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Abstract
Although allogeneic islet transplantation can success-
fully cure type 1 diabetes, it has limited applicability. 
For example, organs are in short supply; several hu-
man pancreas donors are often needed to treat one 
diabetic recipient; the intrahepatic site may not be 
the most appropriate site for islet implantation; and 
immunosuppressive regimens, which are associated 
with side effects, are often required to prolong sur-
vival of the islet graft. An alternative source of insulin-
producing cells would therefore be of major interest. 
Pigs represent a possible alternative source of beta 
cells. Grafting of pig islets may appear difficult because 
of the immunologic species barrier, but pig islets have 
been shown to function in primates for at least 6 mo 
with clinically incompatible immunosuppression. There-
fore, a bioartificial pancreas made of encapsulated pig 
islets may resolve issues associated with islet allotrans-
plantation. Although several groups have shown that 
encapsulated pig islets are functional in small-animal 

models, less is known about the use of bioartificial 
pancreases in large-animal models. In this review, we 
summarize current knowledge of encapsulated pig is-
lets, to determine obstacles to implantation in humans 
and possible solutions to overcome these obstacles.
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INTRODUCTION
Type 1 diabetes has been treated successfully by trans-
planting islets of  Langerhans, the endocrine tissue that 
releases insulin[1]. Despite the clinical efficacy of  islet 
transplantation, serious issues preclude its broad clinical 
application, including the side effects of  chronic im-
munosuppressive regimens and a shortage of  human 
donors. For example, it was recently estimated that only 
one pancreas is available per 333 patients with type 1 di-
abetes in the United States[2]. This situation is aggravated 
by the need of  each recipient undergoing transplantation 



6886 December 21, 2012|Volume 18|Issue 47|WJG|www.wjgnet.com

for 2-4 pancreases[1,3]. This shortage of  pancreas donors 
therefore justifies the search for alternative sources of  
insulin-producing cells. Swine appear to be the major 
candidates for islet procurement because: (1) humans 
have been treated with porcine insulin for > 40 years 
(pig and human insulin differ by only one amino acid); 
(2) pigs have large litters with offspring that rapidly at-
tain adult size and are therefore amenable to genetic 
engineering; (3) pig pancreases contain large islets that 
respond to glucose stimulation; and (4) since pigs are 
widely bred and slaughtered for food, the use of  their is-
lets to restore human health may be an option that could 
satisfy sociocultural and ethical concerns[4-6].

Unlike primarily vascularized organs, pancreatic is-
lets are implanted without direct connection to the host 
vascular network, with 7 to 14 d needed to re-establish 
blood flow[7-12]. Thus, it was thought that pig islet xeno-
grafts could escape typical hyperacute rejection and acute 
vascular rejection[13]. In vivo, however, pig islets in non-
immunosuppressed nonhuman primates are rejected by 
both humoral and cellular immune reactions[14-16]. Dif-
fuse, presumably nonspecific IgG deposits were observed 
within islet-associated accumulations of  platelets 12 h 
after transplantation. Deposits of  large amounts of  IgM 
and moderate to large amounts of  C3, C5, and C9 were 
present on islet surfaces 2 to 3 d after xenografting[15-17]. 
Anti-galactosyl (anti-Gal) and non-Gal[18,19] IgM antibod-
ies bind to islet surfaces soon after transplantation and 
activate the classical complement pathway, as well as pro-
moting neutrophil infiltration. These humoral immune 
responses to pig islets are consistent with early T-cell-
independent immune system activation and are reminis-
cent of  mechanisms that operate during the hyperacute 
rejection of  solid-organ xenografts[20]. Humans and 
nonhuman primates have preformed anti-pig antibodies 
that rapidly recognize the Gal epitope on islet endothelial 
cells. During pig islet-to-primate xenotransplantation, 
however, the expression of  Gal epitopes is influenced by 
the age of  the pig. Gal residues are present on 20% of  
fetal, but on only 5.1% of  adult, islet β cells[21-23]. Since 
Gal expression persists after islet isolation[24,25], Gal re-
mains a target for humoral xenorejection.

