectively, 88%
and 57% vs. 75% and 64%, with positive and negative likelihood ratios of 2.04 and 0.22 vs.
2.07 vs. 0.39. To determine whether the repeat Pap smear or HPV test is superior, we need
to decide whether a 13% increase in sensitivity is worth a 7% decrease in specificity or,
alternatively, how the differences in likelihood ratios trade off.

Previous statistical approaches to the comparison of two binary tests have focused on
inference. For example, Bennett[3] gives χ2 statistics for the comparison of sensitivity,
specificity, positive or negative predictive value. Nofuentes and de Dios Luna del Castillo[4]
propose hypothesis tests for positive and negative likelihood ratios. Other authors[5] have
proposed tests that simultaneously compare both sensitivity and specificity.

We believe that an inference based approach is indeed justified in certain specific contexts.
For example, if there is an established test that is widely used in practice, it seems
reasonable that any new test should be shown to be convincingly superior to the current
standard. Alternatively, one test might be more costly, inconvenient or invasive than another
and there would clearly be a need to demonstrate benefit. However, there are clearly cases in
which there would be no preference between two tests in the absence of data, because
neither has become established as a clinical standard or because there is no compelling
rationale to choose one or the other in terms of harms or costs. In our view, choosing the
preferable test in such cases requires a decision-analytic solution. We define this as an
analysis that views the result of a test as informing a decision, such as whether to give a
patient a treatment, and which evaluates the consequences of that decision.

In section 2, we give the motivating example. In section 3, we introduce some
straightforward notation and describe a decision analytic approach to the comparison of two
diagnostic tests. We use this approach in section 4 to derive some simple, intuitive statistics
that can used to determine the relative value of two diagnostic tests. In section 5, we
incorporate harms and costs of tests. In section 6, we apply our findings to the question of
whether tests should be combined.

Motivating example
Blood levels of prostate-specific antigen (PSA) are used to identify men with prostate
cancer. However, only a minority of men with elevated PSA, defined as 3 ng/ml or higher,
have prostate cancer. This has led to the search for additional markers to determine
indication for a prostate cancer biopsy. We analyzed a data set from the Gothenburg arm of
the European Randomized Study of Prostate Cancer screening[6]. We explored two markers,
free-to-total PSA ratio (FT) and human kallikrein 2 (HK), with a positive test defined as
<20% and >0.075ng/mL respectively.

Table 1 gives the crosstable from the study. There were 740 biopsies in total, of which 192
(26%) were positive for cancer. Table 2 gives a variety of statistics typically reported in
studies of diagnostic tests. FT is the more sensitive test, and HK has greater specificity; FT
has the superior negative predictive value and negative likelihood ratio, HK the superior
positive predictive value and positive likelihood ratio. In terms of global statistics, FT has a
slightly better Youden index and correlation, but HK a far superior Brier score.

We believe that table 2 provides no basis for a choice between the two tests. Indeed, perhaps
the only thing we can glean from the table is that FT is more sensitive and HK more
specific. This suggests that we should choose based on whether we think that specificity or
sensitivity is more important for prostate cancer biopsy. Doing so requires a parameter to
quantify the relative importance of finding cancers and avoiding unnecessary biopsy.
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Threshold probability
A diagnostic test is given to inform a subsequent course of action, such as surgery, drug
therapy or, as is the case in the prostate cancer example, further work-up such as a biopsy.
We will use the term “treatment” to describe any action taken on the basis of a positive test.

A simple, intuitive parameter to weight sensitivity and specificity is the threshold
probability, which we denote pt. A patient given a probability of disease  at or above his or
her threshold probability will opt for treatment; if  then the patient will decline further
treatment.

