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Insertional mutagenesis is a powerful tool for determining gene function in both model and crop plant species. Tnt1, the transposable
element of tobacco (Nicotiana tabacum) cell type 1, is a retrotransposon that replicates via an RNA copy that is reverse transcribed and
integrated elsewhere in the plant genome. Based on studies in a variety of plants, Tnt1 appears to be inactive in normal plant tissue but
can be reactivated by tissue culture. Our goal was to evaluate the utility of the Tnt1 retrotransposon as a mutagenesis strategy in
soybean (Glycine max). Experiments showed that the Tnt1 element was stably transformed into soybean plants by Agrobacterium
tumefaciens-mediated transformation. Twenty-seven independent transgenic lines carrying Tnt1 insertions were generated. Southern-
blot analysis revealed that the copy number of transposed Tnt1 elements ranged from four to 19 insertions, with an average of
approximately eight copies per line. These insertions showed Mendelian segregation and did not transpose under normal growth
conditions. Analysis of 99 Tnt1 flanking sequences revealed insertions into 62 (62%) annotated genes, indicating that the element
preferentially inserts into protein-coding regions. Tnt1 insertions were found in all 20 soybean chromosomes, indicating that Tnt1
transposed throughout the soybean genome. Furthermore, fluorescence in situ hybridization experiments validated that Tnt1 inserted
into multiple chromosomes. Passage of transgenic lines through two different tissue culture treatments resulted in Tnt1 transposition,
significantly increasing the number of insertions per line. Thus, our data demonstrate the Tnt1 retrotransposon to be a powerful
system that can be used for effective large-scale insertional mutagenesis in soybean.

Soybean (Glycine max) is a major commodity crop that
offers a wealth of resources, including proteins, oils,
mineral nutrients, and natural products, that impact hu-
man health and nutrition. The products of soybean are
widely used as vegetable oil and protein sources for hu-
man consumption and are valuable feedstock for the
livestock industry (Gepts et al., 2005; O’Brian and Vance,
2007). Research on soybean is driven by its importance as
a food crop worldwide. In recent years, considerable
progress has been made in developing genomic resources
for soybean, including the complete sequencing of the
genome, which predicts 46,430 high-confidence protein-
encoding genes (Schmutz et al., 2010). Utilizing the Illu-
mina Solexa sequencing platform, a gene expression atlas
of the soybean genome was developed that documented
the transcription of up to 55,616 annotated genes (Libault
et al., 2010). One remaining major challenge is the

elucidation of the function of these genes, especially those
encoding important agronomic traits. This challenge can
be met, in part, by the development of insertional muta-
genesis tools to investigate soybean gene function.

Insertional mutagenesis is an effective method for
functional genomics studies. Mutagenesis can modulate
gene expression and create very useful loss-of-function
mutants, whose phenotypes can validate and explore
gene function. Insertional mutagenesis has been suc-
cessfully used to study gene function in both model and
crop plant species (Cowperthwaite et al., 2002; Alonso
et al., 2003; An et al., 2003; Fladung et al., 2004; Tadege
et al., 2008; Mathieu et al., 2009). A clear example is the
use of T-DNA tagging to create large mutant popula-
tions of Arabidopsis (Arabidopsis thaliana; Alonso et al.,
2003). However, although the development of a T-DNA
insertional mutant repository in soybean is technically
possible, it would require a tremendous amount of la-
bor, since each mutant line would require an indepen-
dent transformation event. Thus, a transposon-tagging
strategy, where many mutations could be derived from
one primary transformation event, is an attractive
approach for a plant such as soybean in which trans-
formation requires a much longer time frame (roughly
1 year, from seed to seed; Parrott and Clemente, 2004;
Mathieu et al., 2009).

Transposon tagging has been used successfully in
soybean. For example, Mathieu et al. (2009) utilized the
well-characterized maize (Zea mays) transposon, Ac/Ds,
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to identify a soybean male-sterile line. Ac/Ds is a class II
transposon, which transposes into new locations in plant
genomes via a “cut-and-paste” mechanism (Wessler,
2006). However, similar to the situation with T-DNA
insertions, the use of this transposon requires many in-
dependent transformation events to create a library suf-
ficiently large to target the entire soybean genome,
because it tends to transpose to linked sites (Jones et al.,
1990; Ito et al., 1999; Parinov and Sundaresan, 2000).
Perhaps a more promising alternative is mPing, a class II
element originally isolated in rice (Oryza sativa; Jiang
et al., 2003; Kikuchi et al., 2003; Nakazaki et al., 2003),
where it transposes at a high frequency and can reach a
high copy number in some cultivars (Naito et al., 2006).
Recently, Hancock et al. (2011) reported that mPing can
successfully transpose in soybean and generated stable,
heritable insertions. However, one possible limitation to
the utility of the mPing element is that the element con-
tinues to transpose, even under normal plant growth
conditions, thereby creating somatic mutations that
could complicate both phenotypic and genetic analyses.
Compared with the class II transposons, the class I

retrotransposons present some advantages for use as an
insertional mutagenic tool (Kumar and Hirochika, 2001).
Retrotransposons transpose in a “copy-and-paste” man-
ner via an RNA intermediate (Kumar and Bennetzen,
1999). Several retrotransposons have already been used
effectively as mutagens in plants. For example, Tos17, an
endogenous retrotransposon of rice, is active in the rice
genome during tissue culture and has been used for gene
tagging in rice (Piffanelli et al., 2007). LORE1, an exon-
targeting endogenous retrotransposon in Lotus japonicus,
was recently used to develop a medium-sized muta-
genized population composed of 2,450 plant lines (Fukai
et al., 2012). The Tto1 element, from tobacco (Nicotiana
tabacum), has also been used for mutagenesis in Arabi-
dopsis (Okamoto andHirochika, 2000) and rice (Hirochika
et al., 1996). Tnt1, originally isolated from tobacco, has
been successfully used in several heterologous hosts,
including Medicago truncatula (d’Erfurth et al., 2003;
Tadege et al., 2005, 2008; Iantcheva et al., 2009), Arabi-
dopsis (Lucas et al., 1995; Courtial et al., 2001), and let-
tuce (Lactuca sativa; Mazier et al., 2007). Collectively,
these studies demonstrate that retrotransposons trans-
pose preferentially into gene-rich regions, thus making
them highly mutagenic. While retrotransposons are ac-
tivated in tissue culture, they appear to be stable in
mature, transgenic plants. Therefore, relatively few pri-
mary transgenic lines can lead to large populations of
mutants by repeated transfer through tissue culture. In-
deed, the retrotransposon Tnt1 has been used success-
fully in the model legume plant M. truncatula to build
useful mutant populations (d’Erfurth et al., 2003; Tadege
et al., 2005, 2008; Iantcheva et al., 2009). The published
M. truncatula Tnt1 population contains nearly 12,000 in-
sertion lines, representing over 300,000 insertions, and
has been used successfully in both forward and reverse
genetics studies (Tadege et al., 2008; Cheng et al., 2011).
However, reactivation of retrotransposon transposition
does not occur in every plant species examined. For

example, Ishizaki and Kato (2005) failed to detected tis-
sue culture reactivation of the Tto1 retrotransposon in
transgenic potato (Solanum tuberosum) plants.

