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Given the manifold ways that depression impairs Darwinian fitness, the persistence in the
human genome of risk alleles for the disorder remains a much debated mystery. Evolutionary
theories that view depressive symptoms as adaptive fail to provide parsimonious explanations
for why even mild depressive symptoms impair fitness-relevant social functioning, whereas
theories that suggest that depression is maladaptive fail to account for the high prevalence of
depression risk alleles in human populations. These limitations warrant novel explanations for
the origin and persistence of depression risk alleles. Accordingly, studies on risk alleles for
depression were identified using PubMed and Ovid MEDLINE to examine data supporting the
hypothesis that risk alleles for depression originated and have been retained in the human
genome because these alleles promote pathogen host defense, which includes an integrated
suite of immunological and behavioral responses to infection. Depression risk alleles
identified by both candidate gene and genome-wide association study (GWAS) methodologies
were found to be regularly associated with immune responses to infection that were likely to
enhance survival in the ancestral environment. Moreover, data support the role of specific
depressive symptoms in pathogen host defense including hyperthermia, reduced bodily iron
stores, conservation/withdrawal behavior, hypervigilance and anorexia. By shifting the
adaptive context of depression risk alleles from relations with conspecifics to relations with
the microbial world, the Pathogen Host Defense (PATHOS-D) hypothesis provides a novel
explanation for how depression can be nonadaptive in the social realm, whereas its risk alleles
are nonetheless represented at prevalence rates that bespeak an adaptive function.
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Introduction

Major depression is so detrimental to survival and
reproduction that it is hard to understand why allelic
variants that promote the disorder have not been
culled from the human genome, why in fact—far from
being culled—genes that promote depression are so
common and numerous and appear to have actually
increased in prevalence during recent human evolu-
tion.1 To address this issue, we have developed a
novel theoretical framework positing that risk alleles
for depression originated and have been largely
retained in the human genome because these alleles
encode for an integrated suite of immunological
and behavioral responses that promote host defense
against pathogens. This enhanced pathogen defense
is accomplished primarily via heightened innate

immune system activation, which results in reduced
death from infectious causes,2–5 especially in infancy
when selection pressure from infection is strongest,6

and the adaptive immune system is not yet fully
operational.6–9 A vast literature has associated depres-
sive symptoms and/or major depressive disorder
(MDD) with increased innate immune inflammatory
responses,10 with meta-analyses reporting the most
consistent findings for increased plasma concentra-
tions of tumor necrosis factor-a (TNF-a), interleukin-6
(IL-6), C-reactive protein and haptoglobin.11–13 Recent
longitudinal studies extend these cross-sectional
observations by reporting that increased inflamma-
tory markers in nondepressed individuals predict the
later development of depression.14–16 Because infec-
tion has been the primary cause of early mortality
and hence reproductive failure across human evolu-
tion,9,17–21 it would be expected that if depressive
symptoms were an integral part of a heightened
immunological response, allelic variants that support
this response would have undergone strong positive
selection pressure and thus would be both numerous
and prevalent, as they appear to be. However, because
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the survival benefits of inflammatory processes are
tempered by their costs in terms of increased
mortality from septic shock,22,23 pathogen manipula-
tion,21,24 long-term tissue damage and chronic
disease,10 these alleles would not be predicted to go
to fixation (that is, 100% prevalence) but would be
expected to manifest an intermediate prevalence
reflecting the benefit of enhanced host defense in
any given environment minus attendant costs. Again,
this is consistent with current findings in the genetics
of depression.

It should be noted that this Pathogen Host Defense
(PAThos HOSt Defense=PATHOS-D) hypothesis
is not the first theory to associate depression
with protection from infection. Indeed, similar to
PATHOS-D, at least one previous hypothesis has
envisioned depression as a behavioral response that
helps the immune system combat existing infections
while avoiding additional pathogen exposure.25 How-
ever, prior theoretical articulations have envisioned
depressive symptoms as adaptive primarily because
they compensate for various types of immune system
vulnerabilities.25 PATHOS-D suggests something qua-
litatively different and more far-reaching; specifically
that depressive symptoms were integral components
of immune-mediated host defense against pathogens
in the ancestral environment. In this model, depres-
sive symptoms are inextricably intertwined with—
and generated by—physiological responses to infec-
tion that—on average—have been selected as a result
of reducing infectious mortality across mammalian
evolution (Figure 1). Thus, it is proposed that the
alleles for depression, rather than having coevolved
with immunological alleles that support pathogen
defense, are in fact one in the same as those alleles,
and therefore genes associated with depression would
be predicted to be the same genes that are associated
with successful host immune responses.

To fully elaborate this hypothesis, this article
is structured to evaluate the foundations of the
PATHOS-D theory (Table 1) by first examining the
immune relevance of previously identified depres-
sion risk alleles, followed by an exploration of
relationships among environmental risk factors for
depression, inflammation and pathogen host defense.
The role of depression-associated immune changes in
promoting survival during infection is reviewed next,
followed by an examination of the potential utility of
depressive symptoms in host defense. We conclude
with a consideration of the potential limitations
of—and challenges to— the PATHOS-D theory.

Risk alleles for MDD and host defense

The failed promise of genome-wide association
studies (GWASs) to unambiguously identify genetic
risk variants for MDD has led increasingly to the
suggestion that depression and other major psychia-
tric conditions arise not from common allelic variants
with small effect sizes, but rather from an array of
highly nonadaptive genetic variants too rare to be

identified by GWASs that nonetheless have large
effect sizes.26,27 Confirmation of this would effectively
preclude the possibility that depressive risk alleles
conferred any selective advantage during human
evolution.28 However, an alternative possibility is
that differences in common allelic variants between
depressed and nondepressed individuals might be
more apparent/consistent if the unit of analysis was
extended from single genes to groupings of genes that
form functional units. In the context of the PATHOS-D
theory, this suggests that small allelic differences
between depressed and nondepressed groups should
not be randomly distributed across the genome,
but rather should be largely localized to genes with
host defense functions, and that the effect sizes for
differences in individual host defense alleles should
be additive (that is, positive epistasis), so that large
effect size differences should emerge when function-
ally related host defense-enhancing alleles are eval-
uated as a unit. Support for this possibility comes
from a recent network analysis of candidate genes
for MDD. Although this analysis only interpreted
findings in terms of potential central nervous system
(CNS) effects,29 from a PATHOS-D perspective, it is
striking that pathways identified as central to the
best-supported MDD gene networks all have well-
documented inflammatory and/or anti-inflammatory
effects.
To be fully consistent with the PATHOS-D theory,

allelic risk variants should meet three criteria. They
should (1) be located in genes with known immune
effects; (2) increase signaling in inflammatory/host
defense pathways; and (3) increase survival in the
context of infection. Although a number of candidate
gene studies have identified depression risk alleles
that are associated with inflammatory processes,30–34

to evaluate in the most conservative manner whether
putative risk alleles meet the three criteria above, we
have limited our examination to candidate genes
confirmed either by GWASs or meta-analysis and to
alleles identified in meta-analyses of GWAS data.