The threshold probability pt can vary from patient to patient and from doctor to doctor
depending on personal preferences as to the risks and benefits of treatment. As such, we are
defining threshold probability in a decision analytic context, it cannot be derived from the
results of a diagnostic study (such as table 1) by maximizing the Youden index or looking
for an optimal cut-point on a Receiver Operating Characteristic curve[7]. Threshold
probability is entirely dependent on additional information as to the benefits and harms of
treatment. To choose a suitable pt for our prostate cancer biopsy example, we have to take
into consideration that biopsy is fairly safe, with <5% incidence of adverse events such as
infection[8]. On the other hand, biopsy is an uncomfortable experience, involving a probe
being inserted into the rectum, and then needles being fired through the rectum into the
prostate. We also have to take into account that prostate cancer is a relatively slow growing
disease, such that if we do not biopsy straight away, a future biopsy is still likely to catch
disease at a curable stage.

An individual’s own threshold probability can be assessed in several different ways. It can
ascertained directly, such as by asking, “What is the lowest risk of cancer at which you
would still advise a patient to have a biopsy?”, or by deriving from a question about odds:
“What is the maximum number of biopsies you would do in order to find one cancer?”.
Where a threshold probability is derived from a patient, it is naturally possible that this
might be irrational, or incongruent with the patient’s true preferences. But it is up to the
physician, as part of shared decision-making, to help patients become better informed and
explore their preferences carefully. Moreover, note that the concept of a threshold
probability is fundamental to the use of any form of medical prediction model. Whether the
model gives a patient’s risk of a cardiovascular event[9], the likelihood of cancer recurrence
after surgery[10] or the probability of prostate cancer[11], decisions about primary
prevention, adjuvant chemotherapy or biopsy depend, implicitly or explicitly, on comparing
the output of the prediction model with a threshold probability.

After discussions with urologists, we propose that a typical pt for prostate cancer biopsy is
20%, in other words, a well-informed patient would opt for biopsy if told that his risk of
prostate cancer was 20% or more but decline if given a risk of less than 20%. A patient who
was averse to medical procedures might require a high pt such as 30%, before agreeing to
put himself through biopsy; a patient who particularly feared cancer might have a lower pt
such as 15%. We note that if prostate cancer was a more aggressive disease, these threshold
probabilities would be lower. Indeed, this can be directly observed in the literature. It has
been suggested[12] that physicians should be prepared to do up to 10 biopsies to find one
ovarian cancer. This is a pt of 10 %, lower than the 20% pt for prostate cancer, reflecting that
ovarian cancer is a far more aggressive disease.

It is easily shown that the odds at pt gives the relative harms and benefits of a true and false
positive. Denote uxy as the utility to the patient of the outcome where x is the treatment and
y is the true disease state. We assume that treatment is determined by the diagnostic test
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result, such that x = 0 and x = 1 constitute negative and positive test results respectively. The
expected utility of an outcome is simply the probability of the outcome multiplied by its
utility. Hence the expected utility of treatment and no treatment are given as:

Take the case where a patient undergoes a diagnostic test and is given a probability of
disease identical to their threshold probability, that is, . We know that if  a patient
will choose treatment and that where  the patient will decline treatment. So where ,
the patient is indifferent. This implies that the expected utility of treatment and the expected
utility of no treatment are similar. Hence:

As  this gives:

This can be rearranged as:

(1)

In other words, the odds at the threshold probability pt gives the benefit of a true positive
(compared to a false negative) relative to the benefit of a true negative (compared to a false
positive). This relationship has been described previously to determine the most appropriate
threshold for a continuous diagnostic test[13].

Here we use (1) to weight the clinical consequences of a binary diagnostic test. There are
four possible outcomes of a binary diagnostic test: true positive, false negative, false positive
and true negative. Using T for the test result and D for true disease status, this gives:

Assuming the test is itself associated with zero utility, that is, it has trivial costs, harms and
inconvenience, the expected utility of the test (utest) is:

This gives:

The utility of treating no patient is:
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Hence the utility of the test compared to treating no patient is given by:

This gives:

From (1):

Using π for prevalence of disease P(D=1), sensitivity for P(T=1|D=1) and specificity for
P(T=0|D=0), we get:

(2)

We will denote (2) as “net benefit” to reflect that the quantity reflects a gain minus a loss:
true positives minus false positives. By definition, “treat none” is zero and treat all is given
by:

We can then plot net benefit of utest, utreat all and unone against threshold probability pt (see
figure 1). In the context of evaluating models with a continuous predictor, we have
previously described figure 1 as a “decision curve”[14]. Because net benefit combines
benefits and harms, decision theory has it that the optimal strategy is that with the greatest
net benefit, irrespective of the size of the difference in net benefit.