The goal of our study thus was to explore the utility
of the Tnt1 retrotransposon as a mutagenesis strategy
in soybean. Our findings demonstrate that Tnt1 is an
attractive and efficient system that can now be used for
large-scale insertion mutagenesis in soybean.

RESULTS AND DISCUSSION

Generation of Tnt1 Retrotransposon-Containing
Soybean Lines

Although Tnt1 transposes very efficiently in the le-
gume model plant M. truncatula and several other plants,
including tobacco, Arabidopsis, and lettuce (Courtial
et al., 2001; d’Erfurth et al., 2003; Tadege et al., 2005, 2008;
Mazier et al., 2007; Iantcheva et al., 2009), it was impor-
tant to evaluate its utility in soybean for two reasons.
First, due to the economic importance of soybean, it is
critical to develop improved gene-discovery tools. Sec-
ond, it is known that some retrotransposons are genotype
specific for transposition or exhibit high efficiency only on
specific genotypes. For example, the Tto1 retrotransposon
from tobacco transposes in tobacco, Arabidopsis, and rice
(Hirochika, 1993; Hirochika et al., 1996; Okamoto and
Hirochika 2000) but does not transpose in potato tissue
culture (Ishizaki and Kato, 2005). In M. truncatula, the
reactivation protocol of Tnt1 optimized to cv R108 is not
applicable for cv Jemalong (Iantcheva et al., 2009).
Therefore, it is necessary to determine if Tnt1 transposes
in soybean and also to optimize the methodology to in-
duce its transposition.

To investigate whether the Tnt1 element can trans-
pose in soybean during tissue culture, Agrobacterium
tumefaciens-mediated transformation was performed us-
ing a modified soybean cotyledonary node transforma-
tion protocol (Zeng et al., 2004). The plasmid pSH-Tnt1
containing the Tnt1 element was constructed by inserting
the Tnt1 DNA into the binary vector pZY101, which
carries a selectable bar gene marker for glufosinate resis-
tance (Fig. 1A). Transformations were performed in cv
Maverick, a genotype that is susceptible to glufosinate. cv
Maverick is an elite soybean genotype that is resistant to
stress conditions and shows a consistently higher trans-
formation frequency when compared with other geno-
types (Z.Y. Zhang, unpublished data). Twenty-seven
independent glufosinate resistance plants (verified by
leaf-painting assay) were generated by this approach. To
determine if these regenerated plants harbored Tnt1, PCR
experiments were performed using three primer pairs
specific for Tnt1 and one primer pair specific for the bar
gene, as indicated in Figure 1A. All 27 lines gave positive
PCR amplifications for all Tnt1- and bar-specific primer
pairs (data not shown).

Tnt1 Transposes in Regenerated Soybean Plants

To verify the PCR results and to determine if Tnt1
integrated into the soybean genome and transposed
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during tissue culture, we performed Southern-blot anal-
ysis on all 27 lines that were positive by PCR. Chromo-
somal DNA of these plants was extracted and digested
with restriction enzyme NdeI. Southern-blot analysis was
performed using a 755-bp Tnt1 internal fragment as the
probe, which corresponds to bases 1,067 to 1,822 of the
retrotransposon. The same blot was then stripped and
reprobed with a 480-bp bar internal fragment. The NdeI

sites and probe locations are shown in Figure 1A. NdeI
cuts the Tnt1 DNA once at position 1,983 and also cuts
once within the T-DNA region (near the left border).
Therefore, a line carrying Tnt1 associated with a T-DNA
should show a 3.44-kb band when the above-mentioned
probe is used, while most other hybridization bands
would represent transposed Tnt1 copies. Southern-blot
analysis of 16 Tnt1-containing plants and the parent line
cv Maverick using the Tnt1 probe is shown in Figure 1B.
As expected, a 3.44-kb band (indicated by the arrow)
was present, representing nontransposed Tnt1 (i.e.
T-DNA associated) in all 27 lines. This band also hy-
bridized with the bar probe (Fig. 1C), further confirming
that it is T-DNA associated. We detected no plant car-
rying a Tnt1 element without the T-DNA, as has been
reported in M. truncatula, where 11.2% of the regen-
erated plants carried only the retrotransposon (d’Erfurth
et al., 2003). In addition to the 3.44-kb band, multiple
Tnt1-hybridizing bands, which did not hybridize to the
bar probe, were detected in all plants tested, indicating
that Tnt1 is able to transpose in soybean during the
tissue culture associated with transformation (Fig. 1B).
Transposed Tnt1 copy numbers ranged from four to 19,
with an average of approximately eight copies per line.
Thus, the results of these experiments confirm that the
Tnt1 element was stably transformed in soybean plants
by A. tumefaciens-mediated transformation. Since the
plants we analyzed were derived directly from the
tissue culture of primary transformation, the ob-
served transposition events likely occurred during A.
tumefaciens-mediated transformation. The copy numbers
of transposed Tnt1 elements in soybean were similarly,
perhaps slightly less, than that reported for M. truncatula
(ranging from four to more than 30 insertions), Arabi-
dopsis (ranging from zero to 26 insertions), or lettuce
(more than 30 copies; Courtial et al., 2001; d’Erfurth et al.,
2003; Mazier et al., 2007). Further optimization of the
transformation method may permit the generation of
lines with significantly more Tnt1 insertion events.

Southern-blot analysis revealed that all Tnt1-harboring
soybean plants contained transposed Tnt1 elements. No
plant contained just a single copy of T-DNA. This result
is similar to M. truncatula but contrasts with reports in
Arabidopsis, where several regenerated plants con-
tained no transposed Tnt1 copy, or in lettuce, where
four different regenerated lettuce plants were found to
contain only a truncated version of the T-DNA but no
transposed copies of Tnt1.

In order to be useful for large-scale mutagenesis in
soybean, it is critical that the Tnt1 insertion pattern
does not exclude any chromosomes. As one method to
determine the Tnt1 transposition pattern, two Tnt1-
containing plants were analyzed using fluorescence in
situ hybridization (FISH). The Tnt1-containing line
BS5-6 chromosomes were hybridized with Texas Red-
labeled pSH-Tnt1 plasmid DNA. Chromosomes of un-
transformed cv Maverick served as controls. As shown
in Figure 2A, the hybridization signals (red dots) were
detected on most BS5-6 chromosomes, whereas no sig-
nal was detected in the parental control line (Fig. 2C).

