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Abstract

Purpose: To investigate the effects of curcumin on the development of experimental choroidal neovascularization (CNV)
with underlying cellular and molecular mechanisms.

Methods: C57BL/6N mice were pretreated with intraperitoneal injections of curcumin daily for 3 days prior to laser-induced
CNV, and the drug treatments were continued until the end of the study. The CNV area was analyzed by fluorescein-labeled
dextran angiography of retinal pigment epithelium (RPE)-choroid flat mounts on day 7 and 14, and CNV leakage was
evaluated by fluorescein angiography (FA) on day 14 after laser photocoagulation. The infiltration of F4/80 positive
macrophages and GR-1 positive granulocytes were evaluated by immunohistochemistry on RPE-choroid flat mounts on day
3. Their expression in RPE-choroid complex was quantified by real-time PCR (F4/80) and Western blotting (GR-1) on day 3.
RPE-choroid levels of vascular endothelial growth factor (VEGF), tumor necrosis factor (TNF)-a, monocyte chemotactic
protein (MCP)-1, and intercellular adhesion molecule (ICAM)-1 were examined by ELISA on day 3. Double immunostaining of
F4/80 and VEGF was performed on cryo-sections of CNV lesions on day 3. The expression of nuclear factor (NF)-kB and
hypoxia-inducible factor (HIF)21a in the RPE-choroid was determined by Western blotting.

Results: Curcumin-treated mice had significantly less CNV area (P,0.05) and CNV leakage (P,0.001) than vehicle-treated
mice. Curcumin treatment led to significant inhibition of F4/80 positive macrophages (P,0.05) and GR-1 positive
granulocytes infiltration (P,0.05). VEGF mainly expressed in F4/80 positive macrophages in laser injury sites, which was
suppressed by curcumin treatment (P,0.01). Curcumin inhibited the RPE-choroid levels of TNF-a (P,0.05), MCP-1 (P,0.05)
and ICAM-1 (P,0.05), and suppressed the activation of NF-kB in nuclear extracts (P,0.05) and the activation of HIF21a
(P,0.05).

Conclusion: Curcumin treatment led to the suppression of CNV development together with inflammatory and angiogenic
processes including NF-kB and HIF21a activation, the up-regulation of inflammatory and angiogenic cytokines, and
infiltrating macrophages and granulocytes. This provides molecular and cellular evidence of the validity of curcumin
supplementation as a therapeutic strategy for the suppression of age-related macular degeneration (AMD)-associated CNV.
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Introduction

Age-related macular degeneration (AMD) is the leading cause of

blindness among elderly people in developed countries [1]. Most

of the severe vision loss that can be attributed to AMD results from

its exudative form, which is characterized by choroidal neovascu-

larization (CNV). CNV is defined as the penetration of immature

new blood vessels into the Bruch’s membrane from choriocapil-

laries and their extension into the sub-retinal and/or sub-retinal

pigment epithelium (RPE) space. This is associated with

manifestations such as RPE detachment, subretinal hemorrhages,

and fibrovascular disciform scarring [2].