The decision curves in figure 1 show that the optimal strategy changes from the most
sensitive (treat all) to the most specific (treat none) as threshold probability increases. This is
intuitive: a low threshold probability implies that missing disease is far worse than
unnecessary treatment, that it is therefore important to find as many cases of disease as
possible and that sensitivity is favored; a high threshold probability implies that treatment is
harmful or costly or inconvenient and therefore that specificity is important. The key
message of figure 1 is that if pt is less than about 10%, all patients should be biopsied
without testing; if pt is between approximately 10 – 25% patients positive for FT should be
biopsied; if pt is between 25 – 45%, biopsy should be based on HK; and if pt is greater than
45%, no patient should be biopsied.

Figure 2 shows net benefit against threshold probability for the example described in the
introduction comparing a repeat Pap smear to an HPV test for colposcopy[2]. A repeat PAP
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smear is of value if the threshold probability for colposcopy is between 10 – 35%; there is
essentially no value to an HPV test.

Using threshold probability as a parameter has allowed us to make a decision as to which of
two diagnostic tests we should use under quantitatively defined circumstances. Moreover,
our method allows us to specify quantitatively the circumstances under which neither test
should be used at all.

Relative diagnostic value
Figure 1 suggests that, in the comparison of two diagnostic tests, there is a cut-point of
threshold probability that determines which test should be used. In addition to visual
inspection of the decision curve, this cut-point can be determined analytically. Take two
tests, test1 and test2, where test1 is more sensitive and test2 more specific.

The net benefits of the two tests are equal when:

This gives:

Under the assumption that the specificities of the two tests differ, each side can be divided
by (1 − π)(specificity2 − specificity1) to give

We denote:

Hence

(3)

Or alternatively:

Equation 3 can be expressed as simple rule of thumb: the relative diagnostic value of two
tests is the difference in sensitivity divided by the difference in specificity; the relative
diagnostic value multiplied by the odds of the prevalence gives the threshold odds of disease
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below which the more sensitive test is preferable and above which the more specific test
should be used.

An appealing feature of this methodology is that where it would not be rational to calculate
relative diagnostic value, doing so involves division by zero, or gives a negative or zero
threshold probability. For example, if two tests have the same specificity, the preferable test
is the one with the higher sensitivity, independent of threshold probability. In this case,
calculation of relative diagnostic value would involve division by zero. If one test has both a
superior sensitivity and specificity than another, threshold probability would be negative.

Application of this method leads to several intuitive results. First, consider the cut-point at
which treat none is preferable to a diagnostic test. The relative diagnostic value is simply
sensitivity divided by 1 - specificity. Using D for disease and T for test result, we get:

Using Bayes’ theorem gives:

That is, the threshold probability above which it is preferable just to treat no-one, rather than
to treat according to a diagnostic test, is the positive predictive value of the test. In the case
of FT for example, a patient with a positive test is given a probability of cancer at the
positive predictive value of 35%. If the patient’s personal threshold probability for biopsy is
above 35% he should not undergo testing, because his actions are the same for a positive and
negative test.

We can also examine the cut-point below which treat all is preferable to a diagnostic test.
The relative diagnostic value is now (1 − sensitivity) divided by specificity. This gives:

Using Bayes’ theorem again, we get:

Thus, the threshold probability below which it is preferable just to treat all patients, rather
than to treat according to a diagnostic test, is 1 minus the negative predictive value of the
test. In the case of FT for example, a patient with a negative test is given a probability of not
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having cancer at the negative predictive value of 92%. The patient’s probability of cancer is
thus 8% and if his personal threshold probability for biopsy is below 8%, testing is not of
benefit and the patient should be simply be referred to biopsy.