Islet xenografts that survive immediate blood-me
diated inflammatory reactions and additional humoral 
damage will be subject to acute cellular xenograft rejec-
tion. Following transplantation of  fetal pig islets under 
the kidney capsule, the cellular infiltrate in primates has 
been found to consist mainly of  CD8 T cells (implicating 
the indirect pathway), whereas the cellular infiltrate in 
rodents was dominated by macrophages. T-cell infiltra-
tion precedes macrophage influx, with small numbers of  
CD3+ T cells observed 12 h after transplantation[14]. Af-
ter 24 h, equal numbers of  CD3+ T cells and neutrophils 
were observed, and after 72 h, CD3+ T cells dominated, 
representing 50% to 80% of  all infiltrating cells. After 72 
h, large numbers of  macrophages were observed, with 
T cells localized at the periphery of  and within trans-
planted islets. In addition, increased E-selectin expres-

sion on portal vein endothelial cells correlated with the 
infiltration of  neutrophils, which caused tissue damage 
by releasing enzymes, active oxygen intermediates, and 
proinflammatory cytokines, and produced chemokines 
that attracted dendritic cells and T lymphocytes. Pig islet 
xenorejection seems theoretically easier to overcome, but 
because hyperacute and acute vascular rejections do not 
occur, the rapid destruction of  pig islets within 72 h of  
transplantation into nonhuman primates demonstrates 
the strength of  xenorejection.

Thus, an immunosuppressive regimen is mandatory 
for the long-term survival of  pig islets in primates[26,27]. 
Although several immunosuppressive strategies have 
successfully suppressed alloimmune responses, T-cell-
mediated xenoimmune responses have proven more 
resistant to immunosuppressive therapy[28,29]. This may 
be due to the greater molecular incompatibility between 
donor and recipient, which activates particularly the in-
nate immune response[30].

Until recently, the maximum reported duration of  
pig islet survival (insulin-positive cells, no function) fol-
lowing transplantation under the kidney capsule in non-
diabetic cynomolgus monkeys and immunosuppression 
with anti-thymocyte globulin, anti-interleukin-2R mAb, 
cyclosporine, and steroids was 53 d[31]. In March 2006, 
however, two studies reported that neonate or adult pig 
islets xenotransplanted into primates survived and func-
tioned for > 180 d[26,27]. More recently, the transgenic 
expression of  a human complement-regulatory protein 
(hCD46) on porcine islets was shown to enhance the 
survival of  islets xenotransplanted into cynomolgus 
monkeys with streptozotocin (STZ)-induced diabetes 
for > 12 mo[32]. In addition, transplantation of  galactosyl 
knock-out neonate pig islets was found to significantly 
enhance normoglycemia rates in diabetic primates, 
likely due to the decreased susceptibility of  these xeno-
grafts to innate immunity mediated by complement and 
preformed xenoantibodies[33]. These results, however, 
required treatment with a heavy immunosuppressive 
regimen, in particular an anti-CD154-specific mAb, an 
antibody that induced thromboembolic events preclud-
ing its clinical use[34]. Despite the unacceptability of  these 
immunosuppressive regimens in humans, these results 
are very encouraging since an alternative, nontoxic regi-
men combined with xenotransplantation of  pig islets 
may induce normoglycemia in diabetic patients. 

A bioartificial pancreas, in which islets of  Langerhans 
are encapsulated within a semipermeable membrane, 
may be an alternative therapeutic device for patients 
with insulin-dependent (type 1) diabetes mellitus. It may 
constitute a safe and simple method of  transplanting 
islets without the need for immunosuppressive therapy. 
Since the semipermeable membrane protects the islets 
from the host immune system, the islets are likely to 
survive and release insulin for a long period of  time, 
thereby controlling glucose metabolism in the absence 
of  immunosuppressive medication. Nevertheless, several 
important questions are associated with the transplanta-
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tion of  immunoisolated adult pig islets as a “bioartificial 
pancreas”[35] (Table 1).