Candidate genes confirmed by GWASs
Currently, only two candidate single-nucleotide poly-
morphisms (SNPs; rs12520799 in DCNP1 (dendritic
cell nuclear protein-1) and rs16139 in NPY (neuro-
peptide Y)) and one candidate gene for MDD (TNF-a),
smallest P-value for rs76917) have been confirmed by
GWASs.35 It is striking that each of these genes plays
an important role in processes central to host defense,
including proinflammatory cytokine signaling (TNF),
antigen presentation (DCNP1) and T helper type 1 cell
differentiation and function (NPY). Of these SNPs,
functionality has only been established for rs16139 in
NPY. Although NPY has numerous and contrasting
effects on innate and adaptive immune functioning,
its primary actions appear to be anti-inflammatory
in both the brain and periphery.36–38 Given this,
the PATHOS-D theory predicts that MDD should be
characterized by reduced NPY activity and that the
depression risk T allele at rs16139 should be
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associated with reduced NPY production. Significant
data support both predictions.39–43

Unlike NPY, the functionality of rs76917 in TNF is
currently unknown. A clear prediction of PATHOS-D
theory is that this SNP should be associated with
increased TNF-a production, given that TNF-a is
increased in MDD and appears to be especially

relevant to enhanced survival from infection in the
types of pathogen-dense environments that were
normative during human evolution. A separate SNP
(�308G/A) in the promoter region for TNF is worthy
of comment in this regard. Although not found to be
significant by GWASs,35 several studies have asso-
ciated the high-production A allele at �308 (ref. 44)

Figure 1 The integrated suite of immunological and behavioral responses to infection and wounding that comprise
pathogen host defense. Upon encountering a pathogen or cellular debris from tissue damage or destruction, the body reacts
with an orchestrated local and systemic response that recruits both immunological and nervous system elements. The
response is initiated by interaction of pathogens and/or cellular debris with pattern recognition receptors such as Toll-like
receptors on relevant immune cells including macrophages that in turn are linked to inflammatory signaling pathways such
as nuclear factor-kB (NF-kB), a lynchpin transcription factor in the host defense cascade. Release of cytokines (including
tumor necrosis factor-a (TNF-a), interleukin (IL)-1, IL-6 and interferon-a (IFN-a)) and chemokines as well as the induction of
adhesion molecules attracts and activates cells such as T cells at the site of infection/wounding, leading to the cardinal signs
of inflammation (redness, heat, swelling and pain) and ultimately promoting local pathogen elimination and wound healing.
Cytokines and cells in the peripheral circulation mediate the systemic host response that engages neurocircuits in the brain
that mediate hypervigilance (dorsal anterior cingulate cortex (dACC)) to avoid further wounding and pathogen exposure and
conservation/withdrawal (basal ganglia), which promotes the shunting of energy resources to pathogen elimination and
wound healing.
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with depression and related states such as anger.33,34,45

As predicted by PATHOS-D theory, the �308A allele
has also been associated with reduced risk for
infection with a number of pathogens, including
Mycobacterium tuberculosis, parvovirus B19 and
hepatitis B virus (HBV),46–48 and with an increased
likelihood of survival in critically ill hospitalized
patients.49 On a population level, Canadian First
Peoples who are highly susceptible to tuberculosis
have a markedly reduced prevalence of the A allele
compared with Caucasians.50

DCNP1 was initially considered to be unique to
dendritic cells,51 although it has subsequently been
identified in neurons.52 The rs12520799 T allele,
which is associated with MDD, codes for a truncated
version of the protein. No data are available regard-
ing the effect of this allele on either inflammatory
signaling or infection outcomes, but given strong
patterns of comorbidity between asthma/atopy and
MDD, it is intriguing that the allele has been
associated with increased levels of immunoglobulin
E for common specific antigens in individuals with
asthma.53

Candidate genes confirmed by meta-analysis
Although findings on candidate genes for depression
have proven remarkably difficult to replicate,35 a
recent meta-analysis provides at least some additional
support for several allelic variants being risk factors
for MDD, including GNB3 825T, MTHFR 677T, APOE
e2, SLC6A3 40 bpVNTR 9/10 genotype and SLC6A4
44 bp ins/del short allele.54 Although not traditionally
considered as primarily immune related, each of
these genes has well-documented immunological
effects and hence meets the first of the three criteria
for consistency with the PATHOS-D theory. In addi-
tion, each to a varying degree has some evidence
consistent with either the second or third criterion.

GNB3 825T produces a shortened splice variant
of the guanine nucleotide-binding protein subunit
b-3 (GNB3) that has enhanced signal transduction

properties.55 Also, 825T has been reported to enhance
in vitro cellular immune responses to recall antigens
and IL-2 stimulation, to increase neutrophil chemo-
taxis in response to IL-8 and to increase both
lymphocyte chemotaxis and the number of circulating
CD4þ T cells.55,56 These immune-enhancing effects
come at the price of increased rates of micro-
albunemia, hypertension and cardiovascular disease
in T allele carriers.57,58 However, as predicted by the
PATHOS-D theory, these effects also appear to
translate into improved host defense, given associa-
tions between the T allele and reduced death from
infection in infancy and evidence of positive selec-
tion for the T allele in geographical areas with high
rates of infectious pathology.59,60 Also consistent with
enhanced host defense responses, the T allele is
associated with improved antiviral responses follow-
ing interferon-a (IFN-a) treatment for hepatitis C
virus and highly active retroviral treatment for human
immunodeficiency virus.61–63 In addition, following
HBV booster vaccination, the T allele increases
in vitro lymphocyte proliferative responses to HBV
surface antigen.64

The MTHFR 677T allele produces a version of
the methylenetetrahydrofolate reductase (MTHFR)
enzyme with reduced activity,65 leading to elevations
in plasma concentrations of homocysteine and other
markers of inflammation.66–72 Animal and human
data suggest that this reduced MTHFR activity and
concomitant increase in inflammatory tone may
enhance host defense in at least some situations. For
example, in a mouse model, MTHFR deficiency
protects against cytomegalovirus infection,65 and in
pregnant females, increased MTHF is associated with
the presence of a sexually transmitted disease and
bacterial vaginosis.73 Directly supporting a protective
role for the T allele are data demonstrating that the
allele protects against HBV infection in African
populations.72 Moreover, the hyperhomocysteinemia
associated with reduced MTHFR activity has been
posited as protective against malaria and has been
suggested as a selection factor for the T allele in sub-
Saharan Africa.74 Interestingly, however, the preva-
lence of the T allele is actually far lower in
sub-Saharan populations than in other ethnic/geogra-
phical groups despite these potential benefits, likely
because homozygosity for the allele is lethal in
situations of low folate availability such as pertain
throughout much of the region.72 On the other hand,
given the array of disease states that has been
associated with MTHFR 677T,75–80 as well as reduced
fertility,81 its increased prevalence in environments
of ready folate availability may reflect more sub-
stantial benefits for host defense than are currently
recognized.
Apolipoprotein E (APOE), a glycoprotein central to

lipid transport and metabolism, has been implicated
as a risk and/or protective factor in a wide range of
illnesses. The APOE gene has three primary alleles,
termed e2, e3 and e4, with e3 being the most common
worldwide, but with significant data suggesting that

Table 1 Pathogen Host Defense (PATHOS-D) theory of
depression: foundational hypotheses

(1) Depression should be associated with increased
inflammation and inflammatory activation should
induce depression.