Although the pathogenic mechanisms underlying CNV are

complex and still largely unknown, increasing amounts of evidence

indicate that inflammatory and angiogenic events, including

inflammatory cells infiltration and cytokine networks, play crucial

roles in the development of CNV [3–5]. Experimental and clinical

studies have revealed that macrophages accumulate in CNV area

and express a variety of cytokines, including vascular endothelial

growth factor (VEGF), which is recognized as a key signal in

promoting angiogenesis and critical for CNV formation [6–8]. In

mice that show pharmacologic depletion of macrophages, CNV is

reduced when VEGF is reduced [3–9]. Granulocytes also have

been found to influx into laser induced CNV lesions and its

depletion correlated with reduced CNV responses and decreased
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Figure 1. Effects of curcumin on CNV formation. (A) Representative micrographs of CNV lesions in the RPE–choroid flat mounts from vehicle-
treated mice and curcumin-treated mice on day 7 and day 14 after laser photocoagulation. CNV is indicated by green fluorescence and FITC-dextran
angiography. Scale bar = 100 mm. (B) Quantitative analysis of CNV size in RPE–choroid flat mounts. Day 7: Vehicle, n= 42 spots; 10 mg/kg curcumine,
n= 45 spots; 30 mg/kg curcumine, n=42 spots; 90 mg/kg curcumine, n= 39 spots. Day 14: Vehicle, n= 66 spots; 10 mg/kg curcumine, n=54 spots;
30 mg/kg curcumine, n= 60 spots; 90 mg/kg curcumine, n= 63 spots. *P,0.05; **P.0.05.
doi:10.1371/journal.pone.0053329.g001
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VEGF protein expression [10–11]. These data suggests an

important role for macrophages and granulocytes in the patho-

genesis of CNV. CNV tissues from human surgical extracted

samples and the rodent laser-induced models also express high

levels of numerous inflammation and angiogenesis-related cyto-

kines, such as monocyte chemoattractant protein-1 (MCP-1; also

known as a major chemokine for macrophages), intercellular

adhesion molecule (ICAM)-1, and tumor necrosis factor (TNF)-

a [6], [12–18]. Neutralization of TNF-a by its monoclonal

antibody or genetic ablation of MCP-1 or ICAM-1, the size and

leakage of laser-induced CNV were significantly reduced [16],

[19–21]. Moreover, some inflammation-related or angiogenesis-

related transcription factors, such as nuclear factor (NF)-kB and

hypoxia-inducible factor (HIF)21a, are reported to involve in the

pathogenesis of CNV, and their inhibition result in the reduction

of laser-induced CNV [22–23]. All of these lines of evidence

suggest the regulation of inflammation and angiogenesis as the

important therapeutic strategy in the suppression of CNV.

Curcumin is a low-molecular-weight phenolic compound

originating from turmeric (Curcuma longa). It has been used for

centuries as a wound-healing agent and for treating various

illnesses in traditional Indian and Chinese medicine [24]. In recent

years, extensive in vitro and in vivo studies have demonstrated that

curcumin possesses a wide variety of biological activities, including

anti-cancer, anti-oxidant, anti-inflammatory and anti-angiogenic

properties [25–27]. The underlying mechanisms of these effects

are diverse and involve the regulation of various inflammation-

related molecular targets and cellular targets, including those

mentioned above, which can be crucial to the pathogenesis of

CNV. Due to its efficacy, ability to affect multiple targets and to its

known safety for human use, curcumin has showed the potent

therapeutic value in clinical settings in the prevention and

treatment of various chronic and acute inflammatory diseases,

such as rheumatoid arthritis, psoriasis, inflammatory bowel

disease, and acute rejection in kidney transplantation [28–32].

Moreover, in the treatment of inflammatory eye diseases in

humans, curcumin has been shown to be as effective as

corticosteroids for chronic anterior uveitis [33], to be effective in

the management of chronic anterior uveitis relapses [34], and to

reduce or resolve inflammatory orbital pseudotumors [35].

Considering the crucial roles of inflammation in neovascular-

ization, we hypothesized that curcumin might represent a potential

agent for the treatment of CNV. In this study, we administered

curcumin to a laser-induced mouse model of CNV to determine

whether this compound can prevent the formation of CNV

formation. We also investigated possible underlying cellular and

molecular mechanisms.

Materials and Methods

Animals
Male wild-type C57BL/6 mice (Nanjing Medical University

Laboratory Animal Center, China) 8 weeks of age were used as the

laser induced CNV mouse model. The mice were anesthetized

with sodium pentobarbital, and the pupils were dilated with

topical 1% tropicamide (Santen, Osaka, Japan). This study was

carried out in strict accordance with the recommendations in the

guide for the care and use of animals of the Association for

Research in Vision and Ophthalmology (ARVO). The protocol

was approved by the Committee on the Ethics of Animal

Experiment of the First Affiliated Hospital of Nanjing Medical

University (Permit Number: 22-005029). All reasonable efforts

were made to minimize suffering.