VARIATIONS IN CAPSULE SIZE: 
MACROENCAPSULATION OR 
MICROENCAPSULATION 
Macroencapsulation
In the first reports of  encapsulation, a large number of  
islets were immunoisolated between flat-sheet double 
membranes[36,37]. This type of  single macroencapsula-
tion device could be implanted with minimal surgery 
at different sites, including the peritoneal cavity, subcu-
taneously, or under the renal capsule. Although several 
types of  biomaterial have been used to produce micro-
capsules, including nitrocellulose, alginate, acrylonitrile, 
and agarose, these devices usually had some toxicity and 
activated nonspecific foreign body reactions, resulting 
in fibrotic overgrowth with subsequent necrosis of  the 
encapsulated tissue[35]. A subcutaneously transplanted 
microdevice (TheraCyte device, Baxter Healthcare), 4 
cm in length, shaped like a teabag, and made of  a bilay-
ered polytetrafluoroethylene membrane, was recently 
found to be biocompatible[38,39]. Neonatal pig cells inside 
the graft (i.e., cells immunohistochemically positive for 
insulin and glucagon) remained viable for up to 8 wk 
after xenotransplantation into nondiabetic cynomolgus 

monkeys, with no evidence of  reaction with adjacent 
subcutaneous tissue[40]. Moreover, one of  12 non-immu-
no- suppressed adolescents became insulin independent 
and 5 children had reduced insulin requirement after 
transplantation of  porcine islets encapsulated in hollow-
fibers with porcine Sertoli cells, which likely have immu-
nomodulating properties[41,42]. 

A “monolayer” configuration of  macroencapsulated 
pig islets (monolayer cellular device) implanted subcu-
taneously (see below) has been found to significantly 
improve diabetes control (glycated hemoglobin < 7%) in 
primates for 6 mo without any immunosuppression[43]. 
In this encapsulation system, islets were seeded as a 
monolayer on an acellular collagen matrix, enhancing 
their interactions with a biologic membrane and increas-
ing islet concentration per unit surface area. In addition, 
diabetes was controlled for up to 1 year in 2 diabetic pri-
mates after retransplantation with new monolayer cellu-
lar devices. Unfortunately, the lifespan of  adult pig islets 
limited long-term graft function. Diabetic control was 
completely maintained for > 32 wk after the cotrans-
plantation of  adult pig islets and adipose mesenchymal 
stem cells[44]. A phase 1 clinical study is currently ongo-
ing to assess the safety and efficacy of  this device for 
allotransplantation of  encapsulated islets into humans.

Microencapsulation
Another approach consists of  the microencapsulation 

Table 1  Bioartificial device configurations for encapsulation of pig islets

Macroencapsulation Microencapsulation Conformal coating

Type of pig islets tested Adult/neonate Adult/neonate Adult
Suitable material with 
biocompatibility

Alginate Alginate with/ without PLL/PLO over-
layer 

PEG

Implantation site Intraperitoneal Intraperitoneal Into the liver via the portal 
vein

Subcutaneous Kidney subcapsular space
Proof of concept in preclinical 
studies in diabetic primates

+ + −

Maximum survival of pig 
islets and diabetes correction

Mean 24 wk correction of glycated 
hemoglobin < 7% after transplantation of 
the MCD into subcutaneous tissues

Max 804 d but never reproduced; 
Biocompatibility confirmed under 
the kidney capsule up to 6 mo after 
transplantation

ND

Clinical study + + ND
Clinical efficacy No insulin-independence

Glycated hemoglobin improvement; porcine 
insulin detected in recipient sera up to 4 yr 
after transplantation with insulin positive 
cells into hollow-fiber devices.

No insulin independence
Survival up to 9.5 yr with insulin-
positive cells after transplantation into the 
peritoneum and detection of urinary porcine 
C-peptide up to 11 mo after transplantation

ND

Advantages for large-scale 
clinical application

Easy procedure for transplantation into 
subcutaneous tissue

Easy procedure for transplantation by 
simple injection into the peritoneum

- Capability of transplantation 
into the liver

Simple procedure to remove the graft from 
subcutaneous tissue

Large scale encapsulation of large number 
of islets

- Reduction of graft size

Limitations for large-scale 
clinical application

Limited islet oxygenation Large volume of encapsulated islets limiting 
transplantation into the peritoneum

- No stability for long-term 
islet immunoprotection

Difficulty to transplant into the peritoneal 
cavity

Islet survival limited by absence of biologic 
interaction with encapsulation material
No ability to remove the graft after 
transplantation

PLL: Poly-lysine; PLO: Poly-ornithine; MCD: Monolayer cellular device; ND: Not determined; PEG: Polyethylene glycol.
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of  1-3 islets per semipermeable immunoprotective cap-
sule. The spherical configuration of  these microcapsules 
resulted in a higher surface-to-volume ratio than did the 
tube or disk geometry of  microcapsules, resulting in a 
higher diffusion rate[45]. Furthermore, microcapsules can 
be injected in large numbers, are durable and are difficult 
to disrupt mechanically[46,47]. 