Comparing treat all to treat none, the relative diagnostic value is 1. This gives:

And thus:

In other words, in the absence of a diagnostic test, the decision to accept treatment depends
on whether the threshold probability is above or below the prevalence. Again, this makes
clear intuitive sense, because in the absence of a diagnostic test, the patient’s risk is given as
the prevalence.

Applying our methodology to figure 1, we order tests from most to least sensitive and
calculate relative diagnostic value between adjacent pairs. This gives pt ’s as follows: treat
all vs. FT = 7%; FT vs. HK = 27%; HK vs. treat none = 45%.

Confidence intervals for relative diagnostic value can be calculated as follows. Table 3 is a
duplicate of Table 1, except that the entries are denoted by letters to introduce the necessary
notation. The specificity of test 1 is (c0+d0)/n0 and the specificity of test 2 is (b0+d0)/n0. The
difference between two specificities (denominator of relative diagnostic value) then is
(c0−b0)/n0. Similarly, the sensitivity of test 1 is (a1+c1)/n1 and the sensitivity of test 2 is
(a1+b1)/n1. The difference between two sensitivities (numerator of relative diagnostic value)
then is (b1−c1)/n1.

It will be clear later that it is easier to work with R−1 instead of R.

To derive the variance of R−1, first note that the difference between the two specificities is
simply the difference between two paired binomial proportions, a quantity extensively
studied in various derivations of the asymptotic power function of McNemar’s test and the
corresponding confidence interval construction. Fleiss (Statistical Methods for Rates and
Proportions, 1981, 2nd [15], p117) shows that the asymptotic variance of this difference is
given by:

(4)

Applying the same principles, the asymptotic variance of the difference in sensitivities can
be written similarly as:
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(5)

To derive the asymptotic variance of R−1 from (4) and (5) we apply the multivariate delta
method (see, for example, Casella and Berger, Section 5.5.4)[16]:

Substituting (4) and (5) we get:

Recall that pt = Rπ/(1+ Rπ−R) = [1+R−1(π−1−1)]−1. Another application of the delta
method gives:

By virtue of the delta method, the asymptotic distribution of pt is normal with variance as
above. Therefore, an approximate 95% confidence interval for pt can be formed by:

Incorporating test harm
The previous equations assume that the test is associated with trivial cost, harm and
inconvenience. To incorporate the disutility of a test, we propose that analysts obtain from
physicians a clinical estimate of harms in the units of net benefit, that is, true cases found. A
physician can be asked, “If this test was perfect, how many patients would you subject to the
test in order to find one case of disease?”. The reciprocal of this number is the test harm and
is subtracted from net benefit.

As an example, certain clinicians have advocated the use of transrectal ultrasound (TRUS)
to determine whether elevated PSA was due to benign enlargement of the prostate gland,
rather than cancer. We defined a positive ultrasound as a TRUS volume less than 50 cc, a
cutoff that has similar properties to FT (sensitivity 84%, specificity 34%). The problem with
TRUS is that involves placing a probe into the patient’s rectum, which is unpleasant and
inconvenient for the patient, and time-consuming for the doctor. We consulted with a
urologist, who told us that he would do no more than 10 ultrasounds to detect a prostate
cancer if the ultrasound was a perfect test. This gives a test harm of 0.1. We calculated
decision curves for TRUS, in comparison to HK, in figure 3, both with and without test
harm. There is no level of threshold probability for which TRUS has higher net benefit than
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any alternative strategy, even under the very liberal assumption that a physician would
conduct 50 ultrasounds to find one cancer.

Test harm can be incorporated into relative diagnostic value as follows.

Combining tests
It is arguable that the comparison between two tests is an arbitrary one, because a physician
could always order both. Yet there would still need to be an algorithm to determine
treatment on the basis of the test results. Previous literature has compared the EITHER test
(e.g. biopsy if either FT or HK are positive) or the BOTH test (e.g. biopsy if both FT and
HK are positive). We will further examine conditional testing (e.g. test HK; if positive
biopsy, otherwise conduct a TRUS; biopsy if TRUS positive, otherwise no biopsy).

