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The Arabidopsis (Arabidopsis thaliana) genome is the most well-annotated plant genome. However, transcriptome sequencing in
Arabidopsis continues to suggest the presence of polyadenylated (polyA) transcripts originating from presumed intergenic
regions. It is not clear whether these transcripts represent novel noncoding or protein-coding genes. To understand the
nature of intergenic polyA transcription, we first assessed its abundance using multiple messenger RNA sequencing data
sets. We found 6,545 intergenic transcribed fragments (ITFs) occupying 3.6% of Arabidopsis intergenic space. In contrast to
transcribed fragments that map to protein-coding and RNA genes, most ITFs are significantly shorter, are expressed at
significantly lower levels, and tend to be more data set specific. A surprisingly large number of ITFs (32.1%) may be protein
coding based on evidence of translation. However, our results indicate that these “translated” ITFs tend to be close to and are
likely associated with known genes. To investigate if ITFs are under selection and are functional, we assessed ITF conservation
through cross-species as well as within-species comparisons. Our analysis reveals that 237 ITFs, including 49 with translation
evidence, are under strong selective constraint and relatively distant from annotated features. These ITFs are likely parts of novel
genes. However, the selective pressure imposed on most ITFs is similar to that of randomly selected, untranscribed intergenic
sequences. Our findings indicate that despite the prevalence of ITFs, apart from the possibility of genomic contamination, many
may be background or noisy transcripts derived from “junk” DNA, whose production may be inherent to the process of
transcription and which, on rare occasions, may act as catalysts for the creation of novel genes.

The advent of tiling arrays and high-throughput se-
quencing has led to the discovery of a complex tran-
scriptional landscape in eukaryotic genomes. Studies
in yeast (Saccharomyces cerevisiae; David et al., 2006),
animals (Bertone et al., 2004; Carninci et al., 2005), and
plants (Yamada et al., 2003; Li et al., 2007; Matsui et al.,
2008) have revealed the presence of a large number of
unannotated, novel transcripts. These novel transcripts
may represent alternatively spliced forms of known
genes (Filichkin et al., 2010), products of antisense
(Yamada et al., 2003) or bidirectional transcription (Xu
et al., 2009), retained introns (Ner-Gaon et al., 2004;
Filichkin et al., 2010), transcript fusions (Ruan et al.,
2007), or intergenic transcriptional units (referred to
hereafter as intergenic transcribed fragments [ITFs]).
Among these novel transcripts, ITFs are unique in that

they do not overlap with known genomic features and
may represent novel genic sequences. The prevalence
of intergenic transcription raises the possibility that
there are many more functional genes yet to be dis-
covered. However, there are two outstanding questions
regarding ITFs. First, it is not clear what proportion of
ITFs code for proteins. Second, whether most ITFs are
functional is under debate (Mattick, 2009; Ponting and
Belgard, 2010).

After ITFs are identified with whole-genome tiling
arrays or high-throughput sequencing, computational
methods are used to determine if they display char-
acteristics of noncoding RNA (ncRNA; Fahlgren et al.,
2007; Li et al., 2007; Gregory et al., 2008). These methods
rely on secondary structure prediction, similarity to
known ncRNAs, and conservation between species. The
protein-coding potential of ITFs, on the other hand, is
determined based on ab initio gene prediction, open
reading frame (ORF) length, evolutionary conservation
measures, pairwise alignment scores, predicted second-
ary structure, and entropy (Nekrutenko et al., 2002; Liu
et al., 2006; Dinger et al., 2008). For example, in a global
gene expression study in Arabidopsis (Arabidopsis
thaliana), a 50-amino acid length threshold was used to
define potential protein-coding intergenic transcripts
(Stolc et al., 2005). Similarly, the Functional Annotation
of the Mammalian Genome consortium defined pu-
tative protein-coding mRNAs using an ORF length
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cutoff of 300 nucleotides (Okazaki et al., 2002). Reli-
ance on length cutoffs can result in longer random
ORFs being falsely annotated as protein coding and
can also lead to the exclusion of true small ORFs such
as those that have been identified in yeast, humans,
and Arabidopsis (Basrai et al., 1997; Hanada et al.,
2007; Pruitt et al., 2007). Proteomics and polyribosome
immunoprecipitation (Zanetti et al., 2005; Sparkes
et al., 2006) allow more direct identification of po-
tentially protein-coding ITFs than computational ap-
proaches. Currently, there has yet to be a systematic
assessment of ITF protein-coding potential based on
a combination of computational and experimental
approaches.
In addition to the question of whether ITFs code for

proteins, the functional relevance of intergenic tran-
scription is not well understood. One hypothesis is that
most transcripts simply represent transcriptional noise.
For example, based on the genome-wide distribution
of RNA polymerase II and TATA-binding protein
in yeast, approximately 90% of RNA polymerase II
transcriptional initiation events were estimated to be
the result of low polymerase fidelity and may repre-
sent transcriptional noise (Struhl, 2007). Consistent
with the “noise” hypothesis, several studies have
shown that ITFs tend to have significantly higher
evolutionary rates than known genes. For example, the
Encyclopedia of DNA Elements (ENCODE) consor-
tium found that 93% of the unannotated transcribed
regions in the human genome show no clear evidence
of evolutionary constraint (Birney et al., 2007). The
alternative hypothesis is that most ITFs are functional
(Dinger et al., 2009). Differential expression, alternative
splicing, and/or association with chromatin modifi-
cation marks have been cited as evidence for ITF
functionality (Guttman et al., 2009; Hiller et al., 2009).
In addition, the functions of a growing number of
novel transcripts have been experimentally deter-
mined. Examples include Xist, RepA, Air, and Hotair,
which regulate the recruitment of Polycomb proteins
onto DNA (Mercer et al., 2009), as well as a recently
discovered long noncoding RNA called COLDAIR
shown to be important in regulating vernalization re-
sponses in Arabidopsis (Heo and Sung, 2011). Based
on these studies, it is clear that some ITFs are func-
tional. The main question concerns the abundance of
functional ITFs relative to those derived from noisy
transcription.
To date, most studies of intergenic transcription

have focused on the presumably noncoding fraction of
the transcriptome. In addition, currently, there is no
published study assessing the evolutionary signifi-
cance of plant intergenic transcription. In this study,
we focused on intergenic polyadenylated (polyA)
RNA transcripts to gain more insight into the nature of
plant intergenic transcription by RNA polymerase II.
We first analyzed eight different Arabidopsis mRNA
sequencing (mRNA-seq) data sets from this study and
two other sources (Filichkin et al., 2010; Jiao and
Meyerowitz, 2010) to determine the extent of intergenic

polyA transcription. We then investigated whether
ITFs are likely protein coding using (1) ribosome
immunoprecipitation data generated in this study as
well as public data sets (Jiao and Meyerowitz, 2010), (2)
proteomics data (Baerenfaller et al., 2008; Castellana
et al., 2008), and (3) fusion protein expression studies
on selected targets. Finally, making use of the poly-
morphism data from 80 different Arabidopsis acces-
sions (Cao et al., 2011) and protein-coding genes and
genome sequences of other plants, we explored whether
ITFs, especially those that may code for proteins, are
likely functional based on within- and cross-species
conservation.