(2) Allelic variants that increase the risk for major
depressive disorder (MDD) should enhance host defense
mechanisms in general and innate immune
inflammatory responses in particular.

(3) Environmental risk factors for MDD should be associated
with increased risk of infection and attendant
inflammatory activation.

(4) On the whole, patterns of increased immune activity
associated with MDD should have decreased mortality
from infection in ancestral environments.

(5) Depressive symptoms should enhance survival in the
context of acute infection and in situations in which
risk of infection from wounding is high.
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e4 is the ancestral human allele.82–85 APOE affects
immune functioning in complex and apparently
contradictory ways, with both immune-enhancing
and immune-suppressing effects reported. The
depression-protective e2 allele does not appear to
be associated with reduced inflammation per se, as
PATHOS-D theory would predict, but may meet the
third criteria required by PATHOS-D by being a risk
factor for diseases known to have exerted significant
selection pressure on humans, including tuberculosis
and malaria.86 Conversely, the e4 allele, which
increases the risk for MDD when compared with e2,
is associated with increases in many measures of
inflammation and related processes such as oxidative
stress,82–85 and has been reported to protect against
the development of childhood diarrhea in high-
pathogen environments.

Dopamine and serotonin are pivotal neurotransmit-
ters in mood regulation, and yet like other factors
linked to depression, these monoamines both affect,
and are affected by, the immune system. The bulk of
available evidence suggests that MDD is best charac-
terized as a condition of low dopamine availability, at
least in CNS regions linked to motivation and
reward.87–90 The possibility that reduced dopamine
availability in MDD may serve host defense purposes
is suggested by animal studies showing that hyper-
dopaminemia is associated with reductions in
both innate and adaptive T helper 1-type cellular
immunity, with resultant increased susceptibility
to infection.91,92 That dopamine transporter activity
in particular may be important for host defense in
humans is suggested by findings from two recent
genome-wide linkage analyses of risk factors for
tuberculosis in geographic areas in which the disease
is endemic. Both studies localized a genetic protec-
tive factor to a locus of chromosome 15.93,94 Fine
mapping of this locus identified a SNP (rs250682)
within the dopamine transporter gene (SLC6A3) as
conferring the strongest protective effect.93 The G
allele of rs250682 was found to be associated with
reduced skin reactions to the tuberculin test, which
predicts reduced risk of later active disease in
endemic areas.93 However, no data were found
indicating that rs250682 is in linkage disequilibrium
with the SLC6A3 40 bpVNTR that has been associated
with MDD. Nor do any data address whether the 9
repeat allele of the VNTR has immunological effects
that would enhance host defense. Indeed, even the
question of whether this putative depression risk
allele is a gain-of-function or loss-of-function variant
for the dopamine transporter remains to be defini-
tively clarified.95,96

The SLC6A4 44bp ins/del polymorphism (often
referred to as 5HTTLPR) is by far the most extensively
studied, and debated, genetic risk factor for MDD.
Significant data suggest that the ‘short’ allele of this
serotonin transporter polymorphism (which is less
efficient in the reuptake of serotonin) increases the
risk for developing depression in response to psycho-
social adversity, both during development and in

adulthood. Less well known, but consistent with
PATHOS-D predictions, the short allele has also
been shown to protect against sudden infant death
syndrome, a condition often associated with un-
recognized infectious morbidity.97–100 Given the
PATHOS-D prediction that stress should activate
inflammation as a prepotent protection against the
risk of wounding (see below), it is intriguing that the
5HTTLPR short allele is associated with an increase
in the ratio of circulating proinflammatory to anti-
inflammatory cytokines (for example, IL-6/IL-10)
following a psychosocial stressor.101 Further support-
ing a role for SLC6A4 in host defense is the recent
finding that the gene might account for 10% of the
correlation between depressive symptoms and circu-
lating levels of IL-6 in a group of medically healthy
adults.102 Finally, the prevalence of the short allele in
cultures around the world is strongly correlated with
historical burden of disease-causing pathogens in
these cultures,103 consistent with the possibility that
the short allele has undergone positive selection as a
result of enhancing host defense.104

Alleles identified by meta-analyses of GWAS data
Far less is known about the general functionality
of alleles identified in GWASs, let alone which
physiological effects may be relevant to MDD. There-
fore, it should not be surprising that limited data
are available regarding whether these potentially
depressogenic SNPs affect immunity to enhance
host defense. On the other hand, it is intriguing
that associations with immune/inflammatory func-
tion or other aspects of host defense against pathogens
have been demonstrated for 8 of the top 10 genes
(or their very close homologs) identified in the largest
GWAS meta-analysis of MDD conducted to date
(Table 2).105–140 Many other depression-relevant
genes identified in earlier large GWASs (as well as
meta-analyses of these studies), including PBRM1,
GNL3, ATP6V1B2, SP4, AK294384, LY86, KSP37,
SMG7, NFKB1, LOC654346, LAMC2, ATG7, CUGBP1,
NFE2L3, LOC647167, VCAN, NLGN1, BBOX1, ATF3,
RORA, EIF3F, CDH13, ITGB1 and GRM8, have also
been linked to immune system and/or host defense
functions (see Supplementary Table S1 for additional
information/relevant references).
An exception to the general lack of knowledge

regarding GWAS-identified depression risk alleles is
provided by the rs1006737 SNP in the CACNA1C
gene, which codes for the a1 subunit of the L-type
voltage-gated calcium channel (Cav1.2).29 CACNA1C
has been identified as a potential depression risk
gene in several GWASs,105,141,142 and convergent
validity for its role in depression is provided by data
demonstrating that carriers of the risk A allele have
changes in brain function and morphology relevant to
MDD.143–145

An examination of the immune effects of CACNA1C
highlights both the promise and complexities of a
PATHOS-D perspective. Calcium signaling pathways
play central and essential roles in multiple aspects of
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Table 2 Immune/host defense functions of single-nucleotide polymorphisms (SNPs) associated with major depression based
on the largest meta-analysis of genome-wide association studies (GWASs) conducted to date for major depression (MDD)

Gene ID Gene name SNP with
minimum
P-value

Immune/host defense function of gene

SEL1L2 Sel-1 suppressor
of lin-12-like 2

rs17226852 No specific immune or host defense functions identified for SEL1L2.
However, the other member of the sel1 gene family, SEL1L, has been
shown to be important for quality control of IgM,100 and the infectious
capacity of several viruses,101 including human cytomegalovirus,102 a
microsatellite polymorphism of SEL1L, is associated with autoimmune
thyroid diseases103

