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Abstract
The deep sequencing of an mRNA population, RNA-seq, is a very successful application of next-
generation sequencing technologies (NGSTs). RNA-seq takes advantage of two key NGST
features: (1) samples can be mixtures of different DNA pieces, and (2) sequencing provides both
qualitative and quantitative information about each DNA piece analyzed. We recently used RNA-
seq to study the transcriptome of Aspergillus fumigatus, a deadly human fungal pathogen.
Analysis of the RNA-seq data indicates that there are likely tens of unannotated and hundreds of
novel genes in the A. fumigates transcriptome, mostly encoding for small proteins. Inspection of
transcriptome-wide variation between two isolates reveals thousands of single nucleotide
polymorphisms. Finally, comparison of the transcriptome profiles of one isolate in two different
growth conditions identified thousands of differentially-expressed genes. These results
demonstrate the utility and potential of RNA-seq for functional genomics studies in A. fumigatus
and other fungal human pathogens.
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Introduction
Recent technological advances in genome science have enabled researchers to routinely
generate unprecedented amounts of sequence data from almost any species, opening the
floodgates for the study of the genome content and function in non-model organisms.1,2 The
main catalyst for these changes has been the development of several different so called next-
generation sequencing technologies (NGSTs).3 Astonishingly, the amount of sequence data
that a single NGST machine can currently produce in a few days is larger than the total
amount of sequence data ever collected and deposited in sequence databases by individual
users through traditional methods.4 Importantly, NGST technologies yield not only
qualitative information about the sequence of every DNA fragment analyzed, but also
quantitative information about the relative abundance of each DNA fragment in the library
sequenced.1

The abundance of NGST-produced data, their qualitative and quantitative nature, and their
applicability to any organism for which fresh DNA or RNA is available, has enabled
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researchers to tailor NGSTs for a variety of different questions beyond the sequencing of
genomes.1,5 One of the most powerful such applications is RNA-seq, the employment of
NGSTs for transcriptome profiling.6,7 A typical RNA-seq experiment begins with the
isolation of mRNA, its conversion into cDNA, followed by fragmentation and addition of
adaptors to each DNA fragment’s ends (Fig. 1). Sequencing the library of fragments in a
high-throughput fashion returns as many as billions of sequence reads that can vary in length
and in their characteristics (e.g., single-end or paired-end), depending on the NGST
technology being employed and the experiment being conducted3. Once sequence reads
have been obtained, they can be used for a wide variety of functional analyses, including but
not limited to the study of alternative splicing, gene expression, allele-specific expression,
identification of transcription start sites, identification of gene fusion,6,8,9 as well as for a
variety of evolutionary analyses.2,10 For example, in what is perhaps its most frequent
application, when RNA-seq is performed on an organism whose genome and annotation is
already characterized, one can directly map the sequence reads to the reference genome or
transcriptome, thus simultaneously calculating its abundance as well as its sequence (Fig. 1).

The filamentous fungal genus Aspergillus contains approximately 250 species and spans
over 200 million years of evolutionary history.11 Several species in the genus can cause a
range of frequently deadly diseases, which are collectively known as aspergillosis.12,13

Aspergillosis usually affects individuals that have compromised immune defences and is
established following inhalation of Aspergillus spores. The great majority of Aspergillus-
induced infections is caused by A. fumigatus,12,14,15 a very abundant and widely distributed
species. A. fumigatus is one of the most common species found in decaying vegetation, and
a prolific spore producer.16–19 When A. fumigatus establishes an infection in the human
lung, it usually forms a dense colony of filaments embedded in a polymeric extracellular
matrix.20,21 To identify candidate genes involved in this colony or biofilm-like growth
(COG), we previously used RNA-seq to compare the transcriptomes of COG and liquid
planktonic growth (PLG) conditions.22 Here, we use this data to highlight the multitude of
utilities of RNA-seq technology for functional genomics studies of A. fumigatus, by
focusing specifically on three applications: characterizing the structure of the A. fumigatus
transcriptome; measuring transcriptome-wide levels of variation between isolates; and,
finally, comparing the transcriptome-wide expression profile of A. fumigatus during
different non-nutritional growth conditions.

