
LARGE-SCALE BIOLOGY ARTICLE

The MORPH Algorithm: Ranking Candidate Genes for
Membership in Arabidopsis and Tomato PathwaysC W

Oren Tzfadia,a,b,1 David Amar,c,1 Louis M.T. Bradbury,b Eleanore T. Wurtzel,a,b,2 and Ron Shamirc

a The Graduate School and University Center, The City University of New York, New York, New York 10016-4309
bDepartment of Biological Sciences, Lehman College, The City University of New York, Bronx, New York 10468
cBlavatnik School of Computer Science, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel

Closing gaps in our current knowledge about biological pathways is a fundamental challenge. The development of novel
computational methods along with high-throughput experimental data carries the promise to help in the challenge. We
present an algorithm called MORPH (for module-guided ranking of candidate pathway genes) for revealing unknown genes in
biological pathways. The method receives as input a set of known genes from the target pathway, a collection of expression
profiles, and interaction and metabolic networks. Using machine learning techniques, MORPH selects the best combination
of data and analysis method and outputs a ranking of candidate genes predicted to belong to the target pathway. We tested
MORPH on 230 known pathways in Arabidopsis thaliana and 93 known pathways in tomato (Solanum lycopersicum) and
obtained high-quality cross-validation results. In the photosynthesis light reactions, homogalacturonan biosynthesis, and
chlorophyll biosynthetic pathways of Arabidopsis, genes ranked highly by MORPH were recently verified to be associated
with these pathways. MORPH candidates ranked for the carotenoid pathway from Arabidopsis and tomato are derived from
pathways that compete for common precursors or from pathways that are coregulated with or regulate the carotenoid
biosynthetic pathway.

INTRODUCTION

A biological pathway is the set of molecular entities involved in
a given biological process and the interrelations among those
entities. Pathways are to some extent the biologist’s simplification.
Pathway boundaries are inherently fuzzy, but they are valuable for
understanding biology and organizing biological knowledge (e.g.,
a metabolic or signaling pathway). Although current knowledge
about some biological pathways may be substantial and useful
for systems-level analyses, not all genes that participate in and/
or affect function of these pathways are known. The challenge of
identifying missing pathway members is a major challenge for
biological research.

Prime examples of information gaps are biosynthetic path-
ways leading to secondary metabolites in plants. These path-
ways have been studied extensively (Saito et al., 2008), but little
is known about pathway control mechanisms. We have limited
understanding of the nature of interactions between metabolites
and gene expression, and we have only a partial grasp of the
relationship between transcriptional regulation and phenotype

(Pigliucci, 2009). Even in the best-studied metabolic pathways,
there remain information gaps where some participating genes
are still unknown. Moreover, many plant genes remain to be
annotated and have no known function (Gerdes et al., 2011).
In the postgenome era, the plethora of available high-throughput

“omics” data (e.g., genomics, proteomics, metabolomics, and
fluxomics) can assist in the task of linking genes to pathways.
Several genome-wide computational methods attempt to close
gaps in metabolic networks (Thimm et al., 2004; Yamanishi
et al., 2004; Usadel et al., 2009; Orth and Palsson, 2010). Some
methods use established knowledge about a pathway in a model
that analyzes microarray expression data, since genes from the
same pathway typically manifest coordinated expression under
various conditions (Stuart et al., 2003; Allocco et al., 2004). One
such tool is MapMan (Thimm et al., 2004), which displays large
data sets (e.g., gene expression data from Arabidopsis thaliana
Affymetrix arrays) onto diagrams of metabolic pathways or other
processes.
Coexpression analysis can identify genes that tend to show

similar expression profiles across many treatments (Usadel
et al., 2009). By calculating coexpression for groups of genes,
one can generate hypotheses about the function of unknown
genes that show expression patterns similar to genes whose
function is known, using the guilt by association paradigm. Sev-
eral Web-based tools perform coexpression analysis in plants,
including ACT (Manfield et al., 2006), GeneCAT (Mutwil et al.,
2008), ATED-II (Obayashi et al., 2009), BAR Expression Angler
(Toufighi et al., 2005), and CressExpress (Srinivasasainagendra
et al., 2008). These tools use publicly available gene expression
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data and compute lists of genes coexpressed with bait genes
given as input by the user. The PlaNet tool builds further on use of
coexpression data by comparing coexpression networks across
multiple plant species to predict functional homologs (Mutwil
et al., 2011).

All of the plant tools mentioned above rely solely on coex-
pression. Methods developed for nonplant species analyze one or
several types of high-throughput data, such as coexpression
(Kharchenko et al., 2005), phylogeny similarity profiles (Pellegrini
et al., 1999), and spatial clustering of genes on chromosomes
(Lee and Sonnhammer, 2003). The ADOMETA method combines
all of the data types above, together with a metabolic de-
pendencies (MD) network, to predict enzymes of orphan reactions
in metabolic pathways (Kharchenko et al., 2004; Chen and Vitkup,
2006; Kharchenko et al., 2006). In ADOMETA, genes are first
partitioned into two classes: metabolic and nonmetabolic genes.
Next, the genes are compared with their neighbors in the meta-
bolic network using Adaboost, which combines different methods
and association scores. The highest scoring genes are predicted
as those encoding a catalyzer of the studied orphan reaction.
These methods were designed for such organisms as Escherichia
coli, Saccharomyces cerevisiae, or Bacillus subtilis, for which
high-throughput information is much more abundant than for
plants.

Closing information gaps in plant metabolic pathways is part of
a larger community effort to predict gene function using hetero-
geneous data sources. Often, these data sources are represented
as networks with nodes corresponding to genes and edges
denoting functional similarity. Most network-based functional in-
ference algorithms work under the assumption that the closer two
nodes are in the network the more likely they are to share
a common functionality (reviewed in Sharan et al., 2007). These
approaches are generally useful in inferring broader functions,
such as a biological process or a biological pathway, as opposed
to the molecular/biochemical function, which are typically inferred
by homology-based approaches. Thus, network- and homology-
based approaches for annotating genomes are often comple-
mentary (reviewed in Janga et al., 2011).

Several methods were developed to detect associations using
only protein–protein interaction (PPI) networks (Bader and Hogue,
2003; Deng et al., 2003; Letovsky and Kasif, 2003; Nabieva
et al., 2005; Kourmpetis et al., 2010). Studies assumed that,
given its neighbors in the graph, the function of a protein is in-
dependent of all other proteins. With this assumption, Markov
random field (MRF) models were used for function prediction
(Deng et al., 2003; Letovsky and Kasif, 2003). Other methods
employed variations of the k-nearest neighbor (k-NN) classifier
(Tan et al., 2005) for integrating gene expression profiles with
interaction networks for functional prediction (Kuramochi and
Karypis, 2005; Pandey et al., 2009). In k-NN, for each gene, the
k genes most similar to it in terms of the input data are defined
as its neighbors, and the gene is scored by the average similarity
of its neighbors to genes of the target functionality (e.g., a bio-
logical process or a pathway). Typically k is 10 or 20. k-NN–
based methods that integrate different data sources use them to
calculate a combined similarity matrix. For example, Pandey et al.
(2009) combined gene expression and network data by concat-
enating the gene expression matrices with the adjacency matrices

of the networks and used cosine similarity to score candidate
genes. Comparative studies reported that for protein function
prediction, k-NN produces results comparable to other classifiers,
such as support vector machines. Because of the simplicity of
k-NN, its results are easier to interpret (Kuramochi and Karypis,
2005; Wang and Scott, 2005; Yao and Ruzzo, 2006).
In this study, we develop a new computational framework

called MORPH (for module-guided ranking of candidate path-
way genes) for high-confidence prediction of candidate genes
that function in or regulate a given biological pathway. Our
prediction method provides highly significant predictions de-
spite the limited data available in plants compared with other
model organisms. Our method is not limited to analyzing known
enzymes (Popescu and Yona, 2005) or to discriminating meta-
bolic from nonmetabolic genes as done in ADOMETA.
Like some other guilt by association coexpression methods,