ADCY3 Adenylate
cyclase 3

rs2384061 ADCY3 is integral to a rapid, NF-kB-independent, signaling cascade
initiated by microbial stimulation of TLR4.104 ADCY3 also regulates
crosstalk between FP prostanoid and prostaglandin E2 receptors.105 This
crosstalk regulates expression of SAT1 gene, which has been reported to
be underexpressed in prefrontal cortex of suicide completers.106

UNC93A Unc-93 homolog A rs2076008 No specific immune or host defense functions identified for UNC93A,
but a closely related homolog, UNC93B, plays a crucial role in antigen
presentation and TLR functioning, and deficiency in its expression
reduces TNF-a production and increases vulnerability to a number of
infections.107–109 Blockade of UNC93B may protect against
autoimmunity.110

TEX10 Testis expressed 10 rs1930243 No specific immune or host defense functions identified.

TTLL2 Tubulin tyrosine
ligase-like family,
member 2

No specific immune or host defense functions identified for TTLL2;
however, other TTLL family members have been shown to be essential
for proper cilliary structure and function and with this ability to clear
pathogens and other harmful substances from the airway.111

GAL Galanin rs2156464 Signaling through either type 1 or type 2 receptors, GAL has numerous
anti-inflammatory effects;112–115 Consistent with PATHOS-D, multiple
lines of evidence indicate GAL signaling is reduced in MDD;116–118

GMAP, which is produced by cleavage of the same precursor as galanin,
has direct antifungal activity119

PDK4 Pyruvate
dehydrogenase
kinase, isozyme 4

rs11531570 PDK4 gene expression is upregulated by IFN-a and by LPS and
contributes to muscle glycogen breakdown and lactate
accumulation;120,121 conversely, PDK4 is inhibited by TNF-a via p38
MAPK and NF-kB signaling, leading to increased glucose oxidation;122

anti-inflammatory omega-3 fatty acids increase PDK4 in immature
dendritic cells via enhanced PPAR-g signaling123

NPM1 Nucleophosmin rs11134697 Functions as an endogenous ‘alarmin’ that activates proinflammatory
cytokines;124–126 identified as a host virulence factor in viral
infection;127,128 may aid in HIV and HSV1 virus dispersal within
cells;129,130 complexes with, and inhibits, PKR, which has important
antiviral properties131

USP3 Ubiquitin-specific
peptidase 3

rs7183892 Embedding of USP genes in the copy number variable b-defensin cluster
on chromosome 8p23.1 suggests a close tie with innate immunity;132

USP3 is activated by IL-4 and IL-6 and has antiproliferative and
apoptotic properties;133 highly homologous USP17 necessary for type I
IFN production in response to virus infection;134

ASB4 Ankyrin repeat and
SOCS box-containing 4

rs11531570 No specific immune or host defense functions identified.

Abbreviations: FP, prostaglandin F; GMAP, galanin message associated peptide; HSV1, herpes simplex virus type 1; IFN-a,
interferon-a; IgM, immunoglobulin M; IL, interleukin; LPS, lipopolysaccharide; MAPK, mitogen-activated protein kinase;
MDD, major depressive disorder; NF-kB, nuclear factor-kb; PATHOS-D, Pathogen Host Defense; PKR, protein kinase R; PPAR-g,
peroxisome proliferator-activated receptor-g; TLR, Toll-like receptor; TNF-a, tumor necrosis factor-a.
Reference numbers in Table 2 correspond to reference numbers in paper bibliography.
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immune function, and the Cav1.2 channel in parti-
cular contributes to the function of a variety of
immune cell types, including dendritic cells, CD4þ
and CD8þ T cells, mast cells and macrophages.146–154

Consistent with an overall proinflammatory effect for
Cav1.2, agents that block this calcium channel have
been repeatedly observed to have anti-inflammatory
properties.155 Given these findings, the PATHOS-D
theory predicts that the depressogenic A allele at
rs1006737 should be a gain-of-function variant with
an overall proinflammatory effect. In support of this,
the A allele has been associated with reduced
activation of the anti-inflammatory intracellular mes-
senger Akt,156 which is known from in vitro studies to
downregulate TNF-a and inducible nitric oxide
synthase production in response to challenge with
bacterial endotoxin.157 Moreover, if Cav1.2 activation
promotes host defense via activation of inflammatory
processes, one would predict that the A allele should
be associated with increased CACNA1C protein
production. Although this has yet to be confirmed,
data from post-mortem brain tissue indicate that
carriers of the A allele have increased CACNA1C
mRNA production in the CNS.144

These data suggest that the A allele of CACNA1C
meets the first two criteria for consistency with
a PATHOS-D perspective (that is, located in a gene
with known immune effects and associated with
increased signaling in inflammatory/host defense
pathways). The finding that Cav1.2 activation is
necessary for T-cell defense against Leishmania major
infection is consistent with the third criteria,148 given
that the A allele appears to be a gain-of-function
variant. However, other lines of circumstantial evi-
dence undermine any straightforward association
between allelic variants that increase Cav1.2 function
and enhanced host defense. In fact, the opposite
appears to be the case, given that Timothy Syndrome,
caused by a rare gain-of-function variant in CAC-
NA1C,158 is associated with a strikingly increased risk
of infection.154 Similarly, activation of Cav1.2 chan-
nels appears to actually impede host defense against
M. tuberculosis by reducing the bactericidal activity
of dendritic cell-activated T cells.149 These results
appear paradoxical given that calcium influx into
immune cells is essential for eradication of
M. tuberculosis, and significant data indicate that
L-type voltage-gated channels play an important role
in this regard.150 However, conflicting data suggest
that L-type calcium channels may actually down-
regulate overall calcium influx, given that blocking
these channels increased calcium signaling and
bactericidal activity in M. tuberculosis-infected
macrophages.149 These findings are consistent with
the observation that bacterial endotoxin acutely
downregulates L-type calcium channel mRNA, as
would be expected if Cav1.2 has an anti-inflammatory
function.159

These considerations introduce a critically impor-
tant complication into our discussion of the immune
effects of depressogenic gene variants. Up to this

point we have proceeded as though pathogen host
defense is a monolithic process, which is a simpli-
fication exposed by the bivalent effects of L-type
intracellular calcium signaling on infectious out-
comes. Because calcium signaling activates multiple
facets of the immune system, it is not surprising that
this signaling has been shown to contribute to the
antipathogen capacities of a variety of cell types.
For example, macrophages rely on L-type calcium
channel activation in response to Chlamydia pneu-
monia lipopolysaccharide to kill the microorgan-
ism.160 However, other microbes have evolved to
manipulate this host defense system to their own
benefit, such as Legionella pneumophila, which
requires L-type calcium signaling to replicate within
infected host cells.161 These examples demonstrate
that the same physiological process can enhance
host defense to one pathogen, while simultaneously
increasing vulnerability to another.