RNA-seq for annotation: characterizing transcriptome structure
Our RNA-seq data provided very good coverage of the A. fumigatus Af293 reference
transcriptome. Specifically, 27,236,154 sequence reads, each 42 bp long, generated by
RNA-seq from growth of the ATCC46645 isolate in the COG and PLG conditions, were
mapped against the Af293 reference transcriptome. Sequence reads mapped to 90.5%
(8,952/9,887) of reference transcripts, recovering 77% of the sequence of the reference
transcriptome (11.1/14.4 Mb). Approximately 73% of the sequence of the average transcript
was recovered but for over 60% of the transcripts more than 90% of their sequence was
recovered.

To identify the extent of unannotated and novel genes in the A. fumigatus genome, we
further mapped the RNA-seq generated sequence reads to the A. fumigatus Af293 reference
genome, using the reference gene models23 as guides. Briefly, gene models are hypotheses
about the structure of transcripts produced by the set of genes in a genome. Although the
majority of gene models constructed through the annotation of the reference Af293 isolate is
of high quality and supported by a variety of evidence (e.g., expressed sequence tags, high
similarity scores to other genes, etc.), annotation is a very challenging process and examples
of misannotated genes or genes omitted from an annotation are present in any eukaryotic
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genome.24 After the mapping step, we assembled the mapped reads into gene models using
two different state-of-the-art programs, Cufflinks25 and Scripture.26 Interestingly, whereas
the Cufflinks program is designed to maximize precision, the Scripture programis designed
to maximize sensitivity, resulting in significantly different annotations from the same set of
data, especially for lower expressed genes.9 We then compared the annotation produced by
the two programs to the reference annotation and on the basis of the results classified, the
gene models constructed by the two programs as annotated, unannotated or novel. Gene
models whose sequence overlapped with that from any reference gene and whose location
was on the same strand as their reference counterpart were considered to be “annotated.” For
remaining gene models, we used their protein sequence products in BLAST similarity
searches against the NCBI nr database for the presence of homologs in the genome of any
organism. Gene models with significant hit(s) in the nr database were considered
“unannotated,” whereas gene models without any hits in the same database were considered
“novel.”

Examination of the annotation produced from the Cufflinks and Scripture programs using
the RNA-seq data identified hundreds of unannotated and thousands of novel gene models
(Table 1). In line with previous analyses,9 the numbers of unannotated and novel gene
models differed greatly between the two programs. Interestingly, the great majority of novel
genes predicted by the two programs encoded for small proteins (Fig. 2), with 91%
(1,519/1,673) and 83% (382/460) of the protein products of novel gene models constructed
by Cufflinks and Scripture, respectively, being equal or shorter than 120 amino acids (aa). In
contrast, the percentages for unannotated genes were 45% (Cufflinks) and 43% (Scripture).
Similarly, the median lengths of novel proteins were 68 aa (Cufflinks) and 72 aa (Scripture),
whereas the median lengths of unannotated proteins were 132 aa (Cufflinks) and 136 aa
(Scripture). Although these analyses are preliminary, the RNA-seq data suggest that,
conservatively, there are likely tens of previously unannotated and hundreds of novel gene
models in A. fumigatus, the great majority of which encode for small proteins. Determining
the function of these small proteins as well as their role in pathogenicity, if any, represents a
very interesting research challenge and opportunity for future functional genomics research
in A. fumigatus.

RNA-seq for population genetics: characterizing transcriptome variation
between isolates

Although many fungal species, including several human pathogens, show
populationstructure,27–29 it was thought that A. fumigatus lacks populationstructure.30–32

However, two recent multilocus studies, one using isolates from around the world31 and the
other using isolates from the Netherlands,33 identified genetically distinct lineages within A.
fumigatus, suggesting that the absence of population structure in older studies could be due
to the use of fewer and less informative markers. To evaluate the potential of RNA-seq to
provide novel markers for population genetic and, more generally, evolutionary analysis we
compared the transcriptomes of ATCC46645 (reconstructed through mapping to the Af293
reference transcriptome) and Af293 isolates. Examination of sequence alignments between
the two isolates from 8,952 genes identified 12,872 single nucleotide polymorphisms (SNPs)
in 4,923 genes, representing nearly 50% (4,923/9,887) of A. fumigatus reference genes. The
average number of SNPs in variable genes was 2.6, with nearly two-thirds of the genes
containing 1 or 2 SNPs, 12 containing more than 10 SNPs, and two containing 40 SNPs. Per
kilobase of transcriptome sequence, the average SNP density was 1.2 (12,872 SNPs /
11,109,536 recovered nucleotides; Fig. 3A), with 12 genes showing SNP densities greater
than 10 (Table 2 and Fig. 3B). Finally, 51% of SNPs were nonsynonymous substitutions,
with the remaining 49% being synonymous ones.