Figure 1. A, Diagram of plasmid pSH-Tnt1 containing the Tnt1 element
in the binary vector pZY101. LB and RB, Left and right borders, respec-
tively; bar, gene conferring glufosinate resistance; 35S, promoter 35S; LTR,
long terminal repeat. NdeI restriction sites and PCR fragments for bar
(barA-B) and Tnt1 (TntA-B, TntC-D and TntE-F) amplification are shown.
PCR fragment barA-B or TntC-D was used in Southern-blot analysis to
probe for bar or Tnt1, respectively. B, Southern-blot analysis of Tnt1 pri-
mary transgenic lines to identify Tnt1-hybridizing bands. Chromosomal
DNA (15–20 mg) from each transgenic line was digested with NdeI and
probed with the TntC-D PCR fragment. The arrow indicates hybridization
bands representing nontransposed Tnt1 (i.e. T-DNA associated). M, Mo-
lecular weight markers. Lanes 1 to 16 show Tnt1 mutants BS2-5, BS2-6,
BS3-5, BS5-4, BS5-6, BS5-10, BS5-12, BS5-13, BS6-19, BS6-20, BS7-5,
BS7-7, BS7-8, BS7-10, BS8-5, and BS8-7, respectively. cv Maverick is the
parent line. C, Southern-blot analysis of Tnt1 transgenic lines to identify
bar-hybridizing bands. The blot used in B was stripped and rehybridized
using the barA-B PCR fragment as a probe.
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Moreover, multiple hybridization signals were observed
in several chromosomes (Fig. 2, A and B). Based on the
Southern-blot analysis, line BS5-6 possesses approxi-
mately 19 transposed copies of Tnt1 (Fig. 1B). The FISH
data showing multiple Tnt1-hybridizing regions are
consistent with these results. We should note that al-
though the probe DNA used for FISH experiments
contained the entire Tnt1 and T-DNA, the Southern-blot
analysis revealed that most of the hybridization signals
observed in the chromosomes of BS5-6 were transposed
Tnt1 elements. To further clarify this, we cloned the
5.3-kb Tnt1 DNA into vector pBluescript SK+ and used
the resulting plasmid construct (pBS-Tnt1) as a probe for
FISH experiments to examine line BS5-6. We found that
hybridization signals observed with the pBS-Tnt1 probe
(Fig. 2, E and F) were comparable to those obtained with
pSH-Tnt1 (Fig. 2, A and B). No hybridization signals
were detected when the empty pBluescript SK+ vector
was used as a probe (data not shown). Furthermore, a
FISH experiment was also performed on another Tnt1
line, BS6-19, using pBS-Tnt1 as a probe. The results (Fig.
2, I and J) revealed very strong hybridization signals on
several chromosomes. In addition, several weaker sig-
nals were also detected on other chromosomes. As ex-
pected, no signal was detected in the parental control
line (Fig. 2, G and H). Southern-blot analysis predicted
15 Tnt1 insertions in line BS6-19. To examine the nature
of the stronger FISH hybridizing signals, we performed
fiber-FISH to estimate the size of the hybridizing region.
When a pBluescript SK+ plasmid harboring Tnt1 was

labeled with biotin and used as a probe (Fig. 2K), a
strong signal was detected in line BS6-19 over an esti-
mated length of approximately 34 kb. A plausible ex-
planation for this length is that multiple copies of Tnt1
DNA inserted into the same position on one chromo-
some in this line. This would suggest that the weaker
FISH hybridizing signals likely represent one or at most
a few inserted Tnt1 elements, whereas the stronger hy-
bridizing bands likely represent tandemly arrayed, mul-
tiple copies of Tnt1.

Tnt1 Efficiently Transposes into Coding Regions

To identify Tnt1 insertion sites, we performed ther-
mal asymmetric interlaced (TAIL)-PCR (Ratet et al.,
2006) on 18 independent transgenic lines to recover
Tnt1 flanking sequences. Of the 99 Tnt1 insertion sites
identified, 62 were located in annotated genes (Table
I). Moreover, Tnt1 insertions were found in all 20
soybean chromosomes (Fig. 3), as indicated by map-
ping the flanking sequences to the published soybean
genome sequence (Schmutz et al., 2010). Therefore,
consistent with the results of the FISH analysis, Tnt1
appears to transpose throughout the soybean genome.

To obtain efficient mutagenesis in plants such as
soybean, which has a relatively large genome, it will be
important to use a transposon system with an inser-
tional preference for coding regions rather than inter-
genic regions. One of the main advantages of using
retrotransposons for mutagenesis is that they have

Figure 2. FISH-based characterization of Tnt1 mutant lines BS5-6 and BS6-19. A and C, Chromosomes of line BS5-6 or the
parent line cv Maverick were hybridized with Texas Red-labeled pSH-Tnt1 plasmid DNA, respectively. E and G, Chromosomes
of line BS5-6 or cv Maverick were hybridized with Texas Red-labeled pBS-Tnt1 plasmid DNA, respectively. I, Chromosomes of
line BS6-19 were hybridized with pBS-Tnt1 probe. B, D, F, H, and J, Grayscale images of the chromosomes in A, C, E, G, and I,
respectively. K, Fiber-FISH shows an approximately 34-kb Tnt1 DNA fiber in line BS6-19.
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Table I. Tnt1 hit genes identified by TAIL-PCR