Drug Treatment and Laser-induced CNV
Mice were pretreated with curcumin (C1386, Sigma-Aldrich) or

vehicle (dimethyl sulfoxide dissolved in phosphate buffered saline,

0.1%) for 3 days before photocoagulation and the treatment was

continued until the end of the study. Firstly, curcumin was

administered to mice by peritoneal injection with the dose of 10,

30 or 90 mg/kg body weight per day to evaluate the inhibitory

effect of curcumin on CNV size. Based on this result, 30 mg/kg

curcumin was determined in other experiments.

Laser photocoagulation (532 nm Argon laser, 120 mW, 100 ms

duration, 75 mm spot size; NovusH VariaTM, UT, U.S.) was

performed bilaterally in each mouse. Laser spots were applied in

a standard fashion around the optic nerve using a slit lamp

delivery system (Lumenis 1000, UT, U.S.) using a handheld cover

slip as a contact lens. Only burns that produced a bubble,

indicating the rupture of the Bruch’s membrane, were included in

the study.

Quantification of Laser-induced CNV
On day 7 and day 14 after laser photocoagulation, the sizes of

CNV lesions were measured on RPE-choroid flat mounts by

fluorescein-labeled dextran (#FD2000S-1G, Sigma, MO, U.S.)

perfusion. In brief, mice were deeply anesthetized and perfused via

left ventricle with 1 ml PBS containing 50 mg/ml fluorescein-

labeled dextran. Then mice were killed, and the eyes were

enucleated and fixed in 4% paraformaldehyde (PFA) for 1 hour.

After washing in PBS, the anterior segment of the eye was cut off,

and the whole retinas were carefully removed from the eyecups.

Four radial cuts in the remaining RPE-choroid-sclera were made

from the edge to the equator, and the eyecups were flat-mounted

with the RPE layer facing up. Those flat mounts were examined

and recorded using the same microscope as earlier. An examina-

tion was performed of the 66 spots from 12 vehicle treated mice

and of 60 spots from 12 curcumin-treated mice were examined,

excluding eyes with hemorrhages (2 eyes in vehicle treated mice

and 4 eyes in curcumin-treated mice). Image J for Windows (NIH,

Bethesda, MD, U.S.) analysis software was used to measure the

area of CNV. Operators were blinded with respect to treatment

groups.

Fundus Photography and Fluorescein Angiography (FA)
To confirm the inhibitory effect of 30 mg/kg curcumin on

CNV formation, fluorescein angiography was performed on day

14 after laser photocoagulation. Fundus examinations were

performed under systemic anesthesia and pupil dilation using

a digital fundus camera (Heidelberg Retina Angiograph II, HRA

2, CA, U.S.), and the laser lesions were studied using fluorescein

angiography to evaluate CNV development and its activity. The

fluorescein sodium injection (10%; 0.1 ml/kg; Alcon, TX, U.S.)

was injected into the intraperitoneal cavity of the mice, and fundus

angiogram photographs were recorded using a High Performance

Digital Image System VK-2 (Kowa, Japan). Fluorescein leakage

was defined as the presence of a hyper-fluorescent lesion that

increased in size over time in the late-phase angiogram as

Figure 2. Fluorescein angiography (FA) of CNV lesions. (A) Representative images of fundus and late-phase FA of vehicle-treated and
curcumin-treated mice on day 14 after laser photocoagulation (white arrowheads: laser spots). (B) Comparison of semi-quantitative CNV FA score
between vehicle- and curcumin-treated mice (n=18 spots, *P,0.001).
doi:10.1371/journal.pone.0053329.g002
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previously described [36]. Angiograms were graded as follows: 0-

no leakage, 1-slight leakage, 2-moderate leakage, 3-prominent

leakage. The number of leaky lesions was counted and the extent

of fluorescein leakage was graded in a masked fashion by two

examiners.