RESULTS AND DISCUSSION

Defining Transcribed Regions in the Arabidopsis Genome

To explore the functional significance of intergenic
transcription further, a rigorous definition of transcribed
regions within the Arabidopsis genome is necessary.
To this end, we analyzed mRNA-seq data from three
different sources: (1) 7-d-old seedlings generated in this
study, (2) whole flower (Jiao and Meyerowitz, 2010),
and (3) 12-d-old seedlings grown under six environ-
mental conditions (Filichkin et al., 2010; Supplemental
Table S1). We assembled transcript fragments (TxFrags)
using two approaches (see “Materials and Methods”).
In the first approach, contiguous regions in Arabidopsis
occupied by mapped mRNA-seq reads were defined as
expressed (Set 1 TxFrags). In the second, more stringent
approach, we assembled TxFrags using the transcript
assembly program Cufflinks (Set 2 TxFrags).

We first compared the characteristics of Set 1 TxFrags
among annotated features including protein-coding
genes, RNA genes, pseudogenes, and transposons. Re-
gardless of the genomic feature and data set, the Set
1 TxFrag length distributions are bimodal with the first
peaks located near the mRNA-seq single read length,
indicating that most Set 1 TxFrags consist of a single
read (Fig. 1A; Supplemental Fig. S1). Next, the frag-
ments per kilobase of exon model per million mapped
reads (FPKM) measure was used to assess Set 1 TxFrag
expression level. Similar to length distributions, the Set
1 TxFrag FPKM distributions are bimodal with the first
peaks at very low FPKM, mostly consisting of single-
read TxFrags (Fig. 1B; Supplemental Fig. S2). The
likely sources of low-FPKM TxFrags are (1) genes with
very low-level or highly specific expression, (2) “tran-
scriptional noise” representing background genome
transcription (Struhl, 2007), or (3) low-level genomic
DNA contamination in the sequenced mRNA sample.
If the presence of one or more Set 1 TxFrags is con-
sidered evidence of expression, 78% to 94% of protein-
coding genes are expressed. However, 19% to 68% of
pseudogenes and 5% to 69% of transposons would be
considered expressed based on the same criterion
(Supplemental File S1A). Given that Arabidopsis
transposons have been documented to be underex-
pressed (Schmid et al., 2005) and subject to strong
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posttranscriptional silencing through DNA methylation
(Zhang et al., 2006; Zilberman et al., 2007), transposon
expression was used as a conservative error estimate of
expression calls.

To stringently control for false positives arising from
background transcription and/or low-level genomic
contamination, we applied multiple FPKM thresholds
defined according to the percentage of transposon
TxFrags considered expressed (Fig. 1C; Supplemental
File S1A). Comparing percentage of transposons ex-
pressed, we found that the FPKM thresholds have

significantly different impacts on data sets (Fig. 1C).
For example, an FPKM threshold based on the 90th
percentile of the transposon expression distribution
results in a 57.4% reduction of transposon expression
in the 12-d seedling drought stress data set compared
with no FPKM threshold but causes no reduction in
the 7-d data (Fig. 1C). This difference in the degree of
transposon expression due to FPKM threshold choice
is not simply due to differences in sequencing depth,
as the numbers of mapped reads are both approxi-
mately 4.8 3 106 (Supplemental Table S1). In addition,

Figure 1. Characteristics of Set 1 and Set 2 TxFrags. A and B, Length (A) and expression level distributions (B) of various ge-
nomic features, proteins (blue), RNA (green), pseudogenes (red), transposons (orange), and ITFs (black), based on Set 1 TxFrags
identified across all eight RNA-seq data sets. Both axes are logarithmically scaled with base 10. To emphasize the lower peaks,
curves beyond the black dashed line are truncated. C, Percentage of transposons considered expressed based on Set 1 TxFrags
identified from eight data sets at various FPKM thresholds. For details of other features, see Supplemental Table S1. D and E,
Length (D) and expression level distributions (E) for Set 2 TxFrags. F, Percentage of transposons considered expressed based on
Set 2 TxFrags. G and H, Percentage of TxFrags defined as intergenic at different FPKM thresholds among data sets. Set 1 TxFrags
(G) and Set 2 TxFrags (H) were identified as intergenic without an FPKM threshold (black) and at progressively more stringent
FPKM thresholds according to transposon-based false-positive (FP) rates of 1%, 2%, 5%, 7%, and 10%. The x axis indicates the
data sets used to identify TxFrags. The y axis represents the percentage of true-positive TxFrags that are intergenic at each FP
threshold. Note that the percentage did not monotonically decrease because some TxFrags overlapping with annotated features
also were filtered out when false-positive thresholds were applied.
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this difference cannot be attributed to stress treatments,
as degrees of transposon expression in the stress treat-
ment and control samples are similar regardless of
FPKM thresholds (Fig. 1C, green). We note that only
22% to 38% of reads from the 12-d data sets can be
mapped to the Arabidopsis genome compared with
71% and 75% for 7-d and flower data, respectively.
Thus, data quality may significantly impact gene ex-
pression calls, even after quality filtering and mapping
the reads to the genome.
For comparison, we applied a second, more stringent

transcript assembly approach using Cufflinks with bias
corrections of transcript models based on sequences,
positions, and abundance (Trapnell et al., 2010) to gen-
erate Set 2 TxFrags. Compared with Set 1 TxFrags, Set 2
TxFrags are significantly longer (Fig. 1D; Kolmogrov-
Smirnov [KS] test, P , 2.2e-16) and have significantly
higher FPKM values (Fig. 1E; KS test, P , 2.2e-16). In
addition, Set 2 TxFrags length and coverage distribu-
tions overlap with the right tails of Set 1 TxFrags (Fig.
1, A, B, D, and E), indicating that the main difference
between these two sets is enrichment for longer and
more abundant transcripts in Set 2 TxFrags. Increas-
ingly stringent FPKM thresholds still have a significant
effect on the numbers of transposons considered ex-
pressed for several 12-d data sets (Fig. 1F). Nonethe-
less, the second approach allows for better control in
calling transposon expression, which we considered to
be mostly false positive, than the first, simpler approach.

Pervasiveness of Transcription in Arabidopsis
Intergenic Regions

Previous microarray-based studies in Arabidopsis
have shown that a large number of polyA transcripts
are produced from the intergenic regions of the ge-
nome (Yamada et al., 2003; Matsui et al., 2008). Con-
sidering the advantages of RNA-seq over microarrays
for expression studies (Agarwal et al., 2010), we reas-
sessed the preponderance of intergenic transcription
using RNA-seq data sets. Here, TxFrags located within
intergenic regions are referred to as ITFs. We found
that the analysis method (Set 1 versus Set 2), FPKM
threshold, and data set significantly influence estimates
of ITF abundance (Fig. 1, G and H; Supplemental File
S1). For example, 9.2% of Set 1 TxFrags from the flower
data are considered ITFs when no FPKM threshold is
applied, but this proportion drops to 3.7% with an
FPKM threshold of 1.33, which corresponds to a 10%
false-positive rate (Fig. 1G). Comparing between data
sets by allowing a 10% false-positive rate, ITF estimates
differ by 7-fold (2.3%–16.4%) and 73-fold (0.2%–14.6%)
based on Set 1 TxFrags and Set 2 TxFrags, respectively
(Supplemental File S1). Despite these differences, there
are two consistent characteristics among data sets that
separate Set 1 and Set 2 ITFs. Set 1 ITFs tend to be
significantly shorter than Set 2 ITFs (Fig. 1, A and D;
KS test, P , 2.2e-16). In addition, Set 1 ITF expression
levels are not significantly different from those of Set

1 TxFrags (Fig. 1B; KS test, P = 0.28) but are signifi-
cantly lower than protein-coding gene TxFrags (KS
test, P , 2.2e-16). Set 2 ITFs have significantly lower
expression levels than protein-coding gene TxFrags as
well (Fig. 1E; KS test, P , 1e-2), although the pattern is
not as pronounced as for Set 1 ITFs, presumably due to
the bias corrections applied on the data set by Cuf-
flinks. Our findings are consistent with earlier studies
in Arabidopsis (Hanada et al., 2007; Matsui et al., 2008)
and mammals (Wang et al., 2004; van Bakel et al.,
2010), which found that intergenic sequences tend to
be lowly expressed.