Two recent studies describing transplantation of  mi-
croencapsulated neonatal pig islets in an alginate matrix 
confirmed their biocompatibility in nondiabetic mon-
keys as well as their capacity to partially regulate diabe-
tes[39,40]. Several protocols must be followed to increase 
the survival of  alginate microencapsulated pig islets for 
up to 6 mo without immunosuppression in nondiabetic 
primates[25]: (1) Before transplantation, the islets should 
be cultured in medium containing 1.8 mmol CaCl2; (2) 
Animal serum should be omitted from the culture me-
dium; and (3) The graft should be composed of  > 90% 
well-shaped capsules. Some of  these islets survived for 
> 6 mo and were able to respond in vitro to glucose chal-
lenge 135 and 180 d after implantation. In addition, the 
implantation site (peritoneum, kidney capsule, or subcu-
taneous space) must be suitable[48,49], with the subcutane-
ous space considered a good choice for clinical applica-
tions[50].

Following transplantation of  microencapsulated adult 
pig islets into spontaneously diabetic cynomolgus mon-
keys, blood glucose became normalized and the monkeys 
became insulin independent for periods ranging from 
120 to 804 d[51]. Although these results were encouraging 
for the clinical application, they may have been depen-
dent on the diabetic status of  the recipient, the exact 
formulation of  the capsules, and the immune response 
against pig islets (see below). To date, these results have 
been confirmed by only two casuistic manuscripts de-
scribing xenotransplantation in primates of  microen-
capsulated neonatal pig islets[39,40]. One study confirmed 
the biocompatibility, for up to 8 wk, after transplanta-
tion of  encapsulated pig islets in nondiabetic animals, 
and the second demonstrated that these microcapsules 
could regulate the diabetic state of  diabetic recipients. 
Although the latter showed that daily exogenous insulin 
requirements were reduced by a mean of  43% compared 
with control animals transplanted with empty capsules, 
neither group showed changes in weekly blood glucose 
levels[39]. The absence of  solid consistent data on glucose 
metabolism (e.g., changes in glycosylated hemoglobin 
concentration, glycosuria, intravenous glucose tolerance 
testing) renders this casuistic study difficult to interpret.

Living cell technologies (LCT) showed that porcine 
islet cells had survived and insulin production was main-
tained in a human patient 10 years after transplant of  
pig islet cells[52]. These findings demonstrated the long-
term safety, viability, and functionality of  encapsulated 
porcine islets in a human patient, without the use of  
immunosuppression. In 1996, a 41-year-old patient with 
diabetes was injected with pig islet cells to help regulate 
his blood glucose levels and control his diabetes. This 

patient’s insulin requirement was reduced by 34% for 
over one year. Ten years later, the patient was still ob-
taining benefit from the transplant, and laparoscopic 
examination revealed living and functioning pig islet cells 
in his abdomen.

 Two phase 1 trials have shown that intraperitoneally 
infused microencapsulated human islets can be consid-
ered safe for up to 3 years[53,54]. Although insulin indepen-
dence was not achieved, glycemic control was improved, 
with a reduction in insulin daily requirement. In 2007, 
LCT launched a phase 1/2a study in Moscow of  encap-
sulated neonatal insulin-producing porcine pancreatic 
islet cells (commercially called DIABECELL®). Seven 
patients with insulin-dependent diabetes have received 
between one and three implants of  DIABECELL® (5000 
and 10 000 IEQ/kg), with none showing marked adverse 
events 18 to 96 wk after transplantation. At last follow-
up, the blood glucose concentrations in 5 patients were 
within the normal range (5.8-8.2 mmol/L). Two patients 
have shown excellent responses and do not require ex-
ogenously administered insulin. All recipients showed 
improvements in diabetes control, with lower glycated 
hemoglobin (% HbA1c) concentrations. 