Infection, inflammation and environmental risk
factors for MDD

If depressogenic alleles contribute to protection
against pathogen invasion, the circumstances in
which such invasion was likely or already a fait
accompli should be especially potent activators of
these genes, and hence especially likely to induce
depression. Moreover, if these alleles heighten host
defense in large part by increasing inflammation,
inflammatory mediators released in response to
environments rife with pathogen danger would be
expected to induce depressive symptoms. These
predictions are borne out by many studies demon-
strating the depressogenic effects of inflam-
matory mediators,10,162–173 as well as the remarkably
diverse array of conditions that activate inflam-
matory processes and also increase the risk for
depression.174–221

Psychosocial stress may be especially relevant in
this regard. Stress is a universal and powerful risk for
the development of depression both during develop-
ment and adulthood.222–225 This squares nicely with
social theories of depression, and at first glance
appears to challenge host defense perspectives. But
if we consider that the vast majority of stressors in
mammals over evolutionary time boiled down to risks
inherent in hunting, being hunted or fighting con-
specifics in dominance hierarchies for reproductive
access/status, it is not surprising that these states are
also circumstances in which the risk of pathogen
invasion—and subsequent death from infection—was
greatly increased as a result of traumatic opening of
the protective skin barrier from wounding.226 Such
wounding is common in social species and was a
significant source of morbidity and mortality among
humans in the ancestral environment, and indeed
well into the historical period.227–229 Given this, it is
not surprising that—to quote Firdaus Dhabhar—
‘stress perception by the brain may serve as an early
warning signal to activate the immune system in
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preparation for a markedly increased likelihood of
subsequent infection’.230 And although chronic stress
is best known to suppress immune function,231 the
types of acute and/or psychosocial stressors most
likely to be associated with immediate risk of
wounding and hence infection activate both innate
and adaptive immunity.232–242 And while suppressing
certain measures of adaptive immunity, chronic stress
(whether experienced during childhood or as an
adult) has been repeatedly associated with increased
peripheral inflammatory biomarkers.233,243–248

From a PATHOS-D perspective, then, psychosocial
stress may increase the risk for depression, at least in
part, because it activates host defense mechanisms
that reliably induce depressive symptoms. In ances-
tral environments, the association between stress
perception and risk of subsequent wounding was
reliable enough that evolution, operating by the
so-called ‘smoke detector’ principle,249 favored organ-
isms that prepotently activated inflammatory systems
in response to a wide array of environmental threats
and challenges (including psychosocial stressors),
even if this activation was often in vain. This
perspective provides a parsimonious explanation for
why psychosocial stressors reliably induce depres-
sion, even though depressive reactions to stressors
often appear so patently maladaptive. Across evolu-
tionary time, the benefit that depressive symptoms
(and their underlying physiology) conferred in terms
of host defense in situations of high infectious danger
(including most psychosocial adversities) outweighed
their cost in terms of any social impairment they
incurred in these same contexts. A clear prediction of
this hypothesis is that genes promoting inflammatory
responses to psychosocial stress should decrease in
prevalence over time in human societies in which the
association between stressors and subsequent infec-
tion has been weakened by factors such as modern
health practices. Consistent with this possibility, the
prevalence of the short allele of the serotonin
transporter gene, which has been associated with
increased inflammatory responses to psychosocial
stress, is lower in societies with reduced rates of
historical infectious mortality.104

In addition to providing a novel explanation for
why stress is a primary risk factor for developing
depression, the PATHOS-D theory offers a unifying
perspective on why many other facets of modern life
are also depressogenic, a perspective not readily
provided by theories focused more exclusively on
the social realm. Indeed, if the adaptive value of
depression is to be found primarily in its effects on
social functioning, it is hard to understand why so
many risks for depression, including obesity, seden-
tary lifestyle, dietary factors, diminished sleep and
smoking, are at least partially nonsocial in nature. On
the other hand, these conditions are all associated
with increased inflammation (for reviews see refs.
207, and 250–252), suggesting that they may be
depressogenic because they tap into pathways that
initially evolved to fight infection.

Patterns of immune activation in MDD and
protection from infectious mortality in ancestral
environments

The hypothesis that patterns of immune activity
associated with MDD should have decreased mortal-
ity from infection in ancestral environments appears
to face a challenge from data indicating that depres-
sion worsens outcome in a number of infectious
processes253–260 and is associated with impairments in
adaptive immune mechanisms important for protec-
tion against both viruses and bacteria.13,261,262 To
address this challenge, we have first to inquire
whether innate immune inflammatory processes that
are increased in MDD produce the patterns of
infectious vulnerability and adaptive immune
impairment that are apparent in depression. Surpris-
ingly, the answer is yes.263,264 Although essential for
activating adaptive immunity in response to pathogen
invasion, chronic inflammation can actually suppress
T- and B-cell function through various mecha-
nisms.263–270 Consistent with this, rates of infection
are often increased—not decreased—in autoimmune
conditions characterized by chronic inflammation.271

However, PATHOS-D theory requires only that across
evolutionary time the survival benefits of enhanced
inflammatory activity characteristic of depression
outweighed any costs imposed by associated reduc-
tions in other aspects of immune functioning. Several
lines of evidence support this possibility.
One such line of evidence comes from Ghana, a

country in which some regions rely for drinking water
on heavily contaminated rivers and other regions
obtain clean water from boreholes. As would be
expected, death rates from infection are higher in
river-drinking regions than in areas where borehole-
obtained water is available. Consistent with the
prediction that increased inflammatory signaling is
protective in the type of high-infection environments
common during human evolution (and especially
common since the origin of agriculture and the rise of
cities),272 a haplotype of the IL-10 gene associated
with increased inflammation was found to be sig-
nificantly more prevalent in populations that relied
on river water than in populations that drank from
boreholes—suggesting positive selection driven by
enhanced pathogen protection.2 Consistent with this
possibility, during a 5-year follow-up period, the
high-inflammation IL-10 haplotype was associated
with increased survival in populations that drank
from rivers, but reduced survival in individuals who
drank from boreholes.2 These results are consistent
with the observation that cytokine-stimulated produc-
tion of TNF-a declines with age in the Netherlands, a
country with a low infectious burden, but does not
decline with age in Ghana, a country with high rates
of infection (that is, 85% of Ghanan study partici-
pants were infected with malaria),273 again suggesting
that increased proinflammatory cytokine produc-
tion—as observed in MDD—promotes survival under
conditions of high pathogen burden.274
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Multiple facets of modernity have reconfigured our
relationship with the microbial/parasitic world in
ways that have reduced the benefits of inflammation
and increased its costs.274,275 Nonetheless, even in an
environment so different from that in which humans
evolved, multiple studies have identified associations
between patterns of increased inflammation observed
in MDD and improved outcome in the context of
infection,3–5,50,276–290 as shown in Table 3.