We next focused on Set 2 TxFrags, which represent a
more stringently defined set of transcripts. Across data
sets, 0.2% to 14.6% of TxFrags are potentially derived
from intergenic transcription based on a 5% false-
positive rate (Fig. 1H; Supplemental File S1B). This
proportion corresponds to 10,511 ITFs across eight
RNA-seq data sets, together representing 6,545 non-
overlapping intergenic transcribed genomic regions
and spanning 3.6% of the assembled intergenic region
in Arabidopsis. Our ITF estimate is comparable to an
earlier tiling array-based study in Arabidopsis, where
7,719 unannotated transcriptional units were defined
as novel, non-protein-coding RNAs (Matsui et al.,
2008). Other studies have provided more conservative
estimates of Arabidopsis intergenic expressed regions,
from 104 (Stolc et al., 2005) to 2,397 (Yamada et al.,
2003). In mammals, however, the ENCODE project as
well as other studies have reported significantly more
pervasive intergenic transcription (Bertone et al., 2004;
Birney et al., 2007; Kapranov et al., 2007). The EN-
CODE project reported that 488,906 (22.6%) TxFrags
lie in intergenic regions and that 93% of the ENCODE
bases have transcription evidence (Birney et al., 2007).
Compared with Arabidopsis (3.6%), a significantly
larger proportion of the ENCODE region is tran-
scribed, even if we consider Set 1 TxFrags (13.7% at a
5% false-positive rate) that are not as rigorously de-
fined as Set 2 TxFrags.

There are several possible explanations for the dif-
ferences in ITF pervasiveness between plants and hu-
mans. First, the ENCODE study analyzed transcripts
obtained from 31 different cell lines and tissues, which
represents a much broader sampling of the transcriptome
than our study. Second, known issues with tiling ar-
rays used in the ENCODE study, particularly cross
hybridization (Agarwal et al., 2010; van Bakel et al.,
2010), may lead to an overestimation of ITFs. Consis-
tent with this possibility, a previous RNA-seq study of
human 293T cell total RNA found that only approxi-
mately 4% of reads were intergenic (van Bakel et al.,
2011), similar to our Arabidopsis estimate. Third, the
intergenic space in Arabidopsis constitutes only ap-
proximately 40% of the genome, compared with ap-
proximately 99% in the human genome. If intergenic
transcripts are largely derived from noisy transcription
or genomic contamination, species with larger ge-
nomes may have more RNA-seq reads from intergenic
space. The fourth reason may be that larger genomes
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have more functional elements. However, variation in
genome size can be due to extreme proliferation of
transposable elements (Hawkins et al., 2006; Piegu
et al., 2006). Thus larger genomes do not necessarily
contain more genes. Finally, elements of our experi-
mental design, such as the use of tissue samples with
multiple cell types or insufficient coverage, may lead
to an underestimate of ITFs. To address some of the
issues concerning our study design, we analyzed cell
type-specific transcriptome data obtained using direc-
tional Illumina sequencing.

Factors Affecting ITF Estimates

The data sets we analyzed have the following
limitations that may affect estimates of ITF abun-
dance (Clark et al., 2011). First, all data sets were
generated using complex tissue samples that may
render cell type-specific ITFs undetectable. Second,
the sequencing was performed using single reads
without directionality information, which may result
in misassembly of ITFs. Third, the read length and
coverage may be insufficient for detecting ITFs ex-
pressed at low levels. To address these issues, we
directionally sequenced polyA-selected RNA from
T87 suspension culture cells with longer reads (72 bp)
and greater depth (two to nine times more sequenced
bases; approximately 2.3 Gb, approximately 3 3 107

reads). We found that 0.9% of reads and 4.2% of
TxFrags (identified using the same criteria as Set 2
TxFrags) from the suspension culture data are inter-
genic (Supplemental Fig. S3), consistent with the
proportions of intergenic reads and TxFrags identi-
fied from more complicated tissues (Supplemental
Table S1). In addition, in the suspension cell data set,
3,052 (9.8%) TxFrags and 170 (13.1%) ITFs overlap
with one or more other TxFrags and ITFs, respec-
tively, that are in the opposite orientation. Thus, lack
of read directionality information and misassembly
can lead to an approximately 13% underestimate of
ITFs that overlap in opposite orientations.

Another factor affecting the estimate of ITFs is that
the data sets we have analyzed so far are derived from
polyA RNA. Nonpolyadenylated (nonpolyA) RNA
may constitute the bulk of the transcriptome and sig-
nificantly contribute to intergenic expression (Cheng
et al., 2005; Armour et al., 2009; Xu et al., 2010). How-
ever, an earlier study focusing on both polyA and
nonpolyA RNAs in Arabidopsis found that 3.5% of
reads are intergenic (Lister et al., 2008), which is com-
parable to the 0.4% to 8.2% reads that are intergenic in
the mRNA-seq data sets we analyzed (Supplemental
Table S1). In addition, a study of human 293T cell ri-
bosomal RNA-depleted total RNA revealed that ap-
proximately 4% of reads were intergenic (van Bakel
et al., 2011). This suggests that our estimates of inter-
genic transcription in Arabidopsis based on polyA
RNA sequencing are reasonable. Nonetheless, detailed
studies of nonpolyA ITFs will be necessary to estimate

the contribution of nonpolyA transcripts to intergenic
transcription.

Taken together, we have identified 6,545 ITFs (5%
false-positive rate) that are likely novel transcriptional
units not previously defined in the Arabidopsis ge-
nome. Two outstanding questions remain. First, be-
cause these ITFs are derived from polyA RNAs, are
they parts of novel protein-coding or noncoding RNA
genes? Second, do some of these ITFs have clear evidence
of selection, therefore suggesting their functionality?
To address the first question, we assessed the protein-
coding potential of ITFs by analyzing ribosome-
associated transcripts and shotgun proteomics data
sets.

Distinguishing Coding from Noncoding Intergenic
Transcripts Based on Ribosome Association

Translation initiation is the rate-limiting step in pro-
tein translation; therefore, transcripts associated with the
ribosome are more likely to be translated (Kawaguchi
and Bailey-Serres, 2002; Bailey-Serres et al., 2009).
Studies in Arabidopsis (Branco-Price et al., 2008; Jiao
and Meyerowitz, 2010), mouse (Doyle et al., 2008), and
yeast (Ingolia et al., 2009) have taken advantage of this
property to globally investigate translational regula-
tion. To assess whether ribosome association of inter-
genic transcripts is a good measure of their translation
potential, we first sequenced ribosome-associated
transcripts from 7-d-old seedlings. After identifying the
ribosome-associated transcript fragments (R-TxFrags),
we selected eight genomic regions with evidence of
ribosome association and seven without for in vivo
translation studies (Supplemental Table S2). These re-
gions overlap with putative small open reading frame
(sORF) genes that were originally computationally
predicted from intergenic regions (Hanada et al., 2007).
Several of these regions have since been annotated
solely based on computational predictions and/or
complementary DNA (cDNA) evidence. The 59 un-
translated regions (UTRs) and coding sequences of the
sORFs were fused in frame to a yellow fluorescent
protein (YFP) reporter that lacks a translational start
codon, and the translation of these sequences in tran-
siently transformed tobacco (Nicotiana tabacum) leaf
epidermal cells was evaluated (see “Materials and
Methods”; Fig. 2).