MORPH receives as input a list of genes known to participate in
the specific target pathway, gene expression profiles from multi-
ple studies, and an interaction network. In addition, and unlike
other methods, MORPH uses a collection of gene partitions into
functional modules. MORPH tests multiple combinations of ex-
pression data sets and partitions, identifies the best combination
using cross-validation, and ranks genes in terms of strength of the
evidence that they belong to the target pathway. Hence, MORPH
builds upon coexpression analysis and finds the best combination
of gene expression data and network information to assess the
candidates of a specific pathway. Ranking is done by measuring
expression similarity of each candidate gene to the target path-
way genes that occupy the same module, with appropriate nor-
malization to account for different module homogeneities.
MORPH was developed and tested using resources for two

distinct plant species: Arabidopsis thaliana and tomato (Solanum
lycopersicum). We tested our method using a cross-validation-
based technique developed by Kharchenko et al. (2006) on 230
Arabidopsis biological pathways (downloaded from AraCyc and
MapMan) and 93 tomato pathways (downloaded from MapMan).
MORPH showed a consistently high prediction quality. Detailed
analysis of the top-ranked candidates in three Arabidopsis
pathways reveals accurate and valuable predictions. In to-
mato, MORPH uses gene networks that were generated by
transforming Arabidopsis networks into tomato networks on
the basis of homology. MORPH provides a twofold improvement
upon standard coexpression analysis in our ability to predict to-
mato pathways. MORPH can be accessed online or downloaded
and used independently on a PC from http://biocourse.weizmann.
ac.il/morph/.

RESULTS

We developed a method for ranking candidate genes that are
missing in a given target pathway and tested the method on
data of Arabidopsis and tomato. The method, called MORPH,
ranks genes using auxiliary data, including expression profiles
and biological networks. See Figure 1 for an overview. Genes
are partitioned into modules using several methods (described
in detail below), and the best combination of grouping and further
analysis is selected. We first describe the analyses performed in
Arabidopsis and then in tomato and in each case demonstrate the
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ability of MORPH to provide high quality predictions and useful
new candidates.

Arabidopsis Expression Profiles and Pathways

We used 216 published microarray profiles of Arabidopsis gene
expression responses to specific stimuli (see Methods; see
Supplemental Data Set 1 online for array accession numbers).
These data sets included 64 profiles of seedling tissues (the
seedlings data set), 99 profiles of different tissues (the tissues
data set), and 53 profiles of seed tissues at different develop-
mental stages (the seeds data set). Each set was analyzed
separately. In addition, we analyzed the combined seedlings and
tissues data set, named DS1. A total of 66 pathways derived
from AraCyc and 164 pathways from MapMan were used in the
analysis (see Methods; see Supplemental Data Set 2 online for
a complete list of pathways and associated genes).

Partitioning Gene Modules and Networks

A key step in MORPH is the partitioning of genes into modues or
clusters. We used two different strategies to cluster Arabidopsis
genes: gene expression–based clustering and modules defined
using external information. First, we devised five different clus-
tering solutions (see Methods): (1) clustering the genes by co-
expression using two different algorithms, self-organizing map
(SOM) and CLuster Identification via Connectivity Kernels
(CLICK); (2) enzymes: a bipartition into the genes that encode
enzymes and the rest; (3) orthologs: a bipartition of genes into
those that have orthologs in rice (Oryza sativa), maize (Zea
mays), and the rest; and (4) no clustering: the set of all genes as
a single module. We also used two networks to construct ad-
ditional modules: (i) MD network: the network comprises genes
as nodes. An edge is added between two genes if their gene
products share a metabolite (see Methods). (ii) PPI network: the

Figure 1. Overview of the MORPH Algorithm.

Using several partitioning methods (see Partitioning Gene Modules and Networks), all candidate genes (black circles) are partitioned into modules
(shaded boxes) together with a set of target genes (squares) known to belong to the target pathway. Modules represent distinct patterns of gene
expression and/or protein interactions (candidate genes are now distinguished by the module to which they belong, with dark circles, triangles and light
circles for the top, middle, and bottom modules, respectively). For each module, MORPH computes the average expression pattern of the known target
genes that fall into that module (marked by a circle with an “x” in the center on the right) and then scores all other genes by their similarity to the average
pattern in that module (depicted by the arrow length; numbers indicate ranking of the similarity for each module, where 1 is the most similar). Scores are
normalized and united from all modules to obtain a single ranking of all candidate genes. A cross-validation procedure (data not shown) is used to score
the resulting ranking.
[See online article for color version of this figure.]
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network comprises genes as nodes. An edge is added between
two genes if there is an evidence of interaction between their
gene products (see Methods). In total, we devised eight clus-
tering solutions.

To construct modules from gene expression and network
data, we initially used the Matisse algorithm (Ulitsky and Shamir,
2007), which identifies sets of coexpressed genes that induce
connected subnetworks. Since the MD network contained only
;1200 genes, we modified Matisse to increase coverage of the
underlying gene set. The modified version, called Matisse*, ex-
pands the modules by adding genes that show a high level of
similarity to the average expression pattern of a given module
even if these genes do not obey the connectivity constraints.
The expansion step increased module size considerably –3.7-
fold for the MD network. Therefore, we used Matisse* for the MD
and PPI modules. For each network, we added an additional set
containing all genes that were not included in other modules. We
also constructed gene clusters in the PPI data using the Markov
clustering (MCL) algorithm, which was reported to perform well
in this task (Enright et al., 2002; Sharan et al., 2007; Vlasblom
and Wodak, 2009).

Clustering Guided Scoring of Pathway Genes

Given a clustering solution (for a given data set, partitioning
genes into modules) and a target pathway, our goal is to rank the
remaining genes in terms of how plausible it is that a given gene
is associated with the target pathway (Figure 1). For each
module generated as described above, we identified genes from
the target pathways and computed, for each other gene in the
same module, its average coexpression similarity to the pathway
genes in that module. The rationale is that while the modules
reflect various broad functions, some of these functions may be
related to the target pathway and, hence, on average, the
pathway genes would show higher coexpression similarity than
arbitrary genes in the same module. Since modules varied in

size and homogeneity (i.e., average coexpression level), the
gene pathway similarity scores within each module were stan-
dardized (see Methods). Pearson correlation was chosen for
evaluating coexpression as it slightly outperformed Spearman
correlation (see Supplemental Methods 1 online).