Survival-promoting elements of depressive/
sickness symptoms in response to infection

Microbial activation of the mammalian inflammatory
response produces a highly regulated suite of symp-
toms known as sickness behavior that bears a striking
resemblance to behavioral changes induced by stress
in laboratory animals, as well as to the symptoms of
MDD in humans.10,163–173 Many of these symp-
toms can be ameliorated by antidepressants in animal
models,291–295 further suggesting that cytokine-
induced behavioral changes are either closely aligned
with, or identical to, MDD in humans. Studies report
that 20–70% of patients undergoing chronic immune
activation as a result of treatment with the cytokine
IFN-a meet symptom criteria for MDD, providing
additional evidence in this regard.164,296 Moreover,
IFN-a-induced depression shares symptom homology
with idiopathic MDD,297 and responds to treatment
with antidepressants.164,298–301 In addition to a remark-
able symptom overlap, sickness and depression during
cytokine exposure also appear to be causally linked,
given the strong association between sickness in the
first week of treatment with IFN-a and the develop-
ment of cognitive/emotional symptoms of depression
over the ensuing 6 months of therapy.302 Finally,
peripheral inflammatory activation induces many—if
not all—of the most replicated CNS and neuroendo-
crine abnormalities observed in MDD (Figure 1).303–310

The PATHOS-D theory asserts that depressogenic
alleles are common not because depression is adap-
tive in managing social negotiations, but because
these alleles promote symptoms and behaviors that
decreased mortality from infectious causes across
mammalian evolution. However, from an evolution-
ary perspective, there is no a priori reason why these
antipathogen effects should overlap with the depres-
sogenic effects of these risk alleles. That they do so is
powerful evidence, we would suggest, for the primacy
of immune defense in the pathogenesis of depression,
regardless of the environmental adversity that initi-
ates the disorder in individual cases. In keeping with
this perspective is the possibility that some of the
symptoms of depression promote survival in response
to infection.

Fever and hypoferremia
Although once viewed as a maladaptive consequence
of immune activation,311 several decades of research
have produced a consensus that sickness behavior is
an adaptive central motivational state evolved to

promote survival and necessitated to a large degree by
the metabolic costs of mounting a fever.163,169,311–314

Fever, in turn, has been shown to enhance resistance
to both viral and bacterial pathogens, over and above
other antipathogen effects of the inflammatory mecha-
nisms by which fever is induced. In addition to
retarding pathogen replication/spread,315–318 febrile
range temperatures have multiple stimulatory effects
on the immune system relevant to host defense.319–325

Because these effects are enhanced in conditions
of low iron availability, it should not be surprising
that in addition to causing fever, inflammatory cyto-
kines deplete bodily iron stores.326 Nor should it be
surprising that sickness is associated with hypoferre-
mia,327,328 which—after fever—is probably the feature
of sickness that has been best established as of
adaptive value.329–331 For example, low bodily iron
stores protect against infection in children in the
developing world,332 and multiple studies suggest
that iron supplementation worsens an array of infec-
tion-related health outcomes and increases infectious
mortality.333–337

If depressive symptoms aid in pathogen defense
and if fever and hypoferremia are important in this
regard, one would expect that MDD should be asso-
ciated with elevated body temperature and reduced
bodily iron stores, even in individuals with no
evidence of an infectious process. In this regard, it
is surprising, given the centrality of fever to the
adaptive function of sickness behavior,163,169,315 that
so little attention has been paid to the fact that MDD
appears to be reliably characterized by an elevation
in body temperature into the range known to be
maximally protective in the context of infection.338–345

As with elevated body temperature, a number of
studies have reported that depressive symptoms are
associated with reductions in various measures of
bodily iron stores.346–350

Because fever and hypoferremia are central to the
adaptive purposes of sickness, their presence in
depression is mandated from a PATHOS-D perspec-
tive, and their absence would strongly argue against
the validity of this approach. On the other hand,
their presence in depression is not parsimoniously
explained by theories that focus on potential social
benefits of depression. Similarly, if depression is
simply a nonadaptive phenomenon, why would
such ancient, highly conserved and highly complex
physiological responses be a hallmark of the disorder?

Conservation-withdrawal
Proinflammatory cytokines induce a behavioral state
of conservation-withdrawal,351 characterized by de-
pressed mood, anhedonia, psychomotor retardation,
fatigue, social avoidance and anorexia.163,252,352,353

This state is an integral component of depressive
disorders and has been widely considered to develop
in the context of infection and/or tissue injury as
a means of marshalling limited metabolic resources
for the expensive tasks of immune activation, fever
generation and tissue repair.311 In addition to energy
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Table 3 Inflammation and infectious outcomes in industrialized societies

Biological factor Immune effect Host defense findings

Plasma concentration of interleukin
(IL)-10; ratio of plasma IL-10 to tumor
necrosis factor-a (TNF-a; IL-10/TNF-a)

IL-10 is a powerful anti-inflammatory
cytokine that suppresses innate immunity
and T helper type I (Th1) immune
responses; TNF-a is an innate immune
potent proinflammatory cytokine that
produces sickness behavior and acutely
plays important role in facilitating
activation of the adaptive immune
system.

In a large study of consecutive patients
admitted to hospital with fever,
elevations in plasma concentrations of
the anti-inflammatory cytokine IL-10—as
well as the ratio of IL-10/TNF-a—were
associated with increased mortality;3

Increased IL-10 production late in the
disease course predicted reduced
survival following infection with the
pandemic A/H1N1/2009 influenza
virus.4

Plasma concentration of C-reactive
protein (CRP) via high-sensitivity assay

CRP is an acute-phase reactant primarily
stimulated by IL-6 shown in multiple
studies to predict the development of
multiple illness associated with chronic
inflammation

CRP has been associated with increased
survival in children with meningococcal
sepsis.276

Stimulated production of pro- and
anti-inflammatory cytokines

In vitro measure of ability of immune cells
to produce/release cytokines in response
to an immune stimulus.