Of the eight genomic regions with R-TxFrag evi-
dence, five were translated in tobacco, while only one
of the seven regions without R-TxFrag support was
translated (Fig. 2; Supplemental Table S2). Thus, there
was a significant enrichment of sORFs with R-TxFrag
evidence among those translated in vivo (Fisher’s exact
test, P , 0.05). The observed localization patterns of
the protein fusions were largely consistent with signal
peptide predictions (Fig. 2; Supplemental Table S2),
indicating that the fusion proteins were likely correctly
translated and targeted in tobacco. However, three
sORFs with ribosome association evidence do not
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appear to be translated in the transient expression as-
say. These sORFs may not be translated, or this may be
an artifact due to the use of a heterologous system
(tobacco). One translated sORF is an annotated “other
RNA” gene (At1g31935; Fig. 2I; Supplemental Table S2).
In addition, a number of annotated other RNA genes

have either ribosome association or proteomics evidence,
which highlights the importance of experimentally eval-
uating protein-coding potential. Overall, based on the
findings of our in vivo translation assays, we conclude
that features with evidence of ribosome association are
more likely to be translated than those without.

Translation Evidence for ITFs

Given that ribosome association is a good indicator
of the translation potential of intergenic sequences, we
further analyzed R-TxFrags from the 7-d-old seedling
data to estimate the proportion of ITFs likely to be
parts of coding genes. To address potential issues due
to sequencing coverage or tissue-specific expression
and translation, R-TxFrags were also identified using
ribosome-associated transcript data of whole flowers
and specific floral domains expressing three homeotic
genes (Jiao and Meyerowitz, 2010). For comparison,
we also incorporated shotgun proteomics data from
two studies examining protein expression in multiple
tissues and developmental stages (Baerenfaller et al.,
2008; Castellana et al., 2008). These data are collec-
tively referred to as “translation data sets” and are
summarized in Supplemental Table S3.

As with mRNA-seq, most R-TxFrags and proteomics
tags mapped to previously annotated regions in the
genome, particularly protein-coding genes. Among
ribosome immunoprecipitation data sets, 63% to 73%
of protein-coding genes have one or more R-TxFrags
(Fig. 3A). Similarly, 74% of protein-coding genes have
one or more proteomics tags (Fig. 3A). In addition,
62% to 67% of the R-TxFrags overlap with one or
more proteomic tags. These findings demonstrate that
ribosome-associated transcripts tend to be translated,
consistent with our in vivo translation studies (Fig. 2).
On the other hand, 5% to 23% of annotated ncRNA
genes and 7% to 15% of pseudogenes have uniquely
mapped R-TxFrags and/or proteomics tags. If all an-
notated RNA genes are truly noncoding, calling a
feature translated based on a corresponding R-TxFrag
and/or proteomics tag can have a 5% to 23% false-
positive rate depending on the data set (Fig. 3A,
RNA). One anomaly is that 34.0% of transposons have
proteomics tags, although only 1.9% to 3.4% have
R-TxFrags (Fig. 3A). This discrepancy is in sharp
contrast to our finding that the proportions of protein-
coding genes possessing R-TxFrags and proteomics
tags are both approximately 70% (Fig. 3A). This ob-
servation, also noted in the original study (Castellana
et al., 2008), is inconsistent with studies demonstrating
reduced transcription of transposons (Schmid et al.,
2005) and their extensive methylation (Zhang et al.,
2006; Zilberman et al., 2007). Using the number of
proteomics tags as a proxy for protein expression level,
transposons with proteomics evidence tend to have
significantly fewer tags than protein-coding genes
(Supplemental Fig. S5; KS test, P , 2.2e-16). In addi-
tion, 67.6% of transposons with proteomics evidence

Figure 2. In vivo translation of predicted protein-coding sequences in
transiently transformed tobacco leaf epidermal cells. A, Enhanced YFP
(EYFP) is localized to the cytoplasm (orange arrow) and nucleus (white
arrow). B and C, AT_3|+|1|14212973-14213269-EYFP (B) and AT_1|-|
2|20126281-20126376-EYFP (C) have similar localization patterns.
Nuclei are indicated by white arrows. In C, a series of 18 slices (1 mm
each) was merged to highlight cytoplasmic strands (orange arrow). D
and E, AT_1|-|2|5786755-5786853-EYFP appears to be vesicle local-
ized (white arrow; D), similar to endoplasmic reticulum/Golgi marker
ERD2-GFP (white arrow; E). F, AT_1|-|2|5786755-5786853-EYFP (re-
cently annotated as At1g16916; red) does not colocalize with ERD2-
GFP (green). G and H, AT_3|-|0|3663786-3663977-EYFP (G) and
AT_3|+|2|4574607-4574900-EYFP (H) also have punctate expression
patterns (white arrows). The orange arrow in G indicates potential
aggregation of the AT_3|-|0|3663786-3663977-EYFP fusion protein. I,
AT_1|+|1|11469497-11469754-EYFP appears to localize to the en-
doplasmic reticulum and nuclear envelope (orange arrow), similar to
ERD2 (orange arrow in E). J to L, sORFs in a known noncoding small
nucleolar RNA At1g12013 (J) and in an intron of a protein-coding
gene, At1g43560 (K), are not translated based on a signal similar to a
leaf infiltrated with A. tumefaciens lacking a fusion protein construct
(L). Signal observed in K and L (white arrows) is likely due to cell
damage. Bars = 10 mm. Names of all protein-coding sequences are as
previously published (Hanada et al., 2007).
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have only one tag compared with 26.6% of protein-
coding genes, suggesting that if the transposons are
expressed and translated, it happens at significantly
lower levels than protein-coding genes.