Assessment of Ranking Using the Self-Rank Curve

To assess the performance of the method, we used a technique
developed by Kharchenko et al. (2006) based on leave-one-out
cross-validation (LOOCV). The validation procedure repeatedly
removes one gene from the target pathway (the test gene), gen-
erates the ranking based on the remaining genes (the training set),
and calculates the rank of the test gene, denoted as the self-rank
of that gene. Then, one can plot for every self-rank threshold in
some predefined interval (e.g., 0 to 1000) the fraction of pathway
genes that were detected at the threshold when acting as test
genes. To obtain a score in the range 0 to 1, we rescaled the
curve so that 1 denotes perfect ranking (see Methods). We call
this score the relative area under the curve of the self-ranked
genes (AUSR). Figure 2 shows an example of the self-rank
plot using the carotenoid core pathway (see Supplemental Data
Set 2 online for list of genes used). The plot was derived using
MORPH with the SOM clustering algorithm. For reference, the
expected self-rank derived by randomly choosing candidate
genes is plotted as well.
Matisse was shown to be effective in finding modules of

functionally related genes, but it usually assigns only a small
fraction of the genes into modules. We therefore first compared
the quality of the rankings produced by Matisse and Matisse*
using the metabolic dependency network and each gene ex-
pression data set on the 66 AraCyc pathways. Although Matisse*
markedly improved the coverage, it produced slightly inferior
results using all four examined data sets (difference of <0.05
average AUSR over all data sets; data not shown). On average,
the seedlings data set provided the best scores. When we used

Figure 2. The Self-Rank Plot of the Carotenoid Biosynthetic Pathway That Contains 13 Genes.

For each value of the self-rank threshold on the x axis, the plot shows the fraction of genes in the pathway that were ranked below that threshold (black
line) using the LOOCV method. The gray line shows the expected plot for a randomly selected gene set of size 13 (see Supplemental Data Set 2 online).
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the PPI network, both Matisse and Matisse* modules received
very similar scores (data not shown). Using the MD network, we
obtained higher quality predictions compared with using the PPI
network. Since Matisse* was observed to perform much better
in terms of coverage (i.e., the percentage of genes included in
the modules), and only marginally worse in AUSR, it was used in
all further analyses.

Customizing the Use of Gene Expression Data Sets

We compared the predictive power of using the tissues and
seedlings profiles separately and of using the united data set
DS1 on the 66 AraCyc pathways. We used Matisse*, combined
with the MD network, to create modules. DS1 was significantly
inferior, yielding an average AUSR of 0.34 compared with 0.43
provided by the seedlings data set (P = 0.016) and 0.37 provided
by the tissues data set (P = 0.13). Figure 3 compares AUSR

scores for each pathway using the DS1 and/or the seedlings
data sets. Although more pathways attained better scores using
the seedlings data set, some pathways had much higher scores
using DS1. The differences in scores were often large. For ex-
ample, the “ethylene biosynthesis from Met” pathway received
a score of 0.115 using the seedlings data set and a score of 0.73
using DS1. These results inspired us to refine the MORPH al-
gorithm by a model selection step to optimize analysis of a spe-
cific pathway, as will be explained in the next section.

Pathway-Specific Model Selection

The MORPH algorithm was applied using all combinations of (1)
one out of four data sets (seeds, seedlings, tissues, and DS1)
and (2) one clustering solution out of eight. In total, 32 different
rankings were produced for each pathway. Our analysis showed
that no single combination is best for most pathways; therefore,

Figure 3. The Difference in AUSR Scores between the Seedlings Data Set and the Combined Seedlings and Tissues Data Sets (DS1).

Each column represents a difference in the AUSR score for one of the 66 tested pathways. The modules used here were created by Matisse* (see
Methods) with the MD network.
[See online article for color version of this figure.]
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we wished to select the best one for each pathway. Optimizing
predictive power, given a set of different possibilities to analyze
data, has been addressed in the machine learning community
and is generally referred to as “model selection” (Guyon et al.,
2010).

We define a pathway’s learning configuration as a combina-
tion of gene expression data set and clustering method. Each
learning configuration can be used to generate a ranking of
candidates for a specific pathway. In order to match the optimal
learning configuration to the pathway, we used LOOCV to es-
timate the predictive power of every configuration and selected
the one that produced the highest AUSR score. We denote this
ranking algorithm as selection. Importantly, for statistical valida-
tion of this method, the LOOCV procedure used by the selection
algorithm is used internally, without taking into account the tested
gene; therefore, we avoid overfitting.

To test the additional value of the selection process, we
compared its prediction power to that of all possible config-
urations on the AraCyc pathways. Figure 4A shows the average
AUSR scores for different learning configurations and of the
selection algorithm. For every expression data set and clustering
method, we compared the average AUSR score over 66 AraCyc
pathways. Clustering by orthologs, CLICK and SOM produced
inferior results, and these clustering methods are thus excluded.
In general, the configurations based on enzymes or the MD
network yielded better results than configurations that used the
PPI network or no clustering of the genes. The enzymes and MD
sources are derived from known metabolic information; therefore,
we expect them to perform better and reflect more faithfully the
signatures of metabolic pathways in expression data. Neverthe-
less, we observed some exceptional cases where higher scores
were obtained by not using enzymes or the MD network. For
example, the “homogalacturonan biosynthesis” pathway received
a score <0.75 for all configurations except Matisse* with the PPI
network, which yielded a score of 0.99 (see Supplemental Data
Set 3 online for the AUSR and best configurations for each tested
pathway).

Importantly, our model selection algorithm, which integrates
all the data used in our framework, yielded the highest average
score, 0.6, compared with individual configurations. We there-
fore use the model selection methodology to rank candidates in
the next phase.

Robustness

We tested the robustness of our method by comparing AUSR
scores obtained from randomly selected metabolic gene sets
and using the 66 AraCyc metabolic pathways. We used only
metabolic genes since we observed that these genes tend to
show higher coexpression level than all genes (data not shown).
We ran the selection algorithm with target pathways comprised
of randomly selected genes from all genes that appeared in
AraCyc. The sizes of the sets were 10 to 44, the same range of
the known pathways. We repeated the process 100 times for
each set size. For each set size, Figure 5 shows the distribution
of AUSR scores on the randomly generated gene sets as
compared with scores of known pathways. Overall, no random
gene set received an AUSR score >0.75. By contrast, 15 of the

66 real pathways tested received scores >0.75 and as high as
0.99. Moreover, 29 pathways scored higher than the maximal
scoring random pathway of the same size. The test gives ad-
ditional support for the robustness of our ranking algorithms.

Comparison with Other Function Prediction Algorithms on
Arabidopsis Data

We compared MORPH to a k-NN based classifier, two MRF
predictors, and two coexpression schemes that do not use any
network information. The comparison included 66 AraCyc and
164 MapMan pathways. The coexpression schemes rank genes
by their average similarity to the pathway genes, where similarity
is measured by coexpression in a reference gene expression
data set. The ACT data set (see Methods) and our data set DS1
were used as such references. We tested one pathway at a time
and treated all genes outside the pathway as candidates. In
particular, we did not use negative samples of genes that are
known to belong to other pathways so that all methods use the
same annotation as input. Thus, MRF approaches can be re-
duced to ranking gene candidates according to the number of
neighbors that participate in the tested pathway (see Supplemental
Methods 1 online). Since this approach may result in ranking with
many ties, we used two MRF configurations: ranking candidate
genes according to the number of pathway gene neighbors,
denoted as CMRF, and a weighted version that ranks candi-
dates by their total similarity to their annotated neighbors, de-
noted as WMRF. To integrate network information and gene
expression, we used the combined network based on cosine
similarity (Pandey et al., 2009). For MRF-based methods, in or-
der to maintain graph sparseness, we used a threshold of 0.4 to
define the neighborhood of a gene; higher thresholds resulted in
graphs with low average gene degree (i.e., the average number
of edges per gene). All classifiers in this analysis were given as
input the seeds, tissues, and seedlings gene expression data
sets, together with network information. We defined three types
of classifiers according to the additional network information
and gene expression data: (1) the PPI network, (2) the MD net-
work, and (3) the combined PPI and MD network.
Figure 4B summarizes the performance of the different pre-