Gene Gene Location Tnt1 Location

Glyma01g01090 Gm01:746970.0.750314 749,413
Glyma01g01300 Gm01:937365.0.939890 940,048
Glyma01g01560 Gm01:1160245.0.1164111 1,162,180
Glyma01g38870 Gm01:50865317.0.50867505 50,866,204
Glyma01g43460 Gm01:54468406.0.54469790 54,468,673
Glyma01g44730 Gm01:55288549.0.55291102 55,288,466
Glyma02g04770 Gm02:3902268.0.3906661 3,905,465
Glyma02g06890 Gm02:5533736.0.5541825 5,540,590
Glyma02g37830 Gm02:43141981.0.43145206 43,142,581
Glyma03g38120 Gm03:44522550.0.44526793 44,523,593
Glyma04g02350 Gm04:1631557.0.1634732 1,633,312
Glyma04g05960 Gm04:4543997.0.4549817 4,549,348
Glyma04g06710 Gm04:5178279.0.5181655 5,180,888
Glyma05g28120 Gm05:33994151.0.33996925 33,994,629
Glyma05g36000 Gm05:39924225.0.39927013 39,925,842
Glyma06g45450 Gm06:48160130.0.48165969 48,165,167
Glyma07g00500 Gm07:224177.0.230842 225,571
Glyma07g06950 Gm07:5607639.0.5610266 5,608,653
Glyma07g10570 Gm07:8857596.0.8860631 8,860,452
Glyma07g15940 Gm07:15658959.0.15662391 15,658,960
Glyma07g38720 Gm07:43421544.0.43422862 43,422,239
Glyma08g10350 Gm08:7484480.0.7485874 7,484,671
Glyma08g43240 Gm08:43081527.0.43082006 43,081,605
Glyma08g45860 Gm08:45121245.0.45131117 45,121,559
Glyma09g29810 Gm09:36663252.0.36666676 36,664,035
Glyma09g35670 Gm09:41618503.0.41620799 41619901
Glyma10g00260 Gm10:75667.0.78986 78,077
Glyma10g40240 Gm10:47715528.0.47720018 47,719,673
Glyma11g02780 Gm11:1804302.0.1806201 1,804,729
Glyma11g04750 Gm11:3266510.0.3268970 3,268,423
Glyma11g36880 Gm11:38179557.0.38181293 38,179,954
Glyma11g37500 Gm11:38592441.0.38597663 38,593,222
Glyma12g04480 Gm12:2982711.0.2987078 2,983,780
Glyma12g28980 Gm12:32372131.0.32373204 32,372,213
Glyma12g32280 Gm12:35785488.0.35787769 35,787,066
Glyma12g35440 Gm12:38564240.0.38567572 38,566,080
Glyma13g20420 Gm13:23889695.0.23897572 23,890,533
Glyma13g32090 Gm13:34359721.0.34361227 34,361,073
Glyma13g35520 Gm13:36943648.0.36950770 36,944,632
Glyma13g39540 Gm13:40114057.0.40114640 40,114,263
Glyma14g04190 Gm14:2812976.0.2815950 2,812,976
Glyma14g04200 Gm14:2818106.0.2821324 2,820,386
Glyma14g17330 Gm14:19105307.0.19109002 19,108,051
Glyma14g35580 Gm14:44570215.0.44571936 44,570,215
Glyma14g40090 Gm14:49077959.0.49084565 49,081,971
Glyma14g40250 Gm14:49220022.0.49221998 49,221,894
Glyma15g08070 Gm15:5675190.0.5675401 5,675,305
Glyma15g08350 Gm15:5892318.0.5898492 5,892,294
Glyma16g25770 Gm16:29864908.0.29872224 29,864,835
Glyma17g03940 Gm17:2586560.0.2590026 2,586,583
Glyma17g35300 Gm17:39275298.0.39276346 39,276,103
Glyma18g00440 Gm18:148373.0.150712 149,539
Glyma18g43100 Gm18:52435074.0.52438457 52,435,987
Glyma18g53850 Gm18:62121982.0.62123472 62,122,569
Glyma19g02320 Gm19:2042249.0.2046314 2,043,219
Glyma19g07410 Gm19:8755326.0.8759630 8,758,960
Glyma19g29690 Gm19:37423341.0.37424387 37,424,167
Glyma19g37430 Gm19:44580492.0.44583090 44,580,764
Glyma20g25660 Gm20:35302630.0.35306802 35,302,638
Glyma20g28620 Gm20:37540008.0.37541602 37,540,335
Glyma20g30490 Gm20:39122592.0.39129208 39,127,429
Glyma20g34300 Gm20:42690498.0.42692467 42,690,537
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been documented to transpose preferentially into gene-
rich regions. Tnt1 does transpose preferentially into
gene-rich regions in M. truncatula, Arabidopsis, and
lettuce (Courtial et al., 2001; d’Erfurth et al., 2003;
Mazier et al., 2007). Our analysis of 99 Tnt1 flanking
sequences revealed that the element inserted into 62
(62%) annotated genes. If Tnt1 insertion into the soy-
bean genome had occurred randomly, the tagging effi-
ciency should have been 9.8% (46,430 genes of 2 kb per
950-Mb genome; Schmutz et al., 2010). Therefore, our
results suggest that Tnt1 preferentially inserts into
protein-coding regions in soybean.

Tnt1 Insertions Are Stable and Heritable in Soybean

We examined the expression of Tnt1 transposase
using reverse transcription (RT)-PCR in young leaves
of progeny lines derived from three independent
transgenic events. As shown in Figure 4, expression of
the Tnt1 was detected in the tissues of the Tnt1 trans-
genic plants but not in leaves of the parent line cv
Maverick. Comparison of three different transgenic
events showed that the level of transposase expression
was variable, which may be due to positional effects at
the various Tnt1 insertion sites.
To determine if Tnt1 insertions are active in self-

fertilized progeny plants, the original T0 Tnt1 soybean

transgenic events were allowed to self-fertilize, and the
locations of the Tnt1 insertions in progeny of six lines
were examined by Southern-blot analysis. The Southern-
blot analysis results of the T1 progeny of Tnt1 lines
BS5-12-8R, BS6-19, BS5-6, BS5-12, BS12-7, and BS5-12-
12C, as well as T2 progeny of line BS6-19, using the
Tnt1 probe are shown in Figure 5 and Supplemental
Figure S1. The locations of the Tnt1 insertions were
found to be stable in the progeny lines because no new
band was observed, indicating an absence of addi-
tional germinal or somatic transpositions. Because the
Southern-blot analysis method was not accurate enough
to resolve all of the different insertions in a transgenic
event, the segregation of individual Tnt1 insertions
from one event (BS5-12-8R) was examined using PCR

Figure 3. Locations of Tnt1 insertion sites in the soybean genome. Tnt1 flanking sequences were identified in 18 Tnt1 lines by
TAIL-PCR. White arrowheads, Tnt1 inserted in coding regions; black arrowheads, Tnt1 inserted in intergenic regions; black
circles, centromeres.

Figure 4. Analysis of Tnt1 expression in young leaves of Tnt1 trans-
genic plants by RT-PCR. As a control, expression of the constitutively
expressed Glyma12g05510 gene (Libault et al., 2010) was also de-
termined. Lane 1, BS5-12-8R; lane 2, BS5-12-12C; lane 3, BS6-19;
lane 4, cv Maverick (parent line).
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amplification of selected flanking regions and scored
as present, absent, or heterozygous in each of the
progeny lines (Table II). For three of four tested loci,
the segregation pattern was close to a ratio of 1:2:1
(25% wild type, 50% heterozygous, and 25% homo-
zygous for a given Tnt1 insertion). These results in-
dicate that Tnt1 insertions do follow Mendelian
segregation. The segregation results for insertion 3
(Table II) indicated that no homozygous mutant locus
was detected, which could be attributable to lethality

associated with insertion or that the population tested
(18 plants) was too small.