Howmany ITFs have evidence of translation? Among
the 6,545 nonoverlapping ITFs identified from eight
mRNA-seq data sets, 2,107 (32.2%) have one or more
R-TxFrags from one or more of the translation data

Figure 3. Translation evidence, breadth, and distance of ITFs from neighboring genes. A, Percentage of features with over-
lapping translation evidence was calculated for protein-coding genes, RNA genes (excluding other RNA), pseudogenes,
transposons, and ITFs obtained from the 7-d seedling and flower transcriptomes. Ribosome immunoprecipitation data are for
AGAMOUS (AG), APETALA1 (AP1), AP3, flower, and 7-d seedling. Proteomics data are combined data from two studies. Only
uniquely mapping R-TxFrags and proteomics tags were used as evidence. B, Breadth of expression (as indicated by the number
of data sets where a feature can be found) of ITFs (black) and TxFrags mapped to protein-coding genes (blue), RNA genes (red),
pseudogenes (green), and transposons (orange). CDS, Coding sequence. C, Distance distribution of ITFs to their nearest protein-
coding genes. The box plots depict distance distributions between 10,000 sets of randomly sampled intergenic sequences and
their nearest protein-coding genes. D, Percentage of translated ITFs over all ITFs in the same distance bin is shown as a function
of distance to the nearest protein-coding gene. ITFs neighboring proteins with and without transcript evidence are represented
by red and blue lines, respectively. Box plots represent the randomly expected proportions in each distance bin obtained by
permuting the association between distance and presence/absence of translation evidence. The medians of random expecta-
tions are approximately 35%, because approximately 35% of ITFs have one or more pieces of translation evidence.
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sets analyzed (Fig. 3A; Supplemental Fig. S4). Unlike
protein-coding genes, there is substantially stronger
support for ITF translation from ribosome association
than from proteomics data (Fig. 3A). Some of the
ribosome-associated ITFs may contain protein-coding
regions even though there is no proteomics support,
partly due to the fact that proteomics data tend to be
biased toward more abundantly translated proteins
(Baerenfaller et al., 2008). It is also likely that a sig-
nificant number of ribosome-associated ITFs are de-
rived from the UTRs of protein-coding transcripts.
Taken together, even if the false-positive rate is 23%,
approximately 1,622 ITFs are likely parts of transcripts
destined to be translated after eliminating potential
false positives. Thus, a significant number of intergenic
transcripts may be part of larger protein-coding genes,
either as coding sequences or as UTRs. Our finding
highlights the importance of assessing the translational
potential of polyA intergenic transcripts before defin-
ing them as sequences that function solely at the RNA
level.

Relationship between ITFs and Neighboring,
Annotated Genes

Based on an analysis of mRNA sequencing data, we
uncovered thousands of short, low-abundance tran-
scripts from intergenic regions. In addition, many of
these ITFs are supported by translation evidence. One
immediate question is whether these ITFs, translated
or not, are extensions of previously annotated or novel
protein-coding genes. To address this question, we as-
sessed whether there is a significant bias in where ITFs
are located within the Arabidopsis genome by calcu-
lating the distance between each ITF and its closest
annotated protein-coding gene. We found that although
a substantial number of ITFs are closer to genes, they
are not any closer than intergenic sequences sampled
randomly based on ITF number and size (Fig. 3C). This
is contrary to the expectation that ITFs are predomi-
nantly extensions of existing genes.
Given that ITFs in general are not closer to neigh-

boring genes than randomly selected intergenic se-
quences, do ITFs with translation evidence behave
similarly? First, we found that translation evidence
(proteomics tags and R-TxFrags) tends to lie farther
away from protein-coding genes than random expec-
tation (Supplemental Fig. S6A). However, ITFs with
translation evidence tend to lie closer to genes than ITFs
without translation evidence (Supplemental Fig. S6B),
suggesting that most ITFs with translation evidence
may be parts of neighboring protein-coding genes. If
translated ITFs are indeed missing parts of annotated
genes, ITFs closer to genes with transcription evidence
should be enriched in the translated set compared with
ITFs closer to nontranscribed genes. Consistent with
this expectation, among the 4,942 ITFs closest to a
transcribed annotated protein, 37.9% have translation
evidence, while among the 563 ITFs closest to a

nontranscribed annotated protein, only 14.2% have
translation evidence (Fisher’s exact test, P , 2.2e-16;
Fig. 3D). These observations suggest that most ITFs
with translation evidence that are close to annotated
genes may be missing parts of those genes or associ-
ated with the transcription of those genes via an un-
known mechanism.

Taken together, we have demonstrated the presence
of ITFs from more than 6,000 intergenic regions in
Arabidopsis from multiple RNA sequencing data sets.
More than 20% of these ITFs are likely translated or are
part of protein-coding transcripts. Among the 6,545
ITFs, 59.4% are located more than 300 bp away from
an annotated gene. Of these, 847 (21.7%) have trans-
lation evidence. Considering that 300 bp is approxi-
mately the 90th percentile of both Arabidopsis intron
and UTR lengths, these relatively distant ITFs may be
parts of novel transcriptional units. However, ITFs, in
general, tend to be significantly shorter and expressed
at lower levels than protein-coding genes. We also find
that ITFs, in general, tend to be expressed narrowly,
in a data set-specific manner, while TxFrags corre-
sponding to annotated features are present in multiple
data sets (Fig. 3B). The translation of approximately
32.2% of ITFs is supported by one or more ribosome
immunoprecipitation and/or proteomics data sets,
compared with 88.0%, 44.6%, and 36.9% for protein-
coding genes, pseudogenes, and transposons, respec-
tively. In terms of translation, ITFs behave similarly to
pseudogenes and transposons. Previous studies have
suggested that the breadth of expression as well as the
level of expression can be considered as proxy indi-
cators of functionality (Nuzhdin et al., 2004; Sub-
ramanian and Kumar, 2004; Movahedi et al., 2011).
However, genes can have highly specific expression
and/or low expression levels. Thus, one remaining
question is whether these ITFs are parts of functional
sequences with clear evidence of selection.

Evidence of Natural Selection on ITFs at the
Nucleotide Level

Intergenic transcripts that are independent tran-
scriptional units may be derived from noisy, back-
ground transcription or unannotated genes that are
functional (Struhl, 2007; Dinger et al., 2009; van Bakel
et al., 2010, 2011; Clark et al., 2011). Transcripts not
important to cellular function are expected to accumu-
late mutations much like neutrally evolving sequences.
In contrast, functional ITFs should be selected for and
show signs of nonneutral evolution. To assess whether
there is a clear signature of natural selection that is
indicative of functionality, the ITF nucleotide substi-
tution rates were estimated using syntenic genomic
regions of Arabidopsis and Arabidopsis lyrata, which
diverged from their common ancestor approximately
10 million years ago (Hu et al., 2011). We also estimated
the 4-fold degenerate site substitution rates of protein-
coding orthologs as proxies for neutral evolution rates.
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Substitution rates for protein-coding genes, RNA genes,
and randomly chosen intergenic regions not overlapping
with ITFs were also estimated for comparison.

Among 6,545 ITFs, only 1,238 (18.9%) have identi-
fiable syntenic regions for substitution rate estimation
between the two Arabidopsis species. The proportion of
syntenic ITFs is significantly lower than those of
protein-coding genes (90.9%; Fisher’s exact test, P ,
2.2e-16), RNA genes (35.7%; P , 9.1e-10), and pseudo-
genes (33.4%; P , 2.2e-16) but significantly higher than
transposons (10.9%; P , 1.5e-16). Thus, many “orphan”
ITFs without putative orthologs likely evolved rapidly
with little or no selective constraint. For ITFs found
within syntenic regions, substitution rates are signifi-
cantly higher than those of annotated protein-coding
genes (KS test, P , 2.2e-16; Fig. 4A). On the other
hand, ITF substitution rates in general are significantly
lower than those of 4-fold degenerate sites (KS test, P ,
2.2e-16; Fig. 4A). These observations suggest that ITFs
may constitute a mixed population, with the first
population under strong selective constraint and the
second one evolving neutrally. Using the 5th percentile
of the 4-fold degenerate site rate distribution (rate =
0.07) as a threshold, only 6.4% of the 6,545 ITFs are
likely under strong purifying selection. The remaining
93.6% are likely under little or no purifying selection. To
control for local rate variation, we compared the rate of
each ITF with the 4-fold site rates of neighboring
genes. Based on this approach, a much smaller per-
centage, 2.7%, of ITFs were found to be under selection
(Fig. 4B).