dictors for 66 AraCyc pathways. Figure 4C shows the results for
164 MapMan pathways. The coexpression scheme that used
our DS1 data set achieved better scores than that using the ACT
data in both cases, suggesting that our preprocessing is better
than that used in assembling the ACT data. In all cases, the
k-NN–based predictors performed better than MRF-based pre-
dictors. Of the k-NN classifiers, the one that uses both networks
outperformed the other two. Notably, MORPH performed better
than all other classifiers. In particular, in terms of prediction,
MORPH improved significantly over all other classifiers in both
sets of pathways: (1) on the AraCyc pathways the second-place
classifier, k-NN combined, achieved an average AUSR of 0.53
versus 0.603 achieved by MORPH (P = 0.03); (2) on the MapMan
pathways, the coexpression scheme based on DS1 was sec-
ond, achieving an average AUSR of 0.24, compared with 0.27
of MORPH (P = 0.009). Figure 4D compares MORPH, k-NN–
based predictors, and ACT in terms of the number of AraCyc
pathways that received an AUSR score above 0.8. The k-NN–based
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classifiers had one to seven such pathways, while MORPH
had 12 (binomial test P = 0.043). Figure 4E compares MORPH
and the top five predictors in terms of the number of MapMan
pathways that received an AUSR score above 0.7. The other
classifiers had two to five pathways, while MORPH had 10 (binomial
test P = 0.012).

While MORPH overall outperforms the k-NN classifiers, the
two methods appear complementary, as they show large dif-
ference in the AUSR on some pathways (see Supplemental
Data Set 3A online). For example, for the homogalacturonan
degradation pathway, MORPH and k-NN combined obtained
AUSR of 0.27 and 0.99, respectively. Only one AraCyc pathway,

Figure 4. Performance of the Predictors on 230 Pathways in Arabidopsis.

(A) AUSR scores for different learning configurations. The average AUSR over 66 AraCyc pathways tested is displayed for each combination of gene
expression data set and partitioning algorithm (white) and for the selection algorithm (black). Configurations denoted by a data set and PPI or MD
network are a combination of a data set and a classifier.
(B) Average and median AUSR scores on 66 AraCyc pathways, using each of the seeds, tissues, and seedlings expression data sets together with PPI
and MD networks as input.
(C) Average and median AUSR scores on 164 MapMan pathways, using the same input as in (B).
(D) The number of these pathways that had AUSR score above 0.8 when using MORPH, ACT, and the best performers among the other
classifiers in (B).
(E) The number of those pathways that had AUSR score above 0.7 when using MORPH, ACT, and the best performers among the other
classifiers in (D). CMRF ranks candidate genes by the number of pathway genes in their neighborhood. WMRF ranks candidates by their similarity with
neighbor pathway genes. PPI, methods using the PPI network; MDN, methods using the MD network; Combined, methods using both networks.
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photosynthesis light reaction, received a score above 0.8 by
both methods.

Literature Consistent with the Predictions of Several
Top-Ranking Genes in Arabidopsis

In order to demonstrate the relatedness of candidate genes gen-
erated by MORPH, we briefly review the top candidates obtained
for three of the 66 biological pathways tested (genes listed in
Supplemental Data Set 2 online).

The Homogalacturonan Biosynthesis Pathway for Primary
Cell Wall Construction

This is a classic example of a pathway that, according to our
configuration selection (machine-learning) results, with an AUSR
of 0.99, works best with the PPI network as a clustering solution
together with seedling gene expression data. MORPH suggested
only nine candidates, and all of them are labeled as being pu-
tatively involved in homogalacturonan synthesis or in the syn-
thesis of other structurally similar compounds that are involved
in cell wall biosynthesis (see Supplemental Data Set 4 online).
These proteins are mostly annotated via homology. When the

homogalacturonan biosynthesis gene set is used as an input in
other coexpression analysis programs, such as GeneCAT, we
see a much larger set of predictions consisting of a range of
protein encoding genes with vague descriptions. While vague
descriptions do not rule out these genes as homogalacturonan
pathway candidates, it should be noted that none of the MORPH
candidates (with their strong homogalacturonan related de-
scriptions) appear in the GeneCAT candidate list. With the ex-
ception of known homogalacturonan pathway genes (input
genes that also show up in the GeneCAT output), only three
genes (At3g53520, At5g07720, and At1g13860) in the GeneCAT
list have descriptions that strongly suggest homogalacturonan
pathway function. One other gene (At5g15490) has a description
strongly suggesting a function in cell wall biosynthesis. This
comparison shows the unique analysis provided by MORPH and
how it can be used to provide strong pathway candidate genes.

The Chlorophyll Biosynthesis Pathway

Coordinated expression of genes involved in the Calvin cycle,
chlorophyll biosynthesis, and photosystem subunit synthesis
has been observed in previous studies (Ghassemian et al.,
2006). Supplemental Data Set 5 online shows the input pathway

Figure 5. AUSR Scores of Real and Random Pathways.

For each pathway size, we generated 100 random gene sets (using only the pathway genes in Supplemental Data Set 2 online as background) and used
our algorithm to compute an AUSR score. Each box plot depicts the average and the range of 25 to 75% of the AUSR scores obtained for the random
gene sets. The scores of all real biological pathways are marked with an “x,” except those that received a score above 0.75, which are individually noted
with symbols shown in the legend box at the top.
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genes and output candidate genes with AUSR score of 0.88.
The top-ranked candidate gene (AT2G46820) for the MORPH
input pathway (chlorophyll biosynthesis) was validated to func-
tion as the P subunit of photosystem I (Khrouchtchova et al.,
2005). Out of the top 25 genes ranked by MORPH, eight are
annotated as being involved in assembly and function of pho-
tosystem I and five are annotated as being involved in assembly
and function of photosystem II (PSII). The photosystem I and
PSII complexes are the ultimate site of chlorophyll accumulation
and function, explaining why these complexes are synthesized
and assembled in coordination with chlorophyll biosynthesis.
Six of the top 25 ranked genes encode proteins involved in the
Calvin cycle and are therefore required for utilization of energy
generated from photosynthesis, for carbon fixation, and the
generation of metabolites for the cell. The Calvin cycle intermediate
glyceraldehyde 3-phosphate is a precursor of isoprenoid bio-
synthesis, and isoprenoids are required for the synthesis of
chlorophylls. Considering the Calvin cycle provides precursors
for chlorophyll biosynthesis and uses the energy harvested by
chlorophylls, it is expected to see enzymes of the Calvin cycle
ranked high in our list. The few remaining genes had roles in
electron transport and protection against reactive oxygen spe-
cies (ROS). Inhibition of electron transport is a cause of photo-
inhibition and, therefore, ROS production. ROS can damage and
degrade many compounds, including chlorophylls. The pre-
vention of chlorophyll degradation likely consumes less energy
than the synthesis of new chlorophylls. It is therefore not sur-
prising to find these enzymes ranked as related to the chloro-
phyll biosynthesis pathway. In general, the candidate genes
reflect a strong and not unexpected connection between chlo-
rophyll biosynthesis and assembly, function, and maintenance
of the photosynthetic apparatus.