In order to be useful as a mutagen, Tnt1 insertions
should remain inactive during normal plant growth
and exhibit segregation consistent with a single locus.
It is important for mutant analysis that new rounds of
transposition do not occur in subsequent generations.
Similar to our findings in soybean, studies have shown
that Tnt1 insertions are genetically independent and
follow Mendelian segregation in Arabidopsis, M.
truncatula, and lettuce (Courtial et al., 2001; d’Erfurth
et al., 2003; Mazier et al., 2007). In Arabidopsis and M.
truncatula, while RT products of Tnt1 are detectable,
they did not result in the integration of new germinal
Tnt1 copies in the progeny of transformed plants
(Courtial et al., 2001; d’Erfurth et al., 2003). Although
expression of the Tnt1 transposase could be detected in
the vegetative tissue of transgenic plants, there was no
evidence that the Tnt1 element was able to transpose in
mature plants and in subsequent generations under
normal growth conditions. These stable insertion events
were heritable and segregated in a Mendelian fashion.

Tnt1 Transposition Can Be Reactivated
in Soybean by in Vitro Culture

Given the time needed to produce independent
soybean transgenic lines, practical use of the Tnt1
transposon in soybean would require that a few initial

Figure 5. Southern-blot analysis of the Tnt1 line BS5-12-8R and its T1
progeny obtained by self-pollination. Fifteen micrograms of chromo-
somal DNA from different plants was digested with NdeI and hybrid-
ized with Tnt1 probe. M, Molecular weight markers; T0, BS5-12-8R;
T1, progeny of BS5-12-8R.

Table II. Segregation of Tnt1 insertions in line BS5-12-8R

PCR analysis results are shown for the segregation of Tnt1 insertions in the progeny of line BS5-12-8R.
Insertions 1, 2, 3, and 4 were inserted into Glyma20g34300, Glyma17g35300, Glyma01g01300, and
Glyma19g07410, respectively. +/+, Wild-type homozygous plants; +/2, heterozygous plants; 2/2, ho-
mozygous plants for a given Tnt1 insertion.

BS5-12-8R Insertion No. 1 Insertion No. 2 Insertion No. 3 Insertion No. 4

T0 +/2 +/2 +/2 +/2
Plant 1 2/2 +/2 +/2 +/2
Plant 2 +/2 +/2 +/+ +/2
Plant 3 +/2 +/+ +/2 +/+
Plant 4 +/2 +/+ +/2 +/2
Plant 5 +/2 +/2 +/2 2/2
Plant 6 +/2 +/2 +/+ +/2
Plant 7 +/2 2/2 +/2 +/2
Plant 8 2/2 +/+ +/2 +/2
Plant 9 2/2 +/2 +/2 +/2
Plant 10 +/+ +/+ +/2 +/2
Plant 11 +/2 +/2 +/2 +/2
Plant 12 +/+ +/2 +/2 2/2
Plant 13 +/2 +/2 +/+ +/2
Plant 14 +/2 +/2 +/2 +/+
Plant 15 +/2 +/+ +/2 +/2
Plant 16 +/2 +/2 +/2 +/2
Plant 17 2/2 2/2 +/2 +/2
Plant 18 +/+ +/+ +/2 +/2
cv Maverick +/+ +/+ +/+ +/+

Ratio
+/+ 3 6 3 2
+/2 11 10 15 14
2/2 4 2 0 2
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transgenic lines be used to reactivate the transposon
through tissue culture in order to generate populations
with large numbers of independent insertions. To in-
vestigate the feasibility of this approach, we tested the
two published methods for soybean regeneration to
gauge their ability to reactivate Tnt1 transposition. The
cotyledons of the Tnt1-containing T1 plant seeds were
used as explants for the first approach (Zeng et al.,
2004). The explants were treated by wounding or
wounding followed by 12 h of shaking in a 1 M Suc
solution. The latter treatment was tested since it was
reported to significantly increase the frequency of Tnt1
transposition in M. truncatula ‘Jemalong’ (Iantcheva
et al., 2009). Over 40 plants were regenerated from
wounded cotyledons of seven Tnt1 T0 lines with or
without Suc treatment. Those plants were examined by
Southern-blot analysis. The results (Fig. 6) revealed
that one line, BS5-12, showed a significant number of
new Tnt1 transposition events (up to 20 copies). The
original T0 parental line contained only four Tnt1 in-
sertion sites. The regenerated plants from other lines
tested by this approach produced zero to five new
Tnt1 insertions in the genome. However, the Suc
treatment did not enhance the frequency of Tnt1
transposition in these experiments.
In order to verify that the new bands observed were

novel Tnt1 insertion sites, TAIL-PCR was performed to

recover the flanking soybean sequence from four
plants generated from reactivation of event BS5-12.
Twenty Tnt1 flanking sequences were obtained from
those plants. Ten specific primers were designed from
the Tnt1 flanking sequences of reactivated line BS5-12-
8R, and five primers were designed from the Tnt1
flanking sequences of reactivated line BS5-12-12C.
Those primers were paired with a Tnt1-specific pri-
mer, LTR7, and used for PCR. PCR results revealed
that all of the BS5-12-8R primers (paired with the LTR7
primer) produced PCR products with BS5-12-8R
chromosomal DNA. Similarly, all five BS5-12-12C
primers produced PCR products with genomic DNA
of BS5-12-12C. No PCR product was produced using
the genomic DNA of the T0 plant BS5-12 or the parent
plant as template. These results confirm that the new
hybridization bands observed by Southern-blot anal-
ysis were indeed novel Tnt1 insertions. Thus, our re-
sults clearly demonstrate that the cotyledon approach
does reactivate Tnt1 transposition and generate addi-
tional insertion sites. However, the fact that only one
line exhibited a high frequency of transposition sug-
gests that the original site of Tnt1 insertion may affect
the ability to transpose. These results are similar to the
case of M. truncatula, where only a few lines were
shown to transpose at a high frequency by repeated
transfer in tissue culture. However, these “starter
lines” were sufficient to generate a large insertional
mutant population (d’Erfurth et al., 2003; Iantcheva
et al., 2009). In the case of soybean, our results suggest
that an extended period in tissue culture, perhaps with
repeated wounding, enhanced the frequency of trans-
position in the BS5-12 line. Consistent with the previ-
ous results, analysis of the Tnt1 flanking sequences
obtained from the reactivated plants showed that Tnt1
inserted preferentially into annotated genes in 12 (60%)
of the isolated integration sites.