Families with a member who died from
meningococcal disease were
characterized by increased production of
IL-10 and reduced production of TNF-a
when compared with families with a
member who had bacterial meningitis
but survived.5

Th1 and Th2 cytokine concentrations in
the supernatant of cultured peripheral
blood mononuclear cells (PBMCs)

In vitro measure of ability of PBMCs to
promote either Th1 or Th2 immunity

Reduced PBMC production of IFN-g
and IL-12 is associated with increased
severity of respiratory syncytial virus
symptoms in infants under 1 year of
age.277

Increased activity alleles of the IL-10
gene (i.e., �1082G)

Associated with higher levels of IL-10 �1082G allele is associated with
increased symptom severity and
mortality in the context of community-
acquired pneumonia,278

�1082G allele is associated with
reduced antibody responses to tetanus,
influenza and hepatitis B virus (HBV)
vaccines.279–281

Increased activity alleles of the
interferon-g (IFN-g) gene (i.e., þ 874T)

The þ 874T allele increases Th1
immunity via increased IFN-g production
as a result of enhanced binding of
nuclear factor-kb (NF-kB)283,284

þ 874T allele has been associated
with protection against Mediterranean
Spotted fever.282

Multiple studies and a large meta-
analysis find that the þ 874T allele is
associated with protection against the
development of tuberculosis at the
individual285 and population levels.50

In individuals with active tuberculosis,
the T allele is associated with reduced
severity and risk of disseminated
disease.286

þ 874T allele has been associated with
reduced risk of leprosy,287 severe acute
respiratory syndrome (SARS),288 and
Chagas disease.289

Reduced activity alleles of the IFN-g
gene (i.e., þ 874A)

An allele at þ 874 is associated with
reduced IFN-g production and
consequent reductions in Th1 activity

þ 874 A predisposes for hepatitis B and
C persistence and negatively affects
clinical course of these diseases.290

Reference numbers in Table 3 correspond to reference numbers in paper bibliography.
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allocation, conservation-withdrawal symptoms may
have also proved adaptive by reducing interpersonal
contact and thereby limiting infectious exposure.25

Because ancestral humans typically lived in small
coalitional groups of genetically related individuals,
the logic of inclusive fitness suggests that social
withdrawal might have been adaptive for an indivi-
dual’s genes by reducing the risk of infection in kin,
even if such withdrawal limited the provision of
much needed care from others and thus reduced
individual survival.354,355 As would be predicted from
this line of reasoning, acute exposure to an inflam-
matory mediator has been shown to induce feelings
of social isolation/withdrawal in humans,356 and
increased neural sensitivity to social rejection (indexed
by changes in activity in dorsal anterior cingulate and
anterior insula cortices) is associated with increased
inflammatory responses to psychosocial stress.357

However, in addition to potential benefits related to
kin selection, significant data demonstrate that viral
infections promote aggressive immune responses to
bacterial superinfections that can greatly increase
mortality;358–364 therefore, any decrement in survival
from loss of social aid might have been more than
offset by reduced risk of exposure to other pathogens
while in a vulnerable state due to a pre-existing
infection. Moreover, social withdrawal and reduced
environmental exploration might also have promoted
individual survival by limiting a sick person’s contact
with immunologically dissimilar out-group members
who potentially harbored pathogens against which
the sick person would have had reduced immunity
compared with pathogens endemic in the home
group.354,365

Hypervigilance
Although withdrawal-conservation-type behavior
is prominent in MDD, depressed individuals also
often manifest metabolically expensive symptoms
more consistent with behavioral activation, including
anxiety/agitation and insomnia.366–370 By siphoning
energy away from immune activity, these symp-
toms would be expected to impair host defense and
hence to argue against a PATHOS-D perspective.
However, sickness behavior—although of benefit for
surviving infection—carries its own survival and
reproduction costs as a result of increased risk for
predation and reduced ability to care for one’s young,
as well as potential loss of status in a social species
and/or loss of breeding territory.371 Therefore, evolu-
tionary logic dictates that inflammatory processes—
especially when chronic—might promote hyper-
vigilant behavior that, while shunting energy away
from fighting infection, would nonetheless serve
adaptive purposes by protecting against environ-
mental dangers engendered by sickness. In fact,
significant data demonstrate that chronic cytokine
activation reliably produces hypervigilant behaviors/
symptoms, including anxiety/agitation, insomnia and
anger/irritability.305,353,372 Neurobiological substrates
for the mixture of withdrawal-conservation and

behavioral activation/hypervigilance symptoms that is
common to chronic inflammation/medical illness and
MDD have been recently identified, including the
effects of cytokines on both the basal ganglia (with-
drawal-conservation) and the dorsal anterior cingulate
cortex (hypervigilance) (Figure 1).303,309,357,373–376

Anorexia

As suggested above, anorexia may enhance survival
during infection by redirecting energy away from food
procurement to the metabolic demands of immune
activation/fever, while also limiting the exposure to
food-borne pathogens. But the metabolic require-
ments of fighting infection make the anorexic
response a paradox in need of a more robust adaptive
explanation. Although it remains unclear whether
food restriction protects against the development of
infection,377 animal data indicate that force feeding
rodents once they are infected increases mortality.378

Similarly, the provision of total parenteral nutrition in
animal models and to critically ill patients has been
associated with increased risk for infection and
subsequent mortality.379–382 Interestingly, rats injected
with lipopolysaccharide consume proportionately
more carbohydrates—as do depressed individuals
with hyperphagia383—even though more energy is
available from ingesting lipids. This suggests that
lipid consumption may be counterproductive during
an infection. Several observations are consistent with
this possibility. For example, preclinical data demon-
strate that lipid consumption increases infectious
mortality,384 and a meta-analysis of total parenteral
nutrition use found that infected patients provided
lipids in their feedings had higher complication rates
than those receiving total parenteral nutrition without
lipids.385 Finally, omega-3 fatty acids have been
shown to activate peroxisome proliferator-activated
receptor-g signaling in dendritic cells, with a resul-
tant downregulation of CD1a receptor expression.129

These receptors play an essential role in activating
T-cell responses to pathogens, as demonstrated by the
ability of Leishmania donovani to survive in host
cells by downregulating these receptors.386 Moreover,
CD1a expression in dendritic cells is also crucial for
the presentation of M. tuberculosis antigens to cells of
the adaptive immune system.387

Potential limitations of, and challenges to,
PATHOS-D theory

In this article we have focused our analyses on allelic
variants associated with phenotypic variability. Many
genetic features contributing to MDD may have swept
to fixation over evolutionary history and by becoming
nonpolymorphic remain invisible to genetic asso-
ciation studies. It is possible that such sequences are
preferentially associated with species-typical social,
rather than immunological, factors. Were this to be
the case, our analyses may have overestimated
immune risk factors for depression at the cost of
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universal depressogenic risk alleles maintained as a
‘price of being human’.

It should also be noted that inflammatory biomar-
kers are not elevated in all individuals with MDD.
Whether patients with increased inflammation repre-
sent a biologically and evolutionary distinct subset of
MDD is an area of active research.388 If this turns out
to be the case, it may be that selection for enhanced
host pathogen defense is relevant primarily to these
individuals (and their allelic variants) and is thus
only one adaptive factor driving the persistence of
depressogenic alleles. Prior theorists have posited a
variety of potentially fitness-enhancing psychosocial
effects of low mood and/or depression not obviously
related to host defense functions (that is, abandoning
unattainable goals, yielding in dominance struggles
and so on),389–391 and it may be that these types of
psychosocial benefits are promoted by allelic variants
retained in the human genome independently of
variants maintained as a result of conferring pathogen
host defense benefits. If both immune and non-
immune etiological pathways contribute to MDD,
the next question is how they combine. One hypo-
thesis consistent with the general absence of docu-
mented epistatic interactions among MDD risk alleles
is that inflammation/immune alleles provide one hit
and social/stress factors provide a second (biologi-
cally distinct) hit, which together sum to exceed an
MDD symptom threshold. If distinct social and
immune-related genetic risk factors were identified,
statistical analysis of epistasis could help distinguish
intrinsic interactions between pathways from a
simple additive model.