Rokas et al. Page 3

Ann N Y Acad Sci. Author manuscript; available in PMC 2013 December 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



The identification of thousands of SNPs between the two isolates, suggests that in addition
to whole-genome sequencing, RNA-seq is a powerful tool for the study of genetic
differentiation in A. fumigatus. Importantly, because the A. fumigatus transcriptome is
approximately 50% of the genome and because transcripts are grossly unevenly abundant
(varying over several orders of magnitude22), even shallow NGST sequencing should
provide in depth sampling of a few hundred loci, and of hundreds if not thousands of SNPs,
simply by sequencing transcripts in proportion to their representation in the library.10 Thus,
RNA-seq is a powerful alternative to the standard multilocus sequence typing currently used
for the study of isolate identification and population structure in A. fumigatus, and in
filamentous fungi in general.34

RNA-seq for functional genomics: characterizing global transcriptome
changes between different growth conditions

The most common application of RNA-seq is for the identification of genes that show
differential regulation under certain conditions. Examination of gene expression using our
RNA-seq data obtained from A. fumigatus growth in the COG and PLG conditions revealed
that 92% ofreference transcripts (9,099/9,887) were expressed in both conditions and 4.3%
(426/9,887) were uniquely expressed in either condition. By considering differentially
expressed genes as only those that exhibited a 2-fold biological difference in relative gene
expression between conditions and a statistically significant P value below 5.5e–06, we
identified 2,861 genes that were either significantly upregulated in COG relative to PLG or
uniquely expressed in COG, and 1,339 that were either significantly downregulated in the
same comparisonor uniquely expressed in PLG (Fig. 4A). The remaining genes either
showed uniform expression in the two conditions (5,370) or were not expressed in either
condition (362; Fig. 4B). Remarkably, the range of expression values in both samples
ranged seven orders of magnitude.

Upregulated and downregulated genes were non-randomly distributed across the genome
and showed strong association with specific functional categories (Fig. 5).22 Some of the
strongest associations were for cell wall genes (out of 409 genes, 169 were significantly
upregulated and only 41 were significantly downregulated), for pump and transporter genes
(out of 319 genes, 146 were upregulated and 16 were downregulated), and for allergens (out
of 81 genes, 41 were upregulated and 13 were downregulated). Thus, the application of
RNA-seq to study a single difference in non-nutritional environmental conditions identified
thousands of differentially expressed genes. Considering that the breadth and sensitivity of
other technologies for measuring macromolecule abundance differences, such as
microarrays and 2-D gel electrophoresis, are much narrower,35 RNA-seq appears to be the
most powerful tool for genome-wide functional comparisons of fungal growth to date.

Finally, it important to emphasize that the gene expression values measured by RNA-seq do
not show significant variation when replicated. Biological and technical replicates are not
yet standard in the RNA-seq literature, for the simple reason that the RNA-seq technique is
much more accurate than microarrays,36 although the inclusion of technical and biological
replicates offers additional power.37 We performed both biological and technical replicates
for a subset of our RNA-seq experiments to verify that our RNA-seq experiments worked as
expected.22 We observed a very high degree of replicability of our results at both the
biological and the technical level in the subset tested. For example, the correlation values
between three biological PLG replicates performed on three different A. fumigatus strains as
well as on one technical BFG replicate are extremely high (r > 0.91),22 on par with similar
studies in the literature.38 These data suggest that not only are our results unaffected by
biological or technical replication issues, but also that they hold across different A.
fumigatus strains.
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Designing and executing a RNA-seq experiment
RNA-seq is a very versatile tool that can be used to address a wide variety of basic and
applied science questions, from increasing the genomic depth of the tree of life10 to
characterizing the genetic makeup of cancer in the human body.39 Consequently, the design
of a RNA-seq experiment will vary depending on the question asked and the nature of the
investigation, which will in turn determine the acquisition of RNA-seq data, its handling and
analysis, as well as the pursuit of follow-up experiments.