The Carotenoid Biosynthesis Pathway

For the carotenoid biosynthetic pathway of 13 genes, MORPH
achieved an AUSR score of 0.86. Input pathway genes and
output candidate genes are shown in Figure 6, Supplemental
Data Set 2, and Supplemental Data Set 6A online. Carotenoids
play a multitude of roles in plant cells, including as antioxidants
for protection against ROS, as essential components of the
light-harvesting apparatus, and as precursors to the hormones
abscisic acid and strigolactones. The enzymes of the carotenoid
biosynthetic pathway are well known (Cuttriss et al., 2011).
Therefore, we expect to identify genes that control ancillary
functions related to carotenoid biosynthesis. Not surprisingly,
the carotenoid cleavage enzyme CCD1, responsible for the
degradation of carotenoids into apocarotenoids (Vogel et al.,
2008), was highly ranked at number two in the list. The list also
includes AT2G31750, ranked at number 25, encoding a UDP-
glucosyl transferase, capable of glucosylating the carotenoid
derived hormone abscisic acid (Lim et al., 2005). Other genes
identified in this list encode enzymes for biosynthetic pathways
intricately linked with carotenoid biosynthesis. Three genes,
AT3G48730, AT4G27600, and AT3G51820, are involved in
chlorophyll biosynthesis, a pathway known to show coregulation
with carotenoid biosynthesis (Ghassemian et al., 2006; Meier
et al., 2011). Ranked at number one is the gene SQE3 encoding

squalene monooxygenase (AT4G37760), which is responsible
for catalyzing the conversion of squalene into 2,3-oxidosqualene
(Phillips et al., 2006), a precursor of the plant hormone, brassi-
nosteroid. It was recently shown that genes in the carotenoid
pathway are coordinately expressed in response to brassino-
steroids (Meier et al., 2011), explaining the presence of this gene
on this list. Ranked at number four, the gene encoding SPS2
(AT1G17050) has been shown to have solanesyl diphosphate
synthase activity (Jun et al., 2004). Solanesyl diphosphate is
required for the final step of plastoquinone synthesis in Arabi-
dopsis. Plastoquinones serve an essential role as electron ac-
ceptors during the desaturation of the carotenoid intermediates
phytoene and z-carotene, catalyzed by phytoene desaturase
and z-carotene desaturase, respectively (Mayer et al., 1990;
Norris et al., 1995). Chemical or genetic disruption of plasto-
quinone function causes an early termination of the carotenoid
biosynthetic pathway at the phytoene desaturase step (Josse
et al., 2000; Breitenbach et al., 2001; Matthews et al., 2003),
showing the essential nature of plastoquinones in carotenoid
biosynthesis. Reflecting the antioxidant nature of carotenoids, we
see many genes in the list encoding enzymes involved in synthe-
sizing antioxidant compounds. Ranked at numbers 21 and 11 are
genes encoding two enzymes involved in the production of the
antioxidant pigments anthocyanin (Hanumappa et al., 2007) and
anthocyanidin (Xu et al., 2008), respectively. Thioredoxin reductase
(ranked at number six) is involved in an oxidative stress response
(Serrato et al., 2004), and tocopherol cyclase (ranked at number
three) is involved in synthesis of the antioxidant tocopherol (Mène-
Saffrané et al., 2010). These four enzymes are likely found in this list
because they perform similar antioxidant actions as carotenoids
and are therefore expressed in a similar manner (i.e., in response to
oxidative stress). It should be noted, however, that tocopherols are
partially derived from isoprenoids, which are also precursors of
carotenoid biosynthesis. Blocking isoprenoid incorporation into
tocopherols may provide more substrates for carotenoid bio-
synthesis. Another stress-related gene, AT2G26800 (ranked at
number five), encodes hydroxymethylglutaryl-CoA lyase involved
in catabolism of amino acids to provide substrates to the citric
acid cycle during severe stress conditions (Taylor et al., 2004).
This enzyme may be present in our list simply because it plays
a role in response to stress, as do carotenoids. It should be
noted, however, that in the absence of photosynthesis, the
citric acid cycle ultimately provides precursors for isoprenoids,
which are channeled into biosynthesis of carotenoids. This
relationship of AT2G26800 and carotenoid biosynthesis, sug-
gested by our work, has not been previously considered and
may be useful for increasing carotenoid biosynthetic flux in
organisms under stress conditions. At least eight genes within
the top 25 of this list only have predicted functions, with very
little details available on their role in plants. These unstudied
genes are of great interest for further studies on their effects on
carotenogenesis.

Extending MORPH to Tomato

To test the utility of MORPH beyond Arabidopsis, we gathered
a compendium of gene expression data from tomato. We used
220 published microarray expression profiles of tomato gene
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Figure 6. Candidate Genes (Numbered Octagons) Generated by MORPH for the Carotenoid Biosynthetic Pathway (Starting from Phytoene).
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responses to specific stimuli. These data sets included 115
profiles of fruit tissues (the fruit data set) and 105 profiles of root
and leaf tissues (the root and leaf data set). We did not split the
root and leaf data set further since the resulting sets would be
too small after merging biological replicates. We generated
networks computationally using homology because no large-
scale MD and protein interaction networks are available for to-
mato. Beginning with the Arabidopsis (AT) network, we used the
tomato genome from the Sol Genomics Network (http://
solgenomics.net/; see Methods) to transform each edge onto
one or more new tomato (SL) network edges connecting the
tomato orthologs of Arabidopsis genes (see Methods). For each
gene expression data set, we created the same eight learning
configurations as in Arabidopsis. Thus, to analyze our tomato
data, MORPH uses two gene expression matrices and eight
learning configurations.

As in the Arabidopsis tests, the selection process used by
MORPH achieved on average better AUSR scores as compared
with individual configurations (see Supplemental Figure 1 online).
Supplemental Data Set 3B online shows AUSR scores of all to-
mato pathways tested. Remarkably, except for the MCL-based
configurations, all configurations achieved an average AUSR
score below 0.18, whereas the MCL-based configurations achieved
an average AUSR of 0.36. Specifically, with using only coexpression
to rank candidate genes, the average AUSR was 0.167 and 0.14
for the fruit and root plus leaf data sets, respectively. Hence, in
spite of the inherent noise, homology-based networks allow
dramatic improvement in prediction quality. The selection process
slightly improved upon the MCL configurations, achieving an
average AUSR of 0.375.

Compared with other methods, MORPH achieved the best
AUSR scores across all 93 tested pathways. The results are
shown in Figure 7A. In particular, the second place predictor,
k-NN, which combines all data sources, achieved an average
AUSR of 0.345 compared with 0.375 by MORPH (P = 0.08).
Figure 7B shows the number of pathways with an AUSR score
above 0.7 for the five best predictors. MORPH achieved an
AUSR above 0.7 in 17 pathways (P = 0.15).