Following the successful completion of  this phase 
1/2a clinical trial in Russia, LCT launched phase 2b clini-
cal trials, which are currently underway in New Zealand 
and Argentina. In contrast, although diabetes control 
was achieved by repeated injections of  encapsulated 
islets (up to 4 infusions and up to 779 000 islets equiva-
lent), a humoral response was induced, with cytotoxic 
antibodies found in the recipient sera 4 to 8 wk after 
transplantation, and necrosis of  the islets at 16 mo[54].

Conformal coating of cell surfaces
A serious issue remains in using microcapsules as bioar-
tificial pancreases, namely, the increase in total volume 
of  the implant after microencapsulation. The average 
diameter of  islets is roughly 150 μm, making the average 
diameter of  capsules about three times as large and the 
total volume of  microcapsules about 27 times as large. 
In clinical settings, the volume of  islet suspensions is 10 
mL, making it > 270 mL after microencapsulation. A 
site to implant such a large volume is difficult to find.

Much effort has been made to reduce the size of  the 
capsules. For example, smaller microcapsules, about 300 
μm in diameter, could result in a reasonable total volume 
for clinical application[55]. In clinical allotransplantation 
programs, islets are transplanted into the liver through 
the portal veins, and capsules of  diameter larger than 
the islets themselves may plug larger blood vessels, re-
sulting in severe thrombosis of  the liver. The diameter 
of  the encapsulated islets should therefore be much 
smaller than at present, to allow for their transplantation 
through the portal veins. A technique to coat islets with 
a very thin membrane or with conformal coating may re-
duce the diameter of  these microcapsules, allowing their 
transplantation into the liver through the portal veins. 

Several types of  coating have been tested to im-
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munoisolate islets from the host immune systems. For 
example, the surface of  islets has been modified with 
thin membranes made of  amphiphilic polymers, such 
as polyethylene glycol (PEG)-conjugated phospholipid 
(PEG-lipid) and polyvinyl alcohol carrying long alkyl 
chains[56-59]. The thickness of  the PEG layer formed on 
the cell surface was several nanometers, but depended 
on the molecular weight of  the PEG.

Surface modification did not change the morphol-
ogy or viability of  the islets[60]. Transplantation of  5000 
porcine islets modified with PEG-N-hydroxysuccinimide 
(NHS) ester into the livers of  NOD-severe combined 
immunodeficiency mice through the portal vein resulted 
in the transient normalization of  blood glucose concen-
trations, but these concentrations later increased. The 
surface of  islets covered with PEG reacted with the 
amino groups of  the collagen layer remaining on the is-
let surface[61]. Although transplantation of  islets covered 
with a PEG-NHS-modified surface into recipient rats 
treated with low-dose cyclosporine resulted in the main-
tenance of  normoglycemia for 1 year, normoglycemia 
was maintained for only 11 d in the absence of  cyclo-
sporine despite the surface modification with PEG.

 Although a conformal PEG layer may form on the 
cells or islet surfaces at the nanometer level and this 
method enables a drastic reduction in total graft volume 
compared with conventional microcapsules, the PEG 
layer on the islets was not stable and disappeared from 
the cell surface over 3 d. 

Use of  a layer-by-layer method may enhance the 
stability of  PEG-lipid membranes on the cell surface. 
Various functional groups, such as maleimide and biotin, 
can be easily introduced to the end of  the PEG chain 
of  PEG-lipids[58] and can be used as reaction points to 
form multilayer membranes on the cell surface. A layer-
by-layer membrane can also be formed by the reaction 
between biotin and streptavidin. Biotin-PEG-lipids are 
anchored to the cell membranes of  islets and are fur-
ther covered by streptavidin. The modified islets can be 
alternatively exposed to a biotin-bovine serum albumin 
conjugate solution and a streptavidin solution to form 
20 layers. The thickness of  the membrane is approxi-
mately 30 nm. A glucose stimulation test demonstrates 
the ability of  the modified islets to control insulin release 
in response to changes in glucose concentration. After 
intraportal transplantation of  modified islets with PEG-
lipid into STZ-induced diabetic mice[59], most islets were 
not damaged and remained intact in the blood vessels of  
the liver for 1 h to 1 d after transplantation.