In addition to the use of cotyledonary nodes, soybean
can also be regenerated from somatic embryos (Trick
et al., 1997). Somatic embryos were generated from
immature embryos collected from Tnt1-transformed T1
plants. Individual plants from five independent Tnt1-
containing lines were selected for passage through
somatic embryogenesis. During the tissue culture
treatment, seven mature embryos were selected at the
end of a 5-week histodifferentiation step for transpo-
son display analysis (Van den Broeck et al., 1998;
Hancock et al., 2011) using Tnt1-specific primers. This
allowed for comparison of the Tnt1 insertions in the
original plant and the resulting somatic embryos. As
expected, the Tnt1 insertions present in the parent
plant were found to segregate in a Mendelian fashion
in the somatic embryos. In addition, the somatic em-
bryos of four of the genotypes tested showed a small
number (one to five) of novel bands that were not
present in the parent (i.e. BS8-5 and BS5-6; Fig. 7).
However, the somatic embryos produced from the
BS5-13 line showed a large increase in the total number
of novel bands (up to 20) in the somatic embryos (Fig.
7). Some of these novel insertions were shared between

Figure 6. Remobilization of Tnt1 transposition by tissue culture using
cotyledons as explants with wound or wounding plus Suc treatment.
Southern-blot analysis was performed by using NdeI-digested chro-
mosomal DNA of regenerated plants from Tnt1 lines BS5-14 and BS5-
12 with the Tnt1 probe. The hybridization bands that presented in
parent lines are marked with asterisks, and the unmarked bands were
potential novel insertions in regenerated plants. M, molecular weight
standards; P1 and P2, Tnt1 primary transgenic lines BS5-14 and BS5-
12, respectively; RA1, plants regenerated from line BS5-14; RA2,
plants regenerated from line BS5-12; W, plants regenerated from
wound-treated cotyledons; S, plants regenerated from wound plus 1 M

Suc-treated explants.
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embryos, indicating that they occurred early in the
production of embryogenic tissue. Some bands were
also unique to single embryos, suggesting that they
occurred later in embryo development. We should
note that Tnt1-containing line BS5-12 was also tested
for reactivation by this approach but showed only
limited reactivation. Similarly, reactivation experi-
ments performed using the cotyledon-node approach
with event BS5-13 produced only one or two new Tnt1
copies (data not shown). These results suggest that the
efficiency of reactivation approaches are related to the
genotypes of the original Tnt1-containing lines used.

To verify that novel insertion sites arose during so-
matic embryogenesis, we excised three novel bands
from the transposon display gel, performed PCR am-
plification with appropriate primers, and sequenced
the PCR products. This resulted in four sequences that
included both the end of the Tnt1 element and soybean
genomic sequence. A homology search allowed for the
insertion sites to be located in the soybean genome
(Table III). Using primers that flank the Tnt1 insertion
sites, we were able to verify the presence of three of

these Tnt1 insertions (data not shown). Of these, one
was found to be present in the original BS5-13 plant,
but the remaining two Tnt1 insertions were confirmed
to be novel insertions that occurred during tissue cul-
ture treatment. This analysis confirms that the majority
of the bands observed in transposon display represent
true transposition events.

In summary, we compared the ability of two different
tissue culture methods to reactivate Tnt1 transposition.
In both methods, the majority of the lines tested showed
modest transposition, but in each case, a single line
showed a much higher frequency of transposition. An
interesting finding was that different lines were optimal
for the two methods: event BS5-12 showed a higher
frequency of transposition using the cotyledonary node
approach, while line BS5-13 showed higher transpo-
sition during somatic embryogenesis. Therefore, these
two lines represent promising starter lines for the con-
struction of large mutant populations of soybean.

Tnt1: An Insertion Mutagen in Soybean?

Practical use of Tnt1 for mutagenesis in soybean
requires the generation of several initial transgenic
lines for subsequent reactivation by repeated tissue
culture regeneration. This approach is especially well
suited for a plant such as soybean, in which generation
of the original transgenic events is laborious and time
consuming. In this strategy, a higher number of in-
sertions per line allows for a lower number of indi-
vidual plants to be maintained in order to create a
population suitable for mutant screening. The flanking
sequences in this population can be readily identified
using high-throughput sequencing methods to create a
searchable database of insertion sites, comparable to
those currently available for model species (Williams-
Carrier et al., 2010; Urba�nski et al., 2012). Clearly, this
approach has advantages over T-DNA or Ac/Ds muta-
gensis of soybean, in which a large number of inde-
pendent transgenic lines would be needed (Scholte
et al., 2002; Wessler, 2006; Mathieu et al., 2009). The Ac/
Ds system has the added limitation that most inser-
tions occur within a short distance (within a few cen-
timorgan) of the original insertion site (Jones et al.,
1990; Ito et al., 1999; Parinov and Sundaresan, 2000).
Unlike the mPing transposable element (Hancock et al.,
2011), Tnt1 appears to be stable in mature plants with
no evidence of additional germinal or somatic inser-
tions. Consistent with findings in other plant species,

Figure 7. Autoradiograph of Tnt1 transposon display analysis of so-
matic embryos produced from three Tnt1-containing lines. Potential
novel insertions (not present in the parent plant) are marked with as-
terisks. White ovals indicate the bands that were excised from the gel
for sequence analysis. Untransformed soybean DNA was used as the
negative control. f, Failed lanes.

Table III. Tnt1 insertions identified in somatic embryos

Asterisks indicate insertions that could be verified by PCR.

Tnt1 Location Type of Insertion

GM10:48222768 Intergenic
GM08:16425209 Potential promoter region*
GM03:40433849 Exon*
GM09:895535 Approximately 2.5-kb downstream of a

coding region* (present in BS5-13)
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such asM. truncatula, Arabidopsis, and lettuce (Courtial
et al., 2001; d’Erfurth et al., 2003; Mazier et al., 2007),
Tnt1 transposition in soybean targets gene-rich regions
preferentially, which makes it highly effective for mu-
tagenic gene-function studies. Our data revealed that
Tnt1 transposition generates from four to 20 insertions
per plant in soybean. These insertions are stable during
the life cycle of soybean, and they are genetically in-
dependent and can be separated by recombination.
Therefore, unwanted insertions can be removed through
serial backcrossing to the parental line. If one wants
to work with a line with a clean single Tnt1 inser-
tion, a couple of rounds of backcrossing will be
required.
Soybean is an ancient tetraploid whose genome has

undergone at least two rounds of whole-genome
duplication (Schmutz et al., 2010). This raises the
possibility that gene functional redundancy due to the
presence of homeologous gene copies could limit
the ability to obtain informative phenotypes for single
transposon insertions. However, clearly, phenotypes
can be obtained by chemical or radiation mutagenesis
(Cooper et al., 2008; Bolon et al., 2011). Moreover, we
previously identified a male-sterile mutant of soybean
using Ac/Ds mutagenesis (Mathieu et al., 2009). Even
in the model plant Arabidopsis, the presence of multi-
gene families can limit the ability to obtain phenotypes
by mutating a single member of the family (Stacey et al.,
2006). Hence, it remains to be seen whether the paleo-
tetraploid nature of the soybean genome would create
any significant limitations to the use of large-scale
transposon mutagenesis for gene functional studies.