In contrast to many other types of bioinformatics analyses where the tools (e.g., the BLAST
algorithm40 is the near universal choice for examining the identity of a sequence) and
databases (e.g., the PFAM database41 is one of a few standard protein domain databases) are
well established, the toolkit for the analysis of RNA-seq data is far less well defined, largely
because both the technology and its bioinformatics tools are not only very new but also
rapidly changing. Although this pace of change in technology and software makes the
design of benchmark studies challenging, a very useful resource for RNA-seq and NGSTs in
general is the http://seqanswers.com/ website that aims to provide “an information resource
and user-driven community focused on all aspects of next-generation genomics,” and which
routinely hosts discussions on a variety of topics such as analysis practices ands oftware
choice or performance. Although RNA-seq, and NGSTs in general, are touted as “cheap”
technologies, it should be emphasized that the most important challenge to applying this
technology is the cost associated with the bioinformatics analysis of the data.

Because of the large-scale nature of RNA-seq experiments, considerable attention is also
required to choosing the appropriate experimental design. Fang and Cui42 recently described
a number of experimental design principles that require careful consideration, some of
which were discussed in the paragraphs above, including randomization of samples,
technical and biological replication of the experiment, the depth and type of sequencing that
needs to be performed, as well as whether validation of the results is required by an
independent approach, such as qRT-PCR.

Conclusions
Even though NGSTs and RNA-seq are less than a decade old, it is abundantly clear that they
have dramatically altered the landscape of functional genomics studies in non-model
organisms. Analysis of the data produced by a single experiment in A. fumigatus has
uncovered tens of putative unannotated and hundreds of novel small genes, thousands of
SNPs, and hundreds of candidates for downstream functional experiments to identify the
molecular basis of colony growth and its potential role in the establishment of some forms of
aspergillosis. In the near future, we anticipate that RNA-seq applications will not only lead
to far greater understanding of the parts, structure, and function of the A. fumigatus genome,
but will also identify the key differences between in vitro and in vivo models of the disease,
as well as define the molecular interactions between the human host and the fungal pathogen
during infection.

Acknowledgments
This work was conducted in part using the resources of the Advanced Computing Center for Research and
Education at Vanderbilt University. J.G.G. is funded by the graduate program in biological sciences at Vanderbilt
University and the National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH,
NIAID: F31AI091343-01). The content is solely the responsibility of the authors and does not necessarily represent
the official views of the NIAID or the NIH. Work in J.-P.L.’s Aspergillus lab is partly funded by the ESF Grant
Fuminomics and the ALLFUN FP7 project. Research in A.R.’s lab is supported by the Searle Scholars Program and
the National Science Foundation (DEB-0844968).

Rokas et al. Page 5

Ann N Y Acad Sci. Author manuscript; available in PMC 2013 December 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

http://seqanswers.com/


References
1. Rokas A, Abbot P. Harnessing genomics for evolutionary insights. Trends Ecol. Evol. 2009;

24:192–200. [PubMed: 19201503]

2. Gibbons JG, et al. Benchmarking next-generation transcriptome sequencing for functional and
evolutionary genomics. Mol. Biol. Evol. 2009; 26:2731–2744. [PubMed: 19706727]

3. Glenn TC. Field guide to next-generation DNA sequencers. Mol. Ecol. Resour. 2011; 11:759–769.
[PubMed: 21592312]

4. Gilad Y, Pritchard JK, Thornton K. Characterizing natural variation using next-generation
sequencing technologies. Trends Genet. 2009; 25:463–471. [PubMed: 19801172]

5. Kahvejian A, Quackenbush J, Thompson JF. What would you do if you could sequence everything?
Nat. Biotechnol. 2008; 26:1125–1133. [PubMed: 18846086]

6. Wang Z, Gerstein M, Snyder M. RNA-seq: a revolutionary tool for transcriptomics. Nat. Rev.
Genet. 2009; 10:57–63. [PubMed: 19015660]

7. Wold B, Myers RM. Sequence census methods for functional genomics. Nat. Meth. 2008; 5:19–21.

8. Ozsolak F, Milos PM. RNA sequencing: advances, challenges and opportunities. Nat. Rev. Genet.
2011; 12:87–98. [PubMed: 21191423]

9. Garber M, Grabherr MG, Guttman M, Trapnell C. Computational methods for transcriptome
annotation and quantification using RNA-seq. Nat. Meth. 2011; 8:469–477.