One issue in comparing any sequence feature with
4-fold sites is that there can be significant alignment
bias. This is because a sequence feature (e.g. an ITF) is
aligned to its putative ortholog at the nucleotide level,
whereas 4-fold sites are identified from nucleotide sites
originally aligned based on protein sequences. Given
that the alignment process involves finding an align-
ment with the best score, regardless of whether the
sites are homologous or not, it will tend to make a
nucleotide-based alignment look more similar than it
really is. Thus, the lower substitution rate among se-
quence features compared with 4-fold sites can simply
be due to this artifact. To account for this, we selected
random intergenic regions that have no evidence of
expression and calculated their substitution rates.
Similar to ITFs (6.4%), 7.5% of random intergenic re-
gion samples are under strong purifying selection.
More importantly, there is little, but statistically sig-
nificant, difference in the substitution rate distributions
between ITFs and random intergenic sequence (median
rates, 0.09 and 0.08, respectively; KS test, P , 2e-05).
Therefore, after accounting for potential alignment bias,
potentially even fewer than 6.4% of ITFs are under
significant selective constraints. The implication is that,
based on cross-species comparison, the majority of ITFs
appear to evolve in a way similar to presumably non-
functional, nonexpressed random intergenic regions.

To assess the possibility that some ITFs may have a
species-specific function in Arabidopsis, making the

signature of selection only obvious at the intraspecific
level, we analyzed genomic sequences of 80 accessions
of Arabidopsis (Cao et al., 2011) and estimated the
nucleotide diversity (p) for ITFs, annotated sequence
features, and randomly selected intergenic sequences
not overlapping with ITFs. The p value allows us to
assess the genetic variability of different genomic fea-
tures among Arabidopsis populations (Li, 1997). Our
findings suggest that ITFs have p values significantly
higher than coding sequences and RNA genes (KS
tests, both P , 2.2e-16) but similar to random inter-
genic sequences not overlapping with ITFs (Fig. 5). We
also estimated Tajima’s D, Fu and Li’s D, and Fay and
Wu’s H statistics based on site-frequency spectrum to
assess if ITFs are under selection. The distributions of
all three statistics were comparable between ITFs
and randomly sampled, unexpressed intergenic se-
quences (KS tests, all P . 0.1) but significantly differ-
ent from those of protein-coding genes and RNA genes
(KS tests, all P , 0.001; Supplemental Fig. S7). These
findings suggest that there is muchmore relaxed selection
within species on ITFs compared with protein-coding
genes. Furthermore, the intensity of selection on ITFs is
similar to that on random intergenic regions, which are
likely largely nonfunctional and evolve neutrally.

Selection on ITFs with Translation Evidence

Our findings indicate that some ITFs are under strong
selective constraint and may be functional. However, a
much larger number of ITFs do not have clear signa-
tures of selection. One immediate question is whether
ITFs under strong selective constraint tend to be those
that are translated, given that ITFs with translation
evidence tend to be located closer to neighboring
genes. We performed a similarity search between ITF
sequences and the genomes of 15 land plants ranging
from a bryophyte to angiosperms. For comparison and
to address potential annotation issues, we also ana-
lyzed TxFrags mapping to protein-coding genes and
RNA genes. ITFs with evidence of translation were
slightly more conserved over ITFs with no evidence of
translation (compare Fig. 4, C and D), but most ITFs
have significant similarities only between Arabidopsis
and A. lyrata, with sequence similarity rapidly declin-
ing beyond the Arabidopsis genus. On the other hand,
there is a significantly higher degree of cross-species
similarity between protein-coding genes: 6,895 of the
10,000 randomly selected protein sequences had E
values of less than 1e-5 in more than one species (Fig.
4E). Even RNA genes, which are not expected to be
translated, have higher sequence similarities than ITFs
(Fig. 4F). Thus, at both the nucleotide and amino acid
sequence levels, relatively few ITFs are under selection
based on cross-species comparisons.

Of the 847 ITFs with translation evidence that are
located more than 300 bp away from genes, 799 did
not show significant conservation. Considering that
these ITFs tend to be expressed at low levels, such
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sequences may represent translational noise. But we
cannot rule out the possibility that they are lineage-
specific coding sequences. Of the 49 ITFs that did
show conservation, 16 had similar sequences present
in more than one species at the amino acid level (E
value , 1e-5), and 10 showed overlap with computa-
tionally predicted sORFs with high protein-coding

potential (Hanada et al., 2010). The p value distribu-
tion of these 49 ITFs is statistically indistinguishable
from that of TxFrags mapping to protein-coding se-
quences (KS test, P = 0.2; Fig. 5). These ITFs may thus
represent novel functional genes. Nonetheless, only
approximately 5% of ITFs with translational evidence
are subject to strong purifying selection among

Figure 4. Evolutionary conservation of ITF sequences. A, Between-species nucleotide substitution rate distributions of different
features and 4-fold degenerate sites (4x). CDS, Coding sequence. B, Substitution rates of ITFs compared with local substitution
rates of 4x sites. 4x sites of up to 60 neighboring protein-coding genes were used to determine the distributions of local
substitution rates. Black circles indicate medians of the distributions, gray lines define the interquartile ranges, and each orange
or blue circle indicates the substitution rate of the ITF in the given region. The ITFs are arranged from low to high z scores. An
orange circle indicates a significant z score at P , 0.05, while a blue circle indicates P $ 0.05. C to F, Heat maps indicating
degree of cross-species similarity of ITFs with translation evidence (C), ITFs without translation evidence (D), 10,000 randomly
selected TxFrags mapped to annotated protein-coding genes (E), and all TxFrags mapped to annotated RNAs (F). TxFrags
mapping to proteins and annotated RNAs were chosen based on the size distribution of the ITFs. Each row represents a
feature, and each column represents the subject species for similarity search. The expect (E) values were converted to a
negative logarithmic scale and adjusted to be between 0 and 10, with 0 (blue) indicating E $ 1 and 10 (yellow) indicating
E # 1e-10.

Plant Physiol. Vol. 161, 2013 219

Plant Intergenic Polyadenylated Transcripts



Arabidopsis accessions, reinforcing the notion that
most of them are products of noisy transcription.

CONCLUSION

In this study, we analyzed the intergenic polyA
transcriptome of Arabidopsis to address the issues of
abundance, coding/noncoding nature, and functional
relevance of intergenic polyA transcripts. Our results
indicate that approximately 5% of the TxFrags in the
Arabidopsis transcriptome can be reliably called
intergenic. One limitation of our analyses, as we have
noted before, is our focus on the polyA fraction of the
transcriptome. It is likely that the nonpolyA fraction of
the transcriptome may harbor additional novel non-
coding genes that need to be further investigated.
Another limitation is that the read lengths of the RNA-
seq data we used are short. It is possible that some ITFs
belong to the same transcriptional units, making the
number of ITFs an overestimate.