VARIATION OF MATERIALS
The choice of  material to use for cellular encapsulation 
is a crucial parameter because failure of  microencap-
sulated islet grafts is usually regarded as a consequence 
of  insufficient biocompatibility, inducing a nonspecific 
foreign body immune reaction against the microcapsules 
and resulting in progressively fibrotic overgrowth of  the 

capsules. This overgrowth interferes with adequate nutri-
tion of  the islets and consequently causes islet cell death. 
There are major distinctions between water-soluble 
polymers, such as alginate, and water-insoluble poly-
mers, such as poly (hydroxyethyl methacrylate-methyl 
methacrylate)[35]. However, a major obstacle in using 
water-insoluble polymers for encapsulation of  cells is 
the requirement for an organic solvent, which usually in-
terferes with cellular function[62]. Despite their solubility 
in aqueous solutions, alginate-based capsules have been 
shown to remain stable for several years in small and 
large animals as well as humans[51,63-67]. The method of  
alginate capsule formation is based on the entrapment 
of  islets in alginate droplets, which are transformed into 
rigid beads by gelification in a divalent cation solution, 
mostly Ca2+. In most studies to date, alginate beads were 
coated with a second layer to reduce the porosity of  the 
capsule membrane[35,68]. In the pig-to-primate model, al-
ternating layers of  poly-l-lysine and a polyornithine were 
used to surround the alginate core[40,51]. The latter type 
of  layer, however, has been associated with polyamino 
acid cytotoxicity and mechanical instability of  the micro-
capsules, limiting their application[35,69,70]. Several groups 
have recently reported that encapsulation in simple algi-
nate microbeads can protect pig pancreatic cells against 
xenorejections in diabetic mice[46,47,71]. Although several 
chemical formulations of  alginate (e.g., high-mannu-
ronic/guluronic; high/low viscosity, with or without 
additional peptide sequences) have been proposed for 
islet immuno-isolation, we found that high-mannuronic 
alginate was the most suitable to obtain selective imper-
meability for molecules over 150 kDa (as an IgG) before 
and after transplantation, and optimal biocompatibility 
to avoid nonspecific inflammatory response associated 
with surrounding angiogenesis, resulting in sufficient 
oxygen tension (about 40 mmHg) for the survival and 
function of  encapsulated islets[72]. This type of  alginate 
was biocompatible not only in a small-animal model 
(Wistar rat recipients) but also in a pig-to-primate model 
of  xenotransplantation under the kidney capsule and 
skin for up to 6 mo (see below)[25,43,48].