10. Hittinger CT, Johnston M, Tossberg JT, Rokas A. Leveraging skewed transcript abundance by
RNA-seq to increase the genomic depth of the tree of life. Proc. Natl. Acad. Sci. USA. 2010;
107:1476–1481. [PubMed: 20080632]

11. Geiser DM, et al. The current status of species recognition and identification in Aspergillus. Stud.
Mycol. 2007; 59:1–10. [PubMed: 18490947]

12. Denning DW. Invasive aspergillosis. Clin. Infect. Dis. 1998; 26:781–803. [PubMed: 9564455]

13. Latge JP. Aspergillus fumigatus and aspergillosis. Clin. Microbiol. Rev. 1999; 12:310–350.
[PubMed: 10194462]

14. Morgan J, et al. Incidence of invasive aspergillosis following hematopoietic stem cell and solid
organ transplantation: interim results of a prospective multicenter surveillance program. Med.
Mycol. 2005; 43(Suppl 1):S49–S58. [PubMed: 16110792]

15. Schmitt HJ, Blevins A, Sobeck K, Armstrong D. Aspergillus species from hospital air and from
patients. Mycoses. 1990; 33:539–541. [PubMed: 2129435]

16. Klich MA. Biogeography of Aspergillus species in soil and litter. Mycologia. 2002; 94:21–27.
[PubMed: 21156474]

17. Shelton BG, Kirkland KH, Flanders WD, Morris GK. Profiles of airborne fungi in buildings and
outdoor environments in the United States. Appl. Environ. Microbiol. 2002; 68:1743–1753.
[PubMed: 11916692]

18. Klich MA. Health effects of Aspergillus in food and air. Toxicol. Ind. Health. 2009; 25:657–667.
[PubMed: 19793771]

19. Raper, KB.; Fennell, DI. The Genus Aspergillus. Baltimore: Williams & Wilkins; 1965.

20. Loussert C, et al. In vivo biofilm composition of Aspergillus fumigatus. Cell. Microbiol. 2010;
12:405–410. [PubMed: 19889082]

21. Beauvais A, et al. An extracellular matrix glues together the aerial-grown hyphae of Aspergillus
fumigatus. Cell. Microbiol. 2007; 9:1588–1600. [PubMed: 17371405]

22. Gibbons JG, et al. Global transcriptome changes underlying colony growth in the opportunistic
human pathogen Aspergillus fumigatus. Eukaryot. Cell. 2012; 11:68–78. [PubMed: 21724936]

23. Nierman WC, et al. Genomic sequence of the pathogenic and allergenic filamentous fungus
Aspergillus fumigatus. Nature. 2005; 438:1151–1156. [PubMed: 16372009]

24. Yandell M, Ence D. A beginner's guide to eukaryotic genome annotation. Nat. Rev. Genet. 2012;
13:329–342. [PubMed: 22510764]

25. Trapnell C, et al. Transcript assembly and quantification by RNA-seq reveals unannotated
transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 2010; 28:511–515.
[PubMed: 20436464]

Rokas et al. Page 6

Ann N Y Acad Sci. Author manuscript; available in PMC 2013 December 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



26. Guttman M, et al. Ab initio reconstruction of cell type-specific transcriptomes in mouse reveals the
conserved multi-exonic structure of lincRNAs. Nat. Biotechnol. 2010; 28:503–510. [PubMed:
20436462]

27. Hittinger CT, et al. Remarkably ancient balanced polymorphisms in a multi-locus gene network.
Nature. 2010; 464:54–58. [PubMed: 20164837]

28. Milgroom MG. Recombination and the multilocus structure of fungal populations. Annu. Rev.
Phytopathol. 1996; 34:457–477. [PubMed: 15012552]

29. Taylor JW, Turner E, Townsend JP, Dettman JR, Jacobson D. Eukaryotic microbes, species
recognition and the geographic limits of species: examples from the kingdom Fungi. Philos. Trans.
R. Soc. Lond. B Biol. Sci. 2006; 361:1947–1963. [PubMed: 17062413]