Our results indicate that approximately 3.6% of the
intergenic space in Arabidopsis is transcribed by RNA
polymerase II, and approximately 40% of what is tran-
scribed tends to lie within 300 bp of annotated genes.
Around one-third of ITFs have translation evidence,
and we find a significant bias in their distribution; they
tend to be closer to transcribed protein-coding genes,
raising the possibility that some ITFs may in fact be
unannotated extensions of known genes. Our primary
sequence-level evolutionary analysis indicates that a
relatively low fraction (approximately 5%) of the ITFs
have experienced strong purifying selection either
within species or between species. We should empha-
size that our criteria for evaluating selection is strin-
gent. Furthermore, some ITFs may be more strongly

constrained at the secondary structural level, similar to
noncoding RNA genes (Washietl et al., 2005). In ad-
dition, some long noncoding RNAs such as Air and
Xist are poorly conserved (Pang et al., 2006; Ponting
et al., 2009), indicating that a lack of conservation may
not always mean lack of function. Thus, it is likely we
will miss some ITFs that are under selection or are
functional. However, most ITFs are short, and unlike
the long noncoding RNAs, tend to be data set specific
and expressed at a very low level compared with an-
notated genes. In addition, most ITFs have character-
istics more similar to pseudogenes and transposons
than to protein-coding and RNA genes. Taken to-
gether, most ITFs bear the hallmarks of neutrally
evolving sequences, suggesting that they are pro-
ducts of noisy transcription, as proposed earlier
(Struhl, 2007).

The idea of transcriptional noise has been intensely
debated over the past few years. Some studies support
the theory that the transcriptional machinery might be
error prone and that many transcripts may be the re-
sult of false starts and/or stops (Li et al., 2007; Struhl,
2007; Xu et al., 2009; van Bakel et al., 2010). Such errors
may occur because it is not possible to regulate any
biological process to the point that there is no error;
noisy transcription may exist simply because it incurs
little fitness cost. Considering that the vast majority of
mutations are neutral or nearly neutral (Ohta, 1992),
this paradigm for gene evolution may also apply to
other molecular events, including transcription. As has
been postulated before, the target of natural selection
may be the effects of error-prone transcription rather
than the transcriptional process itself (Hurst, 2009).
Another possibility is that the effect of genetic drift,
particularly on organisms with smaller effective pop-
ulation sizes, may render selection against erroneous
transcript production ineffective. In either case, the
hypothesis is that transcriptional errors may not al-
ways be subjected to purifying selection. Based on our
findings, it would seem that much of the intergenic
transcription falls into this category. We should em-
phasize that, for most ITFs, there is little or no evidence
to reject the null hypothesis that ITFs are nonfunc-
tional. The reason to consider nonfunctionality as null
is simply because only functionality can be experi-
mentally tested (van Bakel et al., 2010).

In a recently published series of papers by the
ENCODE consortium, 80.4% of the human genome
was found to have evidence of functionality (Dunham
et al., 2012). Functionality of a sequence, in this case, was
defined at the biochemical level. That is, a functional
sequence is presumed to have at least one RNA- and/
or chromatin-associated event, such as transcription
factor binding, nucleosome binding, or DNA methyl-
ation, in at least one cell type. However, it remains
unclear to what extent these biochemically functional
sequences may have physiological function, given that
these biochemical events can also be due to noise. As
an example, among the novel long intergenic polyA
TxFrags obtained in the ENCODE study, only 4% of

Figure 5. Distribution of p values for genomic features. The p values
were calculated using population genomic data of 80 Arabidopsis
accessions. x-sp, Cross species. Random intergenic sequences were
selected from regions without transcript support.
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the bases were conserved between humans and ma-
caques. Among the 96% of bases not conserved, only
6% to 11% showed evidence of lineage-specific con-
straint in humans, comparable to what we found in
Arabidopsis (Ward and Kellis, 2012). In addition, the
ITFs found in this study were found to be present at
less than 0.1 copy per cell (Djebali et al., 2012), con-
sistent with our finding that most of the Arabidopsis
ITFs have a very low expression level.
Considering the dramatically increased sensitivity

and throughput in sequencing, noisy transcription and
even contaminating sequences, such as trace amounts
of genomic DNA, can be readily detected. Thus, a
transcription event as detected by sequencing may not
be considered functional by default. Evolutionary
constraint acting on novel sequences or other evidence
should be demonstrated prior to their annotation. The
increasing availability of population-wide polymor-
phism data sets and genome sequences of related
species provide more robust tools for such evolu-
tionary studies, especially those focusing on lineage-
specific selection (Ward and Kellis, 2012). In addi-
tion to the question of functionality, we show that a
significant number of ITFs are associated with ribo-
somes and a smaller fraction of them have proteomics
tags. Thus, novel transcripts should not be regarded as
noncoding by default without rigorous experimental
analysis of their coding potential. Our results also
suggest the need to have a clearer understanding of the
mechanistic aspects of RNA polymerase action on how
noisy transcription may arise. Use of an integrated
approach to validate novel RNA predictions and their
functionality would be important in this regard. For
example, a previous study in mouse used an array of
approaches, including the identification of conserved
histone modification marks, evolutionary analyses of
promoter regions, gene set enrichment analysis, tran-
scription factor chromatin immunoprecipitation, and
RNA interference assays, to identify putative func-
tional long ncRNAs (Guttman et al., 2009). We surmise
that such an approach will allow us to explore more
deeply the mechanistic and evolutionary aspects of
the transcriptional process in plants.

MATERIALS AND METHODS

Plant Material and RNA Isolation

For transcriptome and ribosome immunoprecipitation studies, trans-
genic Arabidopsis (Arabidopsis thaliana) Columbia seeds expressing a
His6FLAG-tagged version of the ribosomal large subunit protein L18B
(35S:HF-RPL18B) were surface sterilized, stratified for 3 d, and sown on
0.53 Murashige and Skoog medium containing 1% (w/v) Suc and 0.4%
phytagel. Seedlings were grown vertically under a 16-h-day (125 mE m22 s21 pho-
tosynthetically active radiation)/8-h-night cycle for 7 d as described previously
(Branco-Price et al., 2008). Seven-day-old seedlings were harvested at the end
of the light period. Total RNA extraction and ribosome immunoprecipitation
were done as described previously (Branco-Price et al., 2008) for three bio-
logical replicates, except that the RNeasy Plant Mini Kit purification step was
omitted. Total RNA and ribosome-immunoprecipitated RNA were quantified
using a Nanodrop spectrophotometer (Nanodrop Technologies), and RNA
quality was assessed using an Agilent 2100 Bioanalyzer (Agilent Technologies).

Illumina RNA-seq and Data Analysis

For each in-house (7-d seedlings) RNA sample, cDNA libraries were con-
structed by first isolating polyA RNA from 3 mg of total or ribosome-
associated RNA. Libraries for RNA-seq were prepared using the Illumina
mRNA-seq Sample Prep Kit. Briefly, polyA RNA was fragmented and reverse
transcribed using random primers. Adapters were ligated to double-stranded
cDNA, and fragments from 175 to 225 bp were gel purified. After PCR am-
plification, the cDNA libraries were sequenced on an Illumina Genome Ana-
lyzer. Each library was loaded onto at least two lanes; however, usable
sequence was only obtained for one polyA RNA library and two ribosome-
associated RNA libraries (four lanes total). Three lanes of ribosome-associated
RNA sequencing, corresponding to two biological replicates, were combined
to give 19,818,643 reads, and one lane of polyA RNA yielding 7,028,772 36-bp
reads was obtained. The original sequencing reads were deposited in the
National Center for Biotechnology Information Short Read Archive under
accession number SRA053376 (http://www.ncbi.nlm.nih.gov/Traces/sra).
All public data sets (Supplemental Table S1; Supplemental Fig. S2) were
downloaded from the National Center for Biotechnology Information Short
Read Archive. The following procedure was commonly performed on both the
in-house and public data sets.