CONCLUSION

We successfully introduced the Tnt1 retrotransposon
into stably transformed soybean plants by A. tumefaciens-
mediated transformation. The inserted Tnt1 elements
appear to be inactive in somatic plant tissues and were
inherited in a Mendelian fashion. However, the activity
of these elements could be reactivated by two different
tissue culture treatments. Analysis of the sequences
flanking the Tnt1 insertion sites showed that the ele-
ment preferentially inserts into protein-coding regions.
Two Tnt1 lines, originally containing only a few copies
of the Tnt1 element, were shown to be highly efficient
for transposition upon passage through tissue culture;
therefore, they represent highly promising lines for the
development of large, mutant populations in soybean.
The development and characterization of such a pop-
ulation would create an extremely useful resource for
both basic and applied studies of this important crop
plant.

MATERIALS AND METHODS

Plant Material and Plant Growth Conditions

Soybean (Glycine max ‘Maverick’) was used for all plant transformation
experiments. Soybean plants were grown in soil in the greenhouse and

watered alternatively with deionized water and a nutrient solution (Miracle-
Gro) with a cycle of 18 h of light at 29°C and 6 h of dark at 24°C.

Bacterial Strains and T-DNA Vectors

The Escherichia coli strain DH5a (Sambrook et al., 1989) was used for
cloning and the propagation of the different vectors. Agrobacterium tumefaciens
strain AGL1 was used in all plant transformation experiments. Plasmids were
introduced into AGL1 by direct DNA transfer (An et al., 1988). An EcoRI
fragment containing the entire Tnt1 element from plasmid pHLV4909 (a gift
from Helene Lucas) was cloned into the binary vector pZY101 (Vega et al.,
2008) to yield pSH-Tnt1. The vector pZY101 carries the bar gene for glufosinate
resistance. The resulting plasmid pSH-Tnt1 was used for all transformations.
The A. tumefaciens strain was grown in yeast extract peptone medium con-
taining rifampicin (30 mg L21) and spectinomycin (100 mg L21) and kept at
250-rpm shaking overnight at 28°C. Cotyledonary explants derived from 5-d-
old seedlings of genotype cv Maverick were used for the cocultivation.

Plant Transformation and Selection

All T0 transgenic soybean events were developed following the protocol as
described previously (Zeng et al., 2004), except that antioxidants dithiothreitol
and sodium thiosulfate were added to the cocultivation medium at the con-
centrations of 3.3 and 1.0 mM, respectively (Olhoft et al., 2003); also, 0, 10, and
5 mg L21 glufosinate was added to the first and second shoot induction media as
well as the shoot elongation medium, respectively. Each regenerated plant was
screened three times from plantlet to plant stage using herbicide leaf painting to
assess the functional expression of the bar gene. All of the plant transformations
were performed at the University of Missouri Plant Transformation Core facility.

Examining the Occurrence of the Tnt1 Element and T-DNA
in Transformed Plants

Chromosomal DNA was isolated from plants according to Dellaporta et al.
(1983). PCR experiments were performed to examine the Tnt1 insertions and
T-DNA in regenerated plants. Three pairs of Tnt1-specific primers and one
pair of bar-specific primers (Fig. 1) were used: TntA, 59-TGGTATCAGAGCA-
CAGGTTCTGCT-39; TntB, 5-AAATGTGACAAAAAATTCGTACCT-39; TntC,
59-AACGGACTAATCACACAGCTTGCC-39; TntD, 59-ATAACTCTCGTA-
TCCATCTCGGTC-39; TntE, 59-TTGATTTTGACGAAATTTTCTCCC-39;
TntF, 59-CCTGCCATATCAGCATCTGTATAG; barA, 5-TACCATGAGC-
CCAGAACGCCC-39; and barB, GGCTGAAGTCCAGCTGCCAGAAAG-39.

Molecular Analysis

Standard procedures were used in the isolation of plasmid DNA, gel
electrophoresis, PCR, DNA ligation, transformation, and electroporation
(Sambrook et al., 1989). Restriction and modification enzymes were obtained
from Promega. Soybean plant chromosomal DNA was extracted from young
leaves according to the procedures described by Dellaporta et al. (1983). Fif-
teen micrograms of RNase A-treated genomic DNA for each line was digested
with NdeI and separated on a 0.8% agarose Tris-acetate EDTA gel running at
30 V overnight. DNAs were transferred to Zeta Probe GT Nylon membrane
(Bio-Rad Laboratories) and used for Southern-blot analysis. Southern-blot
hybridizations were carried out following the procedures of Klein-Lankhorst
et al. (1991). A 755-bp Tnt1 internal fragment corresponding to bases 1,067 to
1,822 of the retrotransposon was used as a probe (Fig. 1A). The Prime-a-Gene
DNA labeling system (Promega) was used for labeling DNA probes. The
[a-32P]dATP (3,000 Ci mol21)-labeled probes were used for hybridization. After
hybridizing with the Tnt1 probe, the blots were stripped according to the in-
structions of the manufacturer and reprobed with a 480-bp bar internal frag-
ment. After washing, the membrane was exposed to a phosphor imager screen
and then visualized using the FujiFilm Fluorescent Imager Analyzer FLA 3000.

RNA Isolation and RT-PCR

Total RNA from young leaves was isolated using Trizol Reagent according to the
manufacturer’s instructions (Invitrogen). The isolated RNAwas further purified and
treated with DNase TURBO DNA-free according to the manufacturer’s instructions
(Ambion) The first-strand complementary DNA was synthesized using avian
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myeloblastosis virus reverse transcriptase (Promega) and used as input in PCR
using Taq polymerase (Promega) according to the manufacturer’s instructions
with the following PCR conditions: 94°C for 5 min, then 35 cycles of 94°C for
30 s, 57°C for 1 min, and 72°C for 2 min, followed by 72°C for 5 min. The
Tnt1 gene-specific forward and reverse primers used were as follows:
59-TGGTATCAGAGCACAGGTTCTGCT-39 (forward primer) and 59-AAA-
TGTGACAAAAAATTCGTACCT-39 (reverse primer). The Cons 6 primers
(Libault et al., 2010; 59-AGATAGGGAAATTGTGCAGGT-39 [forward primer]
and 59-CTAATGGCAATTGCAGCTCTC-39 [reverse primer]), designed from the
sequence of gene Glyma12g05510, were used as internal controls.