We applied MORPH to rank genes associated with the test
pathway “carotenoid biosynthesis” (see Supplemental Data Set
6 online). Our analysis of the tomato carotenoid pathway pro-
duced an AUSR of 0.306 (P value= 0.00104) based on a fruit
data set. It is known that carotenoid biosynthesis and caroten-
oid function in plants are linked with chlorophyll biosynthesis,
photosynthesis, and protection against photooxidative damage
(Ghassemian et al., 2006; Li et al., 2008; Meier et al., 2011).
Genes for the tomato carotenoid biosynthetic pathway (Tomato
Genome Consortium, 2012) are linked to fruit ripening (Lee et al.,

2012) and are light regulated in leaf and fruit tissues (Toledo-Ortiz
et al., 2010; Powell et al., 2012). The candidate genes identified
are consistent with these pathway connections. Furthermore, for
the top 10 candidates in tomato, 50% matched similar functions
in the Arabidopsis candidate list (top 123 genes) drawn from a
seedling data set.
We observed tomato gene candidates consistent with the

known coordinate transcriptional regulation of carotenoid and
chlorophyll pathways. Tomato candidate gene #1 encodes
magnesium chelatase (Solyc04g015750), the committed en-
zyme for chlorophyll biosynthesis. Magnesium chelatase is in-
volved in the retrograde signaling between the chloroplast and
nucleus that modulates carotenoid gene transcript levels
(Mochizuki et al., 2001; Koussevitzky et al., 2007; Pogson et al.,
2008; Huang and Li, 2009). A magnesium chelatase candidate
was also identified in the Arabidopsis list (AT5G45930). Other top-
ranked tomato genes function in chlorophyll biosynthesis (#5,
Solyc10g007320; #25, Solyc10g005110). The gene encoding
NYC3, a protein involved in chlorophyll degradation (Morita et al.,
2009), was found in both the tomato (Solyc12g098660) and
Arabidopsis lists (AT5G19850).
Carotenoids play roles in protecting against damage from

ROS (Havaux et al., 2007; Johnson et al., 2007; Li et al., 2008;
Zhu et al., 2010; Li et al., 2012; Bradbury et al., 2012). Related to
this role, MORPH ranked as number 2 (Solyc06g007350) a gene
encoding a chloroplast PP2C phosphatase that is required for
dephosphorylation of PSII proteins (Samol et al., 2012). Re-
versible phosphorylation-dephosphorylation of PSII regulates
light acclimation and signals repair of damaged PSII. Candidate
number 6 (Solyc06g071960) encodes nucleoside diphosphate
kinase-2 (NDK-2), a regulator of cellular redox state and medi-
ator of tolerance to ROS (Moon et al., 2003). NDK-2 has been
shown to affect levels of catalase (Solyc02g082760, candidate
number 4), an enzyme that reduces levels of ROS (Queval et al.,
2007; Kim et al., 2011).
Several top-ranked tomato candidates encode proteins re-

quired for carbon fixation (e.g., Solyc12g094640, Solyc08g076220,
Solyc02g020940, and Solyc01g106010), three of which form
part of the glyceraldehyde-3-phosphate dehydrogenase com-
plex. Glyceraldehyde-3-phosphate is an intermediate in the
Calvin cycle and a precursor of isoprenoid biosynthesis, from
which carotenoids are ultimately derived. MORPH ranking of the
glyceraldehyde-3-phosphate dehydrogenase candidates expo-
ses competing pathways: Isoprenoid biosynthetic enzymes re-
quired for carotenoid biosynthesis compete with Calvin cycle
enzymes for access to glyceraldehyde-3-phosphate.
Thus, we demonstrate that MORPH can reliably predict can-

didate genes to be associated with a pathway in two evolutionarily

Figure 6. (continued).

The MEP pathway generates substrates for GGPPS (geranylgeranyl pyrophosphate synthase), which serves as a metabolic hub to feed metabolites to
several pathways, including the carotenoid pathway. For simplicity, CCD1 is shown at the pathway end, but the enzyme is known to degrade multiple
carotenoid substrates (Vogel et al., 2008). Input genes for MORPH analysis included phytoene synthase (PSY), phytoene desaturase (PDS), zeta-
carotene isomerase (Z-ISO), zeta-carotene desaturase (ZDS), carotenoid isomerase (CrtISO), lycopene epsilon cyclase (LCYE), lycopene beta cyclase
(LCYB), beta-carotene hydroxylase 1 and 2 (HYD 1 and 2), cytochrome P450 hydroxylase 97A (CYP97A), cytochrome P450 hydroxylase 97C (CYP97C),
violaxanthin de-epoxidase (VDE), and zeaxanthin epoxidase (ZEP).
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distinct plant species. Despite the wide genetic separation, ap-
plication of MORPH to a conserved pathway reveals candidates
shared in both species. MORPH also identified species-specific
candidates as would be expected from the unique physiology and
structure of the individual species or specific data sets used in the
selection process.

DISCUSSION

The results presented here demonstrate the power of MORPH,
a novel methodology for ranking candidate (annotated and un-
annotated) genes according to their predicted association with
well-studied pathways. MORPH was initially developed for anal-
ysis of Arabidopsis data, but we demonstrated that it can be
extended to other model systems by showing its utility in tomato.
The results of such a tool can contribute to extending gene an-
notations as well as generate hypotheses to fuel efforts for en-
hancing metabolic engineering in plants. Thus, MORPH expands
the plant gene annotation toolkit and can suggest many new
targets for investigation.

Arabidopsis was the first plant model system used in ge-
nomics. Consequently, among plants, it has the best gene an-
notations, the largest publicly available microarray data, and the
most detailed known PPI and metabolic networks. For these
reasons, we chose to develop MORPH using Arabidopsis data.
The ability of MORPH to predict candidates for each model
system requires only a large collection of microarray data and
gene annotations and information that ties gene IDs to specific
biological pathways or biological groupings. Since tomato is an
important crop and model plant subject of many metabolic
studies, we chose to adjust MORPH to support tomato data in
addition to Arabidopsis.

From a computational point of view, we addressed the
question of learning the characteristics (mathematical features

of the genes given the data) of a class of genes that reside within
a much larger group of genes, without availability of a set of
genes that are known to not belong to that set (negative
examples). This situation arises in studying organisms with low
annotation coverage: To perform well in gene function pre-
diction, an algorithm cannot rely on broad evidence based on
functionality of other genes. To evaluate a predictor, we used
the self-rank curve suggested by Kharchenko et al. (2004) which
summarizes the leave-one-out validation. We then calculate the
area under this curve and call the final score AUSR. The AUSR
score quantifies the prediction power quite effectively by con-
centrating on a predefined number of top-ranking genes, but the
score depends on that number (i.e., using 5000 gives higher
AUSR scores than using 1000 although the significance might
not change). In our data, since there were many genes in the
tested organism, we selected this number to be 1000.
MORPH and the other predictors tested here combine two

main goals for learning the set of candidates associated with
a given pathway: (1) filtering genes that are unrelated to the
pathway and (2) ranking candidate genes. In MORPH, the fil-
tering effect is achieved by disregarding genes in clusters that
do not contain pathway genes, whereas in k-NN–based meth-
ods, genes that do not have pathway genes among their nearest
neighbors are not considered.
We observed that many predictors, especially those that do

not integrate diverse data sources, lack robustness, in that they
can perform well on one type of pathway and poorly on others.
For example, AraCyc pathways typically form a low diameter
subnetwork in the MD network (i.e., the shortest path between
every pair of pathway genes has only a few edges). Conse-
quently, k-NN–based approaches that only consider gene dis-
tances in the MD network yielded high AUSR scores on AraCyc
metabolic pathways, but almost random results on MapMan
signaling pathways, which have higher diameters. In addition,

Figure 7. Performance of the Predictors on 93 Pathways in Tomato.

Predictors include MORPH, k-NN, MRF-based, and coexpression based classifiers.
(A) Average and median AUSR scores.
(B) The number of pathways that had AUSR score above 0.7 when using MORPH and the best performers among the other classifiers. All classifiers
were given the fruit and root and leaf (RL) gene expression data set, together with network information. CMRF ranks candidate genes by the number of
pathway genes in their neighborhood. WMRF ranks candidates by their similarity with neighbor pathway genes. PPI, methods using the PPI network;
MDN, methods using the MD network; Combined, methods using both networks.
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such predictors consider only genes in the network, and since
the MD network coverage is low, k-NN–based approaches cannot
suggest new candidate genes that were not previously annotated.
By contrast, MORPH outperformed all other predictors in all types
of pathways and also provided new valuable candidate genes, as
demonstrated on specific pathways.