VARIATION OF IMPLANTATION SITES
The lack of  revascularization of  the encapsulated islets 
interferes with both the functional performance and 
the longevity of  the grafts. Apparently, a site in which 
encapsulated islets are in close contact with the blood-
stream is obligatory for clinical application. Unfortu-
nately, it is difficult to find such a site because it must 
be of  sufficient size to bear a large graft volume and be 
near blood vessels. Sites reported to allow successful 
nonencapsulated islet transplantation, such as the liver 
and spleen, do not meet these requirements because 
these sites are unable to tolerate the large volumes (> 
16 mL) of  capsules (of  diameter > 600 μm) required 
for transplantation into primates. Therefore, most trans-
plantations of  encapsulated pig islets into primates were 
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intraperitoneal[39,39,51]. Although this technique seemed 
relatively easy, the peritoneal site was not optimal. In-
deed, recent studies in mice found that macrophages and 
lymphocytes are involved in the rapid degradation of  
encapsulated pig islets after their transplantation into the 
peritoneum[71,73-76]. The peritoneum is, indeed, a preferen-
tial site for inflammation and immunologic reactions[77] 
and peritoneal mesothelial cells facilitate the action of  
powerful innate immune mechanisms[77]. Studies in mice 
showed that immunosuppression had beneficial effects, 
improving the biocompatibility and prolonging the 
survival of  encapsulated pig islets transplanted into the 
peritoneum[73,74,78]. This method of  combining encapsula-
tion and immunosuppression, however, remains incom-
patible with clinical applications. The biocompatibility 
of  alginate-encapsulated pig islets depends on the im-
plantation site. Encapsulated pig islets transplanted un-
der the kidney capsule and under the skin demonstrated 
better biocompatibility than capsules transplanted into 
the peritoneum[48]. Indeed, a cellular reaction essentially 
composed of  macrophages was observed 7 d after trans-
plantation into the peritoneum. This finding is in good 
agreement with results showing that macrophages are 
recruited 7 d after transplantation of  encapsulated pig 
islets into the peritoneum of  mice and rats[73,74]. In ad-
dition, severe fibrosis surrounding intraperitoneally im-
planted capsules was observed 30 d after transplantation 
and was correlated with the loss of  porcine C-peptide 7 
d after implantation. In contrast, subcutaneous and kid-
ney capsule implantation resulted in very weak cellular 
immune reactions against encapsulated pig islets, along 
with improved porcine islet viability; porcine C-peptide 
was detected in the sera of  rats for 30 d after transplan-
tation of  encapsulated pig islets at both sites. These 
findings indicate that implantation into the subcapsular 
kidney and subcutaneous spaces improves the biocom-
patibility and in vivo survival of  encapsulated pig islets, 
as well as enhancing pig islet function during the first 7 
d after transplantation. The loss of  the in vivo function 
activity of  encapsulated pig islets transplanted into the 
peritoneum correlated with significant alterations in islet 
viability, a loss of  insulin content, and significant reduc-
tions in insulin secretion after glucose stimulation. These 
findings may be associated with macrophage overgrowth 
of  the area surrounding the capsules, creating a micro-
environment of  stress, with low oxygen tension, for pig 
islets[75,76]. Indeed, macrophage activation, as shown by 
NO production and the release of  the cytokines L-1β 
and tumor necrosis factor-alpha, had a deleterious ef-
fect on islet function and viability[73,75,76]. We found that 
implantation into kidney subcapsular and subcutaneous 
spaces improved the biocompatibility of  encapsulated 
pig islets and significantly reduced macrophage recruit-
ment. This reduction in pig islet stress and improved 
islet viability maintained insulin level per islet and insulin 
secretion after glucose stimulation[48]. Subcutaneous tis-
sue was recently shown to provide oxygen tension (20-40 
mmHg) compatible with the function and survival of  

encapsulated islets[72]. Among the sites being tested for 
islet transplantation, with or without encapsulation, to 
improve the survival, engraftment and function of  islets, 
are the brachioradialis muscle[79], striated muscle[80], the 
greater omentum[81], and the anterior chamber of  the 
eye[82].

CONCLUSION
Immunosuppression remains the major limitation of  
allotransplantation or xenotransplantation of  islets for 
type 1 diabetes. Extended survival of  transplanted pig 
islets has recently been observed in primate models, but 
several questions and problems associated with immu-
nosuppression remain to be resolved in terms of  adjust-
ment before clinical trials. A bioartificial pancreas made 
of  encapsulated pig islets may overcome the two major 
hurdles to islet transplantation: the shortage of  human 
organ donors and the requirement for immunosuppres-
sive regimens.

The development of  a bioartificial pancreas for 
preclinical/clinical studies requires the conjunction of  
integrated parameters such as the choice of  a biocom-
patible material for encapsulation to maintain selective 
permeability. The encapsulation device should be de-
signed to maintain mechanical properties and stability 
at an implantation site compatible with the viability and 
physiology of  the encapsulated islets to control glycemic 
homeostasis.

Of  the three major types of  bioartificial pancreases 
(macroencapsulation, microencapsulation, and confor-
mal encapsulation), the macroencapsulation system is 
the only method that has demonstrated the capacity to 
control diabetes in large animals and in preliminary clini-
cal studies.

Several improvements must be made to reduce the 
size of  the implant (by increasing islet concentration 
relative to the surface or volume of  the implant), to 
improve oxygenation of  islets (to limit islet death), and 
to develop a simple clinical procedure for bioartificial 
transplantation and easy access to a device allowing “re-
alimentation” of  the islets.
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