FISH and Fiber-FISH Analyses

Sample preparation, FISH and fiber-FISH experiments, and image pro-
cessing were performed precisely as described by Gill et al. (2009). The plas-
mid DNAs of pSH-Tnt1 or pBS-Tnt1 (Tnt1 DNA clone into pBluescript SK+)
were labeled with Texas Red and used as probes for FISH experiments. The
biotin-labeled pBS-Tnt1 DNA was used as a probe for fiber-FISH experiments.

Genetic Analysis

Genomic DNA was isolated from plants according to Dellaporta et al.
(1983). The segregation of different Tnt1 insertions in a randomly chosen line,
BS5-12-8R, was examined by PCR using the following gene-specific for-
ward and reverse primers on genomic DNA: 59-CGAACATTACACCACT-
AAGATGTC-39 (Glyma20g34300F) and 59-TGACATCTCAAATTACTTTCATTG-39
(Glyma20g34300R); 59-TAAGGTCGTCAGCTAATGCCGATC-39 (Glyma17g35300F)
and 59-TCAATTCTTCCCGATCGTTTACAC-39 (Glyma17g35300R); 59-ACCAA-
GCTTTGTGACTGCATCCAC-39 (Glyma01g01300F) and 59-TATATCTTCTTGTG-
GACTACAAGG-39 (Glyma01g01300R); 59-GCCAAGCTTGATTCCAGGGAGATA-
39 (Glyma19g07410F) and 59-TGTTTCTGTATGGTCAGACATAAC-39 (Gly-
ma19g07410R); in combination with the Tnt1 right border primer 59-TAT-
TATTCCGCTTTATTACCGTGA-39 (LTR7). PCR was conducted using
ExTaq Polymerase (Takara) under the following conditions: 94°C for 5 min,
35 cycles of 94°C for 30 s, 60°C for 30 s, and 72°C for 2 min, followed by 72°C
for 5 min.

Tnt1 Flanking Sequence Isolation and Sequencing

The Tnt1 flanking sequences were recovered by TAIL-PCR as described by
Ratet et al. (2006). The arbitrary primers used were AD1 [59-NTCGA(G/C)
T(A/T)T(G/C)G(A/T)GTT-39], AD2 [59-NGTCGA(G/C)(A/T_GANA(A/T)
GAA-39], and AD3 [59-(A/T)GTGNAG(A/T)ANCANAGA-39]. Three
Tnt1-specific primers, Tntail3 (59-TCTGGATGAATGAGACTGGAGG-39,
corresponding to bases 4,696–4,717 of Tnt1), LTR4 (59-TACCGTATC-
TCGGTGCTACA-39, corresponding to bases 534–553/5,258–5,277 of Tnt1),
and LTR7 (59-TATTATTCCGCTTTATTACCGTGA-39, corresponding to bases
555–578/5,279–5,302 of Tnt1) were used for primary, secondary, and tertiary
PCR, respectively. The PCR products were cloned into pGem-T Easy vector
(Promega) and sequenced. DNA sequencing was performed at the DNA Core
Facility of the University of Missouri.

Homology Searching

The flanking sequences of the tagged loci were comparedwith the sequences
of the database using the BLAST program at http://blast.ncbi.nlm.nih.gov,
http://www.phytozome.net/soybean.php (Phytozome), and http://soybase.
org (Soybase).

Reactivation of Tnt1 Transposition

The T0 transgenic Tnt1 events were reactivated using two different tissue
culture approaches. The first approach used cotyledons as explants through
organogenesis-based in vitro tissue culture. All the steps and media followed
the protocol described by Zeng et al. (2004) with modifications, and no A.
tumefaciens inoculation was involved. The major modifications included the
replacement of Murashige and Skoog-based medium (Murashige and Skoog,
1962) with B5-based medium (Gamborg et al., 1968) for all culture stages, the
use of 0.2 mg L21 indoleacetic acid and 2 mg L21 zeatin riboside for the shoot
elongation stage, as well as the deployment of a step-up selection strategy.
Briefly, seeds of primary transgenic Tnt1 events were germinated for 5 d on

B5-based germination medium. The cotyledonary node explants were pre-
pared by wounding with a razor blade with or without Suc solution treatment.
Suc treatment was performed by shaking (120 rpm) the wounded explants in
1 M Suc solution for 12 h. Treated explants were then cultured on B5-based
shoot induction medium for the first 2 weeks and followed by an additional
2 weeks of subculture on the same fresh medium amended with 5 mg L21

glufosinate. Explants were transferred biweekly onto fresh B5-based shoot
elongation medium amended with 10 mg L21 glufosinate. Shoots longer than
3 cm were excised and cultured in B5-based rooting medium without glufo-
sinate selection. Each plantlet (with a shoot and roots) was transferred to
Metro-mix 200 soil (Hummert International) in a Jiffy pot inside a Magenta
culture vessel for acclimatization. Hardened plantlets were transferred to 3-
gallon pots containing Promix soil mixed with Peters 20-20-20 (Hummert In-
ternational) in a greenhouse. Plants were watered as needed. Each event was
screened three times from plantlet to plant stage using herbicide leaf painting
for the functional expression of the bar gene.

For the second approach, seeds of Tnt1-containing T0 plants were germi-
nated and grown in the greenhouse. Somatic embryogenesis and plant re-
generation were performed on the immature embryos collected from these
plants. The production of somatic embryos was performed as described pre-
viously (Trick et al., 1997), excluding bombardment and antibiotic selection.
DNA purification of the parent plant and differentiated embryos was per-
formed using the cetyl-trimethyl-ammonium bromide method (Murray and
Thompson, 1980). The transposon display protocol was essentially the same as
described by Hancock et al. (2011) except using Tnt1-specific primers (Tnt1 P3
[primary amplification], 59-CCAACCAAACCAAGTCAACA-39; Tnt1 P4
[secondary amplification], 59-GGTTGGCTACCAAACCAAAG-39). Excised
transposon display bands were PCR amplified with the appropriate primers
and cloned into pJET1.2 (Fermentas) for sequencing.

Supplemental Data

The following materials are available in the online version of this article.

Supplemental Figure S1. Southern-blot analysis of the T1 progeny of Tnt1
lines BS6-19, BS5-6, BS5-12, BS12-7, and BS5-12-12C, as well as the T2
progeny of line BS6-19, obtained by self-pollination.
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