On the other hand, findings from patients under-
going treatment with IFN-a suggest a more inclusive
scenario for the role of pathogen defense in the
evolution/persistence of depressogenic alleles. Speci-
fically, although standardized dosages of IFN-a are
employed, a wide range of behavioral responses are
observed during treatment, from mild neurovegeta-
tive/sickness symptoms, such as fatigue, to completed
suicide in response to catastrophic major depression.
Individuals who develop significant depressive
symptoms evince changes in CNS and neuroendo-
crine functioning that are also observed in idiopathic
MDD,305–310 but that are not observed to a significant
degree in patients on IFN-a who do not develop
depression. These findings raise the possibility
that depression reflects a state of immune response
element amplification, such that for any given
amount of inflammatory input, depressed individuals
react with enhanced downstream CNS/neuroendo-
crine activity. If so, depressogenic alleles that do
not promote an increase in inflammatory biomarkers
may nonetheless have undergone positive selection
because they enhanced host pathogen defense via
sensitization of downstream CNS/neuroendocrine
pathways that themselves promote survival during
infection. Some evidence for this hypothesis comes
from the finding, noted above, that individuals who
develop depression during IFN-a manifest enhanced

sickness behavior at the start of treatment, which may
aid in acutely clearing pathogens from the body
during infection.302 Moreover, a clear prediction
of PATHOS-D theory is that changes in CNS/neuro-
endocrine function that typically accompany MDD
should enhance survival in the context of acute
infection. To date, few data support this possibility,
although it is intriguing to note that glucocorticoid
resistance, which is common in MDD392 and is
associated with the development of depressive symp-
toms during IFN-a treatment (Raison et al., unpub-
lished observations), has been associated with
improved T-cell function in HIV infection,393 and that
enrichment paradigms known to enhance glucocorti-
coid sensitivity in animal models increase mortality
in response to Escherichia coli infection.394

These two possibilities (that is, distinct additive
social and immunological risks vs inflammatory
mediation of social risk) might be genetically dis-
criminated based on their contrasting implications for
the functional relationship between social–environ-
mental precipitants and immune-related genetic risks
for MDD. In the former model, one would expect
to find largely additive effects of social risk factors
and immune-related genetic risk alleles, whereas
the meditational model would suggest a product-term
interaction (that is, a social stimulus shows larger
depressogenic ‘gain’ in the context of a sensitizing
genotype). This approach could be extended to use
an instrumental variables analysis (for example,
a Mendelian randomization study) to determine
whether inflammatory signals function as mediators
of, moderators of, or functionally independent addi-
tional additive influences with respect to, social
precipitants of MDD.
Thus far, we have focused on the possibility that

risk alleles promote depressive symptoms primarily
as a result of increasing activity in inflammatory
and/or immune-relevant downstream physiological
pathways (that is, gene-immune effects-depres-
sion). However, many of the associations cited in
this review could be equally well accounted for by the
hypothesis that alleles directly influence CNS func-
tioning to increase MDD risk, and that MDD subse-
quently affects immune function (that is, gene-
depression-immune effects). This possibility is
especially likely for genes such as NPY, which we
have described in immune terms, but that also has
well-documented effects on CNS functioning relevant
to depression. In addition to downstream immune
effects, such genes may also have enhanced host
defense in ancestral environments by promoting
behavioral patterns likely to reduce the risk of
becoming infected, spreading infection to kin or of
dying once an infection had commenced.395,396 Just
such effects have been proposed for the short allele of
the serotonin transporter, which has been associated
with collectivistic social behavior relevant to host
defense.104

Immune changes associated with MDD are not
only specific but also occur in other severe mental
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disorders, including bipolar disorder and schizo-
phrenia. Although the high prevalence of depression
in these conditions is consistent with a PATHOS-D
perspective, it is hard to imagine that other behavioral
states associated with these diseases, including
mania and psychosis, are adaptive for pathogen
host defense. Indeed, the impaired decision-making
characteristic of both states and the social isolation/
reduced access to resources that is common in
psychosis would be expected to increase vulnerability
to pathogen exposure. Given overlapping genetic risk
factors for these conditions and MDD, it is possible
that they are best understood as purely maladaptive
states supported at relatively low levels in the human
population, at least in part, because their genetic
antecedents enhanced host defense in carriers of
immune-relevant risk alleles who responded to
infectious challenges with enhanced immune activa-
tion and sickness behavior/depression without devel-
oping the full disease phenotype. Another possibility
is that very severe disorders such as bipolar disorder
and schizophrenia have been maintained in the
human genome because immune benefits accrued to
afflicted individuals that counteracted the fitness-
reducing behavioral profiles (including increased risk
of infection) associated with these diseases. This
scenario would suggest that immune changes seen in
schizophrenia and bipolar disorder should be more
robust than those seen in depression, because they
would have to be large enough to offset behavioral
costs not present in depression. Although not entirely
consistent,397 some data support this possibility.398–400

Summary

By shifting the adaptive context of depressogenic
alleles from any purported benefit of depressive
symptoms on relations with conspecifics to the poten-
tial benefits of sickness behavior (and its attendant
physiology) on relations with the microbial world, the
PATHOS-D hypothesis provides a straightforward
explanation for how depression can be nonadaptive
in the social realm, whereas its risk alleles are
nonetheless represented at prevalence rates suggest-
ing an adaptive function. Across vertebrate evolution,
innate immune inflammatory responses were essen-
tial for effective host defense against pathogens. In
humans, these responses are especially relevant
during the first several years of life when infectious
mortality was highest and adaptive immunity was not
yet fully functional. Given these considerations, it is
not surprising that the immune system alterations
most frequently observed in MDD are proinflam-
matory in nature, and that the best characterized
MDD risk alleles appear to generally produce a pro-
inflammatory phenotype. However, we should not
infer from this that any given depressogenic allele
will uniformly increase innate immune function or
enhance host defense against all microbes. Rather, what
PATHOS-D suggests is that depressogenic alleles—
and the physiological processes they promote—can be

understood as reflecting a summation of the most
successful pathogen defense mechanisms against the
wide array of pathogens encountered during human
evolution, with all the imperfections and tradeoffs
this has entailed. Moreover, knowing the effects of
depressogenic alleles on outcomes following infec-
tion with specific pathogens may cast light on the
relative importance of each pathogen for driving
human evolution, because the high price imposed
by depressogenic alleles mandates a compensatory
high payoff in terms of pathogen defense. If confirmed
in future studies, this perspective raises the intriguing
possibility that gaining a better understanding of how
genes promote MDD may significantly advance the
field of immunology and that—conversely—a better
understanding of the ongoing evolutionary ‘arms race’
between pathogens and their human hosts may
suggest novel theoretical paradigms and treatment
strategies for MDD.
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