When integrating different data sources, a possible alternative
to the approach MORPH uses is to rank each candidate gene
according to one data source at a time and aggregate the
scores into a ranking of the candidates. For example, for each
gene, we can average its ranks in the different data sources or
first standardize the scores in each data source and then sum
the scores of the candidate. Such methodology is well estab-
lished in machine learning and is sometimes called an ensemble
approach in problems of feature selection (Abeel et al., 2010).
We tested a simple ensemble method that integrates ranking of
candidates based on the networks, without considering the gene
expression data (see Supplemental Methods 1 online). On aver-
age this predictor achieved higher AUSR scores than MORPH. For
example, on the 164 ArabidopsisMapMan pathways, it achieved an
average of 0.375, whereas MORPH achieved an average score
of 0.28. However, the ensemble predictor does not consider
genes that are not present in the networks and therefore is more
suitable to model organisms for which network information is
abundant (e.g., S. cerevisiae). Hence, in plant model organisms,
due to the low coverage of networks, MORPH is more suitable as
a predictor, as it was specifically designed to integrate the net-
work information without penalizing candidate genes that are not
present in the networks. This effect is reached mainly by the
Matisse* process, which expands the network clustering solutions
to contain many highly coexpressed genes. This problem of data
coverage was observed in bioinformatics also in the context of
disease gene learning (Piro and Di Cunto, 2012). Future im-
provement of MORPH should aim to improve the AUSR scores
without automatically penalizing genes that are not present in the
networks.

METHODS

Microarray Data Sets and Preprocessing

Arabidopsis thaliana Data

We collected 216 published microarray expression profiles of Arabidopsis
thaliana reflecting responses to specific stimuli, developmental stages,
and selected mutants (summarized in Supplemental Data Set 1 online).
Only data sets that passed quality control test by their original authors
were chosen. Normalized matrices were retrieved from NASCArrays (http://
affymetrix.Arabidopsis.info/narrays/experimentbrowse.pl) (Craigon et al.,
2004), TAIR-ATGenExpress (http://www.ebi.ac.uk/microarray-as/ae/), and
the Gene Expression Omnibus (the National Center for Biotechnology In-
formation) (http://www.ncbi.nlm.nih.gov/geo/) (Barrett et al., 2009). Alto-
gether, we formed three data sets: (1) 64 experiments conducted on
seedling tissues generated by 13 different labs, (2) 99 experiments con-
ducted on different tissues (leaves, roots, seeds, and flowers) generated by
10 different labs, and (3) 53 experiments of laser dissected seed tissues
from different developmental stages (Le et al., 2010).We also analyzed the
combined seedlings and tissues data sets, which we called DS1.

We removed probes that displayed consistently low detection calls (raw
detection call <100 in at least 80% of the experiments) as done by others

(Scherzer et al., 2007). We also removed probes that exhibited low variation
(SD <120) in either the seeds data set or DS1, so that only genes that were
expressed in both data sets remained for further analysis. A total of 12,459
genes (out of 21,751) survived this filtering step. Since DS1 profiles were
collected from23different sources, for each source we averaged replicates,
divided treatments by control, and standardized each experiment. Dividing
by the respective controls was applied in each of the seedlings and the
tissues data sets but not in the seeds time series data set.

Tomato Data

We collected 53 tomato (Solanum lycopersicum) microarray expression
profiles reflecting responses to specific stimuli, developmental stages,
and selected mutants (see Supplemental Data Set 1 online). Only data
sets that passed quality control test by their original authors were chosen.
Normalized matrices were retrieved from Mintz-Oron et al. (2008), Adato
et al. (2009), and Fukushima et al. (2012). These matrices included 32
profiles (after uniting replicates and dividing by the control) from fruit
tissues (the fruit data set) and 21 profiles (after uniting replicates and
dividing by control) of root and leaf tissues (the root and leaf data set). We
used BLAST to match probes on the tomato Affymetrix chips to tomato
genome Solyc genes (version ITAG2.3) by screening for hits that showed
100% identity. Probes that were not mapped to Solyc genes were not
removed from the data matrices since such genes can be used as novel
candidates if they are ranked high in the output list of MORPH. Replicates
were averaged, and since the microarray profiles were collected from
different sources, we divided the treatments by control values. We did not
standardize each experiment separately (i.e., standardize the genes in
each submatrix of an experiment) since most experiments were too small.

Pathways

Arabidopsis AraCyc pathways were downloaded from the PMN database
(ftp://ftp.plantcyc.org/Pathways/) and MapMan pathways were down-
loaded fromhttp://mapman.gabipd.org/web/guest/mapmanstore;jsessionid=
97B79F4C0839F79FA214EF6AF31638B4.ajp13_mapman_gabipd_org. We
excluded pathways with <10 genes in the gene expression data sets, leaving
64 pathways. We manually added the carotenoid biosynthetic pathway (13
genes in the carotenoid biosynthetic pathway) and the carotenoid pathway
combined with the upstreamMEP pathway (23 genes in CarotenoidsMEP),
as they were the initial focus of the study. Supplemental Data Set 2 online
lists for each pathway the Arabidopsis gene members used.

Tomato pathways were downloaded from MapMan. We excluded
pathways with <10 genes in our gene expression data sets, resulting in
164 pathways (http://mapman.gabipd.org/web/guest/mapmanstore; see
Supplemental Data Set 2 online for a list of pathway genes).

Additional Information Sources

We used four types of additional information for pathway ranking, as
follows.

Gene Expression–Based Clustering Method

We used the SOM clustering algorithm (Kohonen, 1990) with 5 3 5 grid
layout settings and the CLICK algorithm (Sharan et al., 2003). For both
algorithms, we used the EXPANDER platform (Ulitsky et al., 2010). SOM
partitions all genes into modules, while CLICK can leave some un-
clustered genes. In addition, we defined one cluster (denoted as “no-
clustering”) containing all the genes.

Enzymes

Enzymatic gene annotations were downloaded from PlantCyc (ftp://ftp.
plantcyc.org/Pathways/). The genes were divided into two sets: 2933
genes annotated as enzymes and the remaining 9526 genes.
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MD Network

Arabidopsis metabolic interactions were downloaded from AraCyc
(ftp://ftp.plantcyc.org/Pathways/) and were used to construct the MD
network, as described (Kharchenko et al., 2004, 2005). The MD network
is an unweighted and undirected graph in which nodes denote meta-
bolic genes and edges connect genes whose corresponding enzymes
share a common metabolite among their reactants or products. As
described by Kharchenko et al. (2006), in the process of building the
network, we excluded the most common metabolites. We iteratively
removed the most common metabolite and recalculated the percentage
of genes that were annotated in the AraCyc reactions covered by the
network. We repeated this process until coverage dropped below 95%.
Overall, 20 metabolites were removed. The final network contained 1987
genes and 56,244 interactions.

PPI Network

Our PPI network was constructed from the PAIR database (Lin et al.,
2011; http://www.cls.zju.edu.cn/pair/) and the newly published Arabi-
dopsis Interactome Map (Arabidopsis Interactome Mapping Consor-
tium, 2011). A total of 145,404 predicted interactions and 5990
experimentally reported interactions were extracted from PAIR. A total
of 11,374 experimentally verified interactions were obtained from the
Arabidopsis Interactome Map. The united PPI network contained 149,229
interactions.

Clustering the PPI network

We clustered the PPI network using the MCL algorithm (Van Dongen,
2000). This method was selected because it was shown to outperform
other clustering algorithms on PPI data (Enright et al., 2002; Sharan et al.,
2007; Vlasblom and Wodak, 2009).