We propose that the EITHER and BOTH tests should be considered as binary tests. The
operating characteristics of EITHER and BOTH are shown in table 2. BOTH appears by far
the best test, with the highest Youden index and lowest Brier score. But Figure 4 shows the
plot of net benefit against threshold probability and BOTH is not universally the optimal
strategy. If pt is less than about 10%, all patients should be biopsied without testing; if pt is
between approximately 10 – 25% patients positive for FT should be biopsied; if pt is
between 25 – 65%, biopsy should be given only to patients who test positive for both FT and
HK; and if pt is greater than 65%, no patient should be biopsied. Note that for no important
range of threshold probability do HK or EITHER have the highest net benefit, suggesting
that it is never of value to use these tests. The pt’s below which the more sensitive test
should be used and above which the more specific test is optimal, are as follows: treat all vs.
EITHER = 7%; EITHER vs. FT = 8%; FT vs. BOTH = 23%; BOTH vs. treat none = 65%.

The value of conditional testing would be if one test was harmful or expensive, such as
TRUS. The harms of testing in a conditional (“CONDITIONAL”) strategy - such as test
HK, test TRUS if HK negative - are reduced because only a subgroup of patients with
negative HK receive TRUS. If we set the harm of a TRUS at 0.1, the value of Test Harm for
EITHER is also 0.1; Test Harm for CONDITIONAL is 0.1 multiplied by the probability of
negative HK, that is, 0.071.

Figure 5 shows net benefit against threshold probability for HK and CONDITIONAL, for
Test Harms for TRUS of 0.1, 0.05 and 0.02. Even if TRUS is considered of relatively little
disbenefit, its use cannot be justified for what would appear to be the clinically sensible
strategy of only applying TRUS where HK is negative.

However, we could test an alternative CONDITIONAL strategy: administer HK; if negative,
don’t biopsy, if positive give TRUS; biopsy if TRUS also positive. Figure 6 shows the result
of this strategy: it is found to be preferable to all alternatives for certain probability
thresholds.

Conclusions
The choice of which of two binary diagnostic tests is preferable, or if the tests should be
combined in some way, would appear to be one of the most basic of biostatistical problems.
Here we argue that the tools we as biostatisticians have been using to solve this problem –
descriptive statistics of test accuracy, and inference thereon – have not been up to the job.
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We give a specific example using a real data set where statistics such as sensitivity,
specificity or Brier score give unclear and even contradictory findings.

It is our view that such statistics have limited ability to guide clinical decisions because they
do not incorporate any information on the clinical consequences of diagnostic tests. We
introduce a parameter, the threshold probability, which can describe the clinical
consequences of using a test in a simple, intuitive manner: a low threshold probability
implies that it is very important to find all or nearly all cases of disease; a higher threshold
probability implies that treatment or further work-up is associated with significant harms,
and that false positives are important to avoid. We go on to show that this parameter can be
used to weight true and false positives to provide a single statistic, the net benefit, which
may be used to determine which of two diagnostic tests is preferable. Because this statistic
has a straightforward interpretation – the number of true positives per patient if the false
positive rate was zero – it can easily incorporate simple estimates of the harm of a test.
Moreover, the method is naturally extended to combinations of tests, such as where positives
on both or either of two tests are required for a clinician to take further action. Net benefit
can also be used to derive a simple statistic to compare two tests, relative diagnostic value,
which defines when the more sensitive test should be used and where the more specific test
would be preferable. We hope our work encourages other biostatisticians to investigate
straightforward decision analytic approaches to the comparison of diagnostic tests.
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Figure 1. Net benefit against plotted against threshold probabilityfor molecular markers of
prostate cancer
Grey line: biopsy all men. Thick black line: biopsy no men. Thin black line: biopsy if FT
test positive. Dashed line: biopsy if HK test positive. The optimal strategy is to biopsy all
men if the threshold probability is below 10%; biopsy on the basis of FT is threshold
probability is 10 – 25%; biopsy by HK if threshold probability is 25 – 45% and biopsy no
man if threshold probability is greater than 45%.