30. Debeaupuis JP, Sarfati J, Chazalet V, Latge JP. Genetic diversity among clinical and
environmental isolates of Aspergillus fumigatus. Infect. Immun. 1997; 65:3080–3085. [PubMed:
9234757]

31. Pringle A, et al. Cryptic speciation in the cosmopolitan and clonal human pathogenic fungus
Aspergillus fumigatus. Evolution. 2005; 59:1886–1899. [PubMed: 16261727]

32. Rydholm C, Szakacs G, Lutzoni F. Low genetic variation and no detectable population structure in
Aspergillus fumigatus compared to closely related Neosartorya species. Eukaryot. Cell. 2006;
5:650–657. [PubMed: 16607012]

33. Klaassen CH, Gibbons JG, Fedorova N, Meis JF, Rokas A. Evidence for genetic differentiation
and variable recombination rates among Dutch populations of the opportunistic human pathogen
Aspergillus fumigatus. Mol. Ecol. 2012; 21:57–70. [PubMed: 22106836]

34. Klaassen CH. MLST versus microsatellites for typing Aspergillus fumigatus isolates. Med. Mycol.
2009; 47(Suppl 1):S27–S33. [PubMed: 19255901]

35. Bruns S, et al. Functional genomic profiling of Aspergillus fumigatus biofilm reveals enhanced
production of the mycotoxin gliotoxin. Proteomics. 2010; 10:3097–3107. [PubMed: 20645385]

36. Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y. RNA-seq: an assessment of technical
reproducibility and comparison with gene expression arrays. Genome Res. 2008; 18:1509–1517.
[PubMed: 18550803]

37. Auer PL, Doerge RW. Statistical design and analysis of RNA sequencing data. Genetics. 2010;
185:405–416. [PubMed: 20439781]

38. Bruno VM, et al. Comprehensive annotation of the transcriptome of the human fungal pathogen
Candida albicans using RNA-seq. Genome Res. 2010; 20:1451–1458. [PubMed: 20810668]

39. Maher CA, et al. Transcriptome sequencing to detect gene fusions in cancer. Nature. 2009;
458:97–101. [PubMed: 19136943]

40. Altschul SF, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search
programs. Nucleic Acids Res. 1997; 25:3389–3402. [PubMed: 9254694]

41. Finn RD, et al. Pfam: clans, web tools and services. Nucleic Acids Res. 2006; 34:D247–D251.
[PubMed: 16381856]

42. Fang Z, Cui X. Design and validation issues in RNA-seq experiments. Brief. Bioinform. 2011;
12:280–287. [PubMed: 21498551]

43. Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions with RNA-seq.
Bioinformatics. 2009; 25:1105–1111. [PubMed: 19289445]

44. Li H, Ruan J, Durbin R. Mapping short DNA sequencing reads and calling variants using mapping
quality scores. Genome Res. 2008; 18:1851–1858. [PubMed: 18714091]

Rokas et al. Page 7

Ann N Y Acad Sci. Author manuscript; available in PMC 2013 December 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