Module-Guided Ranking Algorithm

We developed a new algorithm for prioritizing novel candidate genes in
a given pathway (Figure 1). The algorithm receives as input a set S of
genes that are known to participate in the pathway, a set of gene ex-
pression profiles, a similarity function D, and a partitioning of all genes in
the gene expression data into k modules: M1, ., Mk. As a first step, we
filter out modules that do not contain any pathway genes. For a moduleMi

that contains a set of pathway genes s1,., sl and for every gene g within
Mi that is not a part of the pathway, we first calculate its average ex-
pression similarity with s1, ., sl:

simðg;MiÞ ¼ 1
l
∑l

j¼1D
�
g; sj

�

where D(g, sj) is the similarity between the expression patterns of g and sj.
This calculation provides a ranking of the candidates within the same
module. However, we seek a common ranking of the candidates from all
modules, each of which may differ considerably in size and homogeneity.
Hence, we standardize the similarity scores within each module. Formally,
let sim1,., simCi be the average similarity scores of all candidate genes in
module Ki. Let m be the average of sim1, ., simCi and let s be the SD of
these scores. For every candidate gene g in module Mi we calculate its
z-score:

z-scoreðgÞ ¼ simðg;MiÞ2m

s

The final ranking of candidate genes is as follows: All genes that were not
clustered with any pathway gene are placed at the bottom of the ranking.
All the other genes are sorted in descending order of their z-scores. For
the similarity function D, we used Pearson correlation as it performed
better than Spearman rank correlation on each gene expression data set
(see Supplemental Figure 2 online).

Statistical Validation Procedure

For each tested pathway S, we run a leave-one-out cross validation
(LOOCV) procedure as follows (Figure 2). One of the genes v in S is
removed from the list and the algorithm is applied using the reduced set S
\{v} of the pathway genes. The performance of the ranking procedure is
evaluated using the self-rank measure of Kharchenko et al. (2006). The
self-rank of v is defined as the place of v in the ranking produced by the
algorithm when v is left out. A perfect prediction would give v a self-rank
of 1 (top candidate), and a completely noninformative method would
result in a uniform distribution of ranks. The process is repeated for every
gene v in S. The results are summarized by the self-rank plot (Figure 2),
which shows for every rank threshold k (k = 1 to 1000), the percentage
of pathway genes with self rank # k. We calculate the area under the
self-rank curve and divide it by the area under the line y = 1. This ratio is
defined as the AUSR score, which ranges between 0 and 1.

Learning a Pathway-Specific Configuration

The choice of expression data and a specific clustering algorithm (pos-
sibly employing a network) affect the results of the analysis. For each data
set, six clustering options were considered: no clustering, CLICK, MCL
with the PPI, MATISSE* with the PPI or the MD networks, and enzyme/
nonenzyme partition. In Arabidopsis, we used four data sets (a total of 24
combinations), and in tomato, we used two data sets (a total of 12 com-
binations). We tested all possible combinations for each examined pathway.
The SOM and orthologs clustering solutions were excluded since their
prediction power was inferior. The selection procedure chooses the com-
bination producing the highest AUSR score. This scheme was statistically
evaluated by the same LOOCV procedure. Specifically, we repeat the
following process for every gene in the pathway: We remove (hide) the gene
from the pathway and for each possible learning configuration apply the
LOOCV procedure on the remaining pathway genes and select the con-
figuration that obtains themaximumAUSR score. That configuration is then
used to evaluate the rank of the hidden gene. The self-rank curve and the
overall AUSR score are obtained using the ranks of every single gene as the
hidden gene. Note that different test sets may use different configurations.

Utilizing Network Information: Matisse Modules

Matisse is amethod for detection of functional modules using an interaction
network and expression data (Ulitsky and Shamir, 2009). A Matisse module
is a gene set composed of coexpressed genes that are connected in the
network, possibly through inclusion of additional genes for which ex-
pression data are not available (back nodes). Thesemodules are used in the
MORPH algorithm.

Overcoming the Low Coverage of Networks in Plants

The coverage provided by the Matisse modules using the MD network was
very low (1204 genes on average). We therefore sought an improvement to
the coverage of the algorithm. The modified version, called Matisse*, starts
with the Matisse set of modules and repeatedly inserts the gene with the
highest correlation to a module into that module, possibly violating the
connectivity constraints, and updates gene-module correlations. The
processwas repeated until the correlation of expression dropped below 0.4.
This step improved the coverage to an average of 4446 genes for the MD
network. For the PPI network, the improvement was milder, from 4642 to
4923 genes on average. The candidate genes generated in the ranking
process comprised all available genes in the gene expression profiles.

In the tomato data, since the clusters provided by MCL covered only
2273 genes, we applied the expansion step of Matisse* using the initial
solution of the MCL algorithm. This step improved the coverage of the
clustering solution to 8933 genes in the fruit data set and 9069 genes in
the root and leaf data set.
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Transforming Arabidopsis Networks to Tomato Networks

We computationally generated tomato (SL) PPI and MDN networks using
homology gene mapping from Arabidopsis (AT). This mapping was based
on TBLASTX (Altschul et al., 1997) analysis of the Arabidopsis genome
(version TAIR10) against the latest version of the tomato genome (ITAG2.3;
SGN, http://solgenomics.net/organism/Solanum_lycopersicum/genome). For
each edge (u,v) in the AT network, we added a set of edges to the
corresponding SL network. If an AT gene u wasmapped to SL gene w and
AT gene v was mapped to SL gene y, then we added the edge (w,y) in the
SL network. Note that this process may produce several edges in the SL
network. Isolated nodes were removed from the final SL network. The
resulting PPI network contained 12,895 genes and 274,212 edges. The
resulting MD network contained 2689 genes and 140,409 edges.

ACT Data

The ACT data set was assembled by transforming a collection of 12,459
text files (one for each gene in our data sets) into a correlation matrix. Each
file contained Pearson coexpression correlation between one gene and all
the AT genes. The retrieval of the ACT text files was done by crawling the
ACT website (http://www.Arabidopsis.leeds.ac.uk/act/coexpanalyser.
php) with a Ruby script.

MORPH Tool

MORPH can be accessed online or downloaded and used independently
on a PC from http://biocourse.weizmann.ac.il/morph/.

Accession Numbers

See Supplemental Data Set 1 Online for a list of microarray accession
numbers.

Supplemental Data

The following materials are available in the online version of this article.

Supplemental Figure 1. AUSR Scores for Different Learning Config-
urations on the Tomato Data.

Supplemental Figure 2. A Comparison between the Quality of Results
Obtained Using Pearson and Spearman Correlation.

Supplemental Methods 1. Comparing the Pearson and Spearman
Correlation Measures, Markov Field Algorithm, and Ensemble Method.

Supplemental Data Set 1. List of Microarray Experiments Used in
This Study.

Supplemental Data Set 2. Biological Pathways from AraCyc and
MapMan.

Supplemental Data Set 3. Arabidopsis and Tomato AUSR Scores of
the Selection Algorithm and Selected Learning Configurations for All
Pathways Tested.

Supplemental Data Set 4. Top-Ranked Genes for the Arabidopsis
Homogalacturonan Biosynthesis Pathway.

Supplemental Data Set 5. Top-Ranked Genes for the Chlorophyll
Biosynthesis Pathway.

Supplemental Data Set 6. Top-Ranked Candidate Genes for the
Arabidopsis Carotenoid Biosynthetic Pathway.
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