Vickers et al. Page 13

Stat Med. Author manuscript; available in PMC 2014 May 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2. Net benefit against plotted against threshold probability for repeat tests for cervical
abnormalities
Grey line: colposcopy for all women. Thick black line: colposcopy for no women. Thin
black line: colposcopy if HPV test positive. Dashed line: colposcopy if repeat cytology
positive. A repeat PAP smear is of value if the threshold probability for colposcopy is
between 10 – 35%; there is no value to an HPV test.
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Figure 3. Net benefit against plotted against threshold probabilityfor a molecular marker of
prostate cancer compared to an invasive diagnostic test
Grey line: biopsy all men. Thin black line: biopsy no men. Dashed line: biopsy if HK test
positive. Thick black line: biopsy if TRUS test positive, assuming no harm of TRUS (left
panel); a physician would do not more than 10 TRUS to find one cancer (center panel); a
physician would do no more than 50 TRUS to find one cancer (right panel). TRUS is of
some benefit (left panel) unless one takes into account harm: even under the very liberal
assumption that a physician would conduct 50 TRUS to find one cancer (right panel), TRUS
has highest net benefit for no threshold probability.
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Figure 4. Net benefit against plotted against threshold probability for molecular markers of
prostate cancer
Thick grey line: biopsy all men. Thick black line: biopsy no men. Thin black line: biopsy if
FT test positive. Dashed black line: biopsy if HK test positive. Thin grey line: biopsy if
EITHER FT or HK positive. Dashed grey line: biopsy if BOTH HK and FT positive. The
highest net benefit is for biopsying all men (threshold probability less than 10%); FT
(threshold probability 10 – 25%) and BOTH (threshold probability 25% +). For no threshold
probability do HK or EITHER have the highest net benefit, suggesting that neither HK alone
nor a test of either HK or FT should be used.
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Figure 5. Net benefit against plotted against threshold probability for a molecular marker of
prostate cancer, with an invasive diagnostic test conditional upon the marker findings
Thick grey line: biopsy all men. Thick black line: biopsy no men. Thin black line: biopsy if
HK test positive. Thin grey line: biopsy if HK test positive or TRUS following a negative
HK test is positive, assuming a physician would do not more than 10 TRUS to find one
cancer (left panel); a physician would do no more than 20 TRUS to find one cancer (center
panel); a physician would do no more than 50 TRUS to find one cancer (right panel). Even
if TRUS is considered of relatively little disbenefit, its use cannot be justified for what
would appear to be the clinically sensible strategy of only applying TRUS where HK is
negative.
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Figure 6. Net benefit against plotted against threshold probability for a molecular marker of
prostate cancer, with an invasive diagnostic test conditional upon the marker findings
Thick grey line: biopsy all men. Thick black line: biopsy no men. Thin black line: biopsy if
HK test positive. Thin grey line: biopsy if HK test positive and a TRUS given after a
positive HK test is also positive, assuming a physician would do not more than 10 TRUS to
find one cancer (left panel); a physician would do no more than 20 TRUS to find one cancer
(center panel); a physician would do no more than 50 TRUS to find one cancer (right
panel).The conditional strategy is now found to be preferable for certain threshold
probabilities.
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Table 2

Test characteristics of binary diagnostic tests based on free-to-total PSA ratio (FT) and hK2 (HK). The BOTH
test is positive only if FT and HK are both positive; the EITHER test is positive unless either FT or HK are
positive.

FT HK BOTH EITHER

Sensitivity 91% 51% 47% 94%

Specificity 40% 78% 91% 28%

Positive predictive value 35% 45% 64% 31%

Negative predictive value 92% 82% 83% 93%

Positive likelihood ratio 1.52 2.32 5.22 1.31

Negative likelihood ratio 0.23 0.63 0.58 0.21

AUC (Youden) 0.65 0.64 0.69 0.61

Brier 0.47 0.29 0.21 0.55

Correlation 0.29 0.28 0.42 0.23
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