The short reads, after quality trimming, were mapped to The Arabidopsis
Information Resource Arabidopsis genome release 10 using Bowtie version
0.12.7 (Langmead et al., 2009) and TopHat version 1.2.0 (Trapnell et al., 2009).
The default settings were used except that the maximum combined intron size
was set at 5,000 bp. The mapped reads were assembled with two approaches.
In the first approach, reads with overlapping genomic locations were merged
into TxFrags (Set 1 TxFrags) without considering the possibility that neigh-
boring TxFrags may be derived from the same transcriptional units. In the
second approach, Cufflinks 0.9.3 (Trapnell et al., 2010) was used with default
parameters, except that a maximum combined intron size was set at 5,000 bp
(Set 2 TxFrags). All TxFrags overlapping with annotated features by 1 bp or
more, including those in introns or UTRs, were flagged as genic transcripts.

Estimating Expression Level and Breadth of Expression
of Features

For estimating expression level, the FPKM measure was used. Since Set
1 TxFrags represent a set of unique, nonoverlapping TxFrags, the entire
TxFrag was considered an exon for the purpose of FPKM estimation. For Set 2
TxFrags, FPKM values were estimated by Cufflinks. The breadth of expression
was calculated for the 6,545 merged ITFs. For comparison, we also measured
the expression breadth of TxFrags mapping to annotated features. We used
the number of data sets in which a particular feature had expression evidence
(one or more overlapping TxFrag) as a measure of the breadth of expression of
that feature.

59 RACE and Transient Expression of YFP Fusion Proteins
in Tobacco

The 59 UTRs of putative coding sORF sequences were identified from
publicly available cDNA sequences (Aubourg et al., 2007) or were amplified
by 59 RACE (RLM-RACE kit [Ambion] or SMART RACE cDNA amplification
kit [Clontech]). The 59 UTRs and coding sequences of each sORF were am-
plified from genomic DNA and cloned into the TOPO-TA entry vector
(Invitrogen). The sequences were then transferred by recombination mediated
by LR Clonase (Invitrogen) into a modified pMDC83 destination vector
(Curtis and Grossniklaus, 2003), containing the enhanced YFP sequence
(Clontech) and lacking a translational start codon, under the control of the 35S
promoter. Constructs containing sORFs fused in frame with YFP were trans-
formed into Agrobacterium tumefaciens GV3101. Transient transformation was
performed to express sORF-YFP fusions in tobacco (Nicotiana tabacum) cells
(Sparkes et al., 2006). Transgenic A. tumefaciens cells were cultivated overnight,
and 200 mL of the culture (optical density A600 approximately 1–2) was pel-
leted and resuspended with sterile water to 0.1 optical density. A. tumefaciens
cells were infiltrated into tobacco leaves, and the infiltrated tobacco was kept
under constant light for 72 h. Infiltrated areas of tobacco leaves were detached
and observed with an inverted laser scanning confocal microscope (Olympus
Spectral FV 1000). YFP signals were detected with the 514-nm argon laser
excitation line with a band-pass emission filter of 517.5 to 542.5 nm. For visu-
alization of AT_1|-|2|5786755-5786853 (Hanada et al., 2007) and Endoplasmic
Reticulum Retention Defective2 (ERD2) colocalization, equal volumes of A.
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tumefaciens cultures were mixed prior to infiltration. Fluorescence was visual-
ized after 3 d with a Meta Zeiss confocal microscope using the argon laser
excitation lines of 458 and 514 nm and band-pass emission filters of 475 to 525
nm and 530 to 600 nm for blue-shifted GFP and YFP, respectively.

Evolutionary Conservation Analyses

To identify ITFs under selection at the nucleotide level, the Arabidopsis
ITFs were first mapped to the Arabidopsis lyrata genome using GMAP version
2007-09-28 (Wu and Watanabe, 2005) with default settings. Putative ITF
orthologs were defined as pairs of similar sequences (80% or greater coverage,
80% or greater identity, 40 bp or greater match length) between Arabidopsis
and A. lyrata flanked by one or more putative orthologous genes among 10
protein-coding genes on either side of the ITF. Putative orthologs between
these two species were identified based on reciprocal best-match and synteny
information. The orthologous ITFs were aligned using Clustal 2.1 (Thompson
et al., 1994), and the nucleotide substitution rate was calculated using baseml
with the HKY substitution model in PAML (Yang, 2007). ITFs with a substi-
tution rate lower than the 95th percentile (HKY distance # 0.07) of the 4-fold
degenerate site substitution rates of all protein-coding orthologs were deemed
to be evolving under strong purifying selection. To control for genome-wide
variation in local substitution rates, the 4-fold degenerate site substitution rates
of up to 60 protein-coding genes in the vicinity of the ITFs were used to determine
the 5% significance level using a z test. We did not conduct a nonsynonymous
substitutions per nonsynonymous site (Ka)/synonymous substitutions per syn-
onymous site (Ks) analysis for ITFs because (1) most ITFs are short, so the vari-
ance of Ka and Ks estimates for short sequences tend to be high, and (2) it is not
clear what the correct reading frame is, if these ITFs are translated. Instead, to
compare the levels of conservation at the coding sequence level, we performed a
translated BLAST search between ITF/TxFrag sequences and the draft assemblies
of 14 plant species in Phytozome 5.0 (http://www.phytozome.org/). The neg-
ative logarithm of the E value of the top match in each species was used to plot a
heat map. All negative log values of 10 or greater or 0 or less were set to 10 and 0,
respectively.

For conservation analyses within species, we used polymorphism data in
the form of a genome matrix file from 80 different Arabidopsis accessions (Cao
et al., 2011). For each genomic feature type, we reconstructed the aligned se-
quences based on the genome matrix file. The aligned sequences were ana-
lyzed for p, Tajima’s D, and Fu and Li’s D using Variscan (Vilella et al., 2005)
with the following parameters: RefPos = 1, Outgroup = none, RunMode = 12,
UseMuts = 0, CompleteDeletion = 0, FixNum = 1, NumNuc = 60. For Fay and
Wu’s H, we used the orthologs in A. lyrata as outgroups with RunMode = 22.
For comparison, p values for 10,000 randomly chosen protein-coding genes,
RNA genes, transposons, and pseudogenes were also calculated. For features
with fewer than 10,000 sequences, bootstrap samples were used. To determine
the background p values, 10,000 random intergenic sequences were sampled
based on the size distribution of ITFs. Only those intergenic sequences not
overlapping with any TxFrags were used for analysis. For each sequence in
each feature type, a p value was estimated. The p distributions were then
compared statistically.

The presence of ambiguous nucleotides or the short size of the ITFs can
affect the error margins associated with p estimates. To assess whether these
factors influenced our findings, we conducted additional analysis by changing
the minimum number of sites analyzed (MinLength) and the proportion of the
aligned length with nonambiguous bases (coverage). We sampled a range of
MinLength (0, 50, 100, 150, and 200) at no coverage threshold (Supplemental
Fig. S8) and a range of coverage (0, 0.25, 0.50, 0.75, and 1) at no MinLength
threshold (Supplemental Fig. S9). Our analyses suggested that the trend ob-
served in Figure 5 is not affected by the presence of ambiguous nucleotides or
the short length of the ITF.

Sequence data from this article can be found in the GenBank/EMBL data
libraries under accession number SRA053376.
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