Figure 1.
The workflow of a typical RNA-seq experiment. Briefly, following isolation, the mRNA
pool is converted to a cDNA pool and is then fragmented. Next, NGST adaptors are added
to each cDNA fragment, the resulting library of fragments is sequenced, and the sequence of
each fragment is read using NGST. Once sequence reads have been obtained, they can be
used for a variety of analyses. For example, if the mRNA pool is from an organism whose
genome and annotation is known, the sequence reads can be aligned or mapped to the
reference genome or transcriptome and the sequence of the entire transcript as well as its
relative expression can be calculated. Thus, RNA-seq technology is simultaneously
qualitative (i.e., it can determine the sequences of different sequence fragments in a pool)
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and quantitative (i.e., it can determine the relative abundance of different sequence
fragments in a pool).
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Figure 2.
The majority of putative novel genes identified by RNA-seq in A. fumigatus encodes for
small proteins. ATCC46645 sequence reads were mapped against the A. fumigatus af293
reference genome with the TopHat software,43 using the reference gene models23 as guides
and not allowing for introns > 1,000 bp. Mapped reads were assembled into transcripts using
the Cufflinks25 and Scripture26 programs, and their gene predictions were compared to the
reference gene models. ORFs overlapping with exons of any reference gene model were
classified as “annotated” genes. For the remaining ORFs, their protein products were
searched against the NCBI nr database; these loci were classified either as “unannotated,” if
the encoded protein had at least one homolog in the NCBInr database, or as “novel” if the
encoded protein had no homologs in the NCBInr database. The x-axis corresponds to groups
of protein lengths encoded by putative novel or unannotated genes identified by the
Cufflinks and Scripture programs (indicated by bars of different colors). The y-axis
corresponds to the number of genes belonging to each group.
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Figure 3.
Transcriptome-wide variation between A. fumigatus strains ATCC46645 and Af293. (A)
Histogram plot of transcript SNP density. The x-axis corresponds to groups of different
transcript SNP densities (number of SNPs/Kb). The y-axis corresponds to the number of
transcripts in each SNP density group. (B) Partial nucleotide sequence alignment between
Af293 and ATCC46645 strains for a putative protein kinase (Afu3g03740), one of the genes
with the highest SNP density in our comparison (see also Table 2). High quality SNPs were
identified by filtering for variable sites with coverage values ≥ 5 and an average quality
scores ≥ 20 using the cns2snp script in the Maq software.44 Pairwise nucleotide diversity
was calculated as π = n/N; where n = the number of differences between sequences and N =
the total number of sites examined. SNP density per Kb was calculated as π * 1,000.
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Figure 4.
RNA-seq identifies thousands of differentially expressed genes from A. fumigatus
ATCC46645 grown in the colony (COG) and plankton (PLG) growth conditions. (A)
Volcano plot of the differentially regulated genes between COG and PLG conditions. For
each gene, the rRPKM value (RPKM(COG) / RPKM(PLG)) was plotted against its
respective Fisher’s exact test P value. P values smaller than 1e−290 were reported as 1e−290.
The dotted line running parallel to the x-axis indicates the statistical cutoff (P < 5.5e−6),
whereas the dotted line running parallel to the y-axis indicates the biological cutoff (2-fold
difference in RPKM between COG and PLG). The red-colored and blue-colored dots
correspond to upregulated and downregulated genes between COG and PLG, respectively.
(B) Pie chart showing the partitioning of the 9,887 A. fumigatus genes with respect to their
expression profile in the two growth conditions.
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Figure 5.
Examples of differentially regulated genes from specific functional categories that constitute
candidates for the observed pathobiological and morphological differences between the two
conditions. (A) The cell wall galactomannoprotein MP1(Afu4g03240). (B) The allergen
AspF4 (Afu2g03830). (C) The ABC multidrug transporter Mdr1 (Afu5g06070). (D) The C6
transcription factor of the fumitremorgin secondary metabolism gene cluster (Afu8g00420).
In each graph, the x-axis corresponds to the two growth conditions (COG in black and PLG
in gray) and the y-axis to the RPKM expression value of corresponding gene in each of the
two conditions. The rRPKM (RPKM (COG) /RPKM (PLG)) value for each comparison is
reported in parentheses next to each gene’s name.
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Table 1

Summary of unannotated and novel genes reconstructed using RNA-seq data

Software Annotated genes

Unannotated genes

Novel genesProtein-
coding RNA-coding

Cufflinks 7,764 (8663) 390 (411) 24 (25) 1,673 (1,703)

Scripture 4,285 (6852) 156 (214) 23 (54) 462 (653)

Number in bracket indicates the total number of transcripts in each category. Some loci are included in more than one category.
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Table 2

Transcripts with SNP densities greater than 10 SNPs per Kilobase

Gene Name Function SNP Density (total SNPs)

Afu2g01890 CAT5 protein 10.4 (8)

Afu2g17900 conserved hypothetical protein 14.3 (7)

Afu3g01500 hypothetical protein 10.3 (7)

Afu3g03740 putative protein kinase 27.0 (18)

Afu3g07310 conserved hypothetical protein 14.5 (12)

Afu4g00580 hypothetical protein 10.1 (10)

Afu5g00890 hypothetical protein 10.2 (2)

Afu5g01650 putative bZIP transcription factor (JlbA) 10.4 (7)

Afu6g03420 clock-controlled gene-9 protein 11.4 (7)

Afu7g08410 putative transposase 19.3 (18)

Afu7g08470 peroxisomal copper amine oxidase 11.0 (18)

Afu8g06430 hypothetical protein 12.2 (3)
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