Immunohistochemistry of Macrophages and
Granulocytes on RPE-choroid Flat Mounts
To identify possible cellular responses to curcumin administra-

tion in the CNV model, we examined macrophages and

granulocytes accumulation in laser injury sites. Macrophages were

detected using F4/80 antibody and granulocytes were detected

using GR-1 antibody in the RPE -choroid flat mounts on day 3. In

brief, 2 mice per group were killed on day 3 after laser

photocoagulation, and the eye cups were prepared as given

above. The eyecups were fixed with 4% PFA for 8 hours and

dehydrated in 30% sucrose for 6 hours at 4uC. After blocking with
5% BSA for 1 hour, these eye cups were incubated with primary

antibodies against mouse F4/80 (1:500, Catalog No. BM40075,

Monoclonal Antibody to Mouse Macrophages: F4/80, Acris,

Germany) or GR-1 (1:200, Catalog No. MA1-70099, Monoclonal

Antibody to Mouse Granulocytes, Thermo Scientific, U.S.) for 24

hours. After washing, the eyecups were respectively incubated with

Alexa 546 or Alexa 488–tagged secondary antibodies (Invitrogen,

Carlsbad, CA, U.S.) overnight. The eyecups were washed again

and mounted as before. These slides were examined under

a fluorescence microscope (BX41; Olympus, Tokyo, Japan).

Quantification of Macrophages by Real-time PCR Analysis
(qPCR) and Granulocytes by Western Blot
To quantify macrophages levels, total RNA was extracted from

RPE-choroid complexes of 5 mice in each group on day 3

according to the manufacturer’s recommendations (RNeasy Mini-

Kit, Cat. No. 74104 Qiagen, Valencia, CA, U.S.). The concen-

tration of RNA was determined by ND-2000 (Nano Drop, U.S.).

Total RNA was reverse-transcribed into cDNA according to the

manufacturer’s instructions (SuperScriptTM III First-Strand Syn-

thesis SuperMix for qRT-PCR, Cat. No. 11752-050, Invitrogen,

Carlsbad, CA, U.S.). Real-time PCR was performed using a real-

time PCR cycler (ABI Prism 7800 Sequence Detection System;

Applied Biosystems, Foster City, CA, U.S.). Relative F4/80 (Mm

00802529 _m1) mRNA levels are calculated for fold induction of

gene expression in treated mice in comparison with untreated

normal mice, after normalization to GAPDH gene

(Mm99999915_g1) using the DD CT methods described by the

manufacturer (Applied Biosystems, Foster City, CA, U.S.).

To quantify granulocytes levels, the RPE-choroid complexes of

5 mice were micro-surgically isolated on day 3 and placed

immediately into 200 ml RIPA buffer (R0278, Sigma) supplemen-

ted with 1% protease inhibitor cocktail (P8340, Sigma) at 4uC.
After mechanical disruption, lysates were placed on ice for 20

minutes and centrifuged at 12,000 rpm for 10 minutes at 4uC. The
supernatants were collected and preserved at 270uC. Protein

concentrations were determined using a Coomassie Bradford

Protein Assay Kit (Catalog No. 23200, Pierce, U.S.). Then 15 mg
of total protein per sample was diluted with Laemmli Sample

Buffer (Catalog No.161-0737, Bio-Rad, CA, U.S.), heated at 95uC
for 5 min, separated by SDS-PAGE (sodium dodecyl sulfate

polyacrylamide gel electrophoresis) and electroblotted onto

polyvinylidene fluoride membrane (PVDF, GE Healthcare,

Buckinghamshire, U.K.). After blocking with 2.5% skim milk for

1 hour at room temperature, the membranes were incubated with

the same GR-1 antibody (1:500) as above or b-actin antibody

(1:1000, Catalog No.4967L, Cell Signaling) overnight at 4uC.
After washing with 0.1% Tris-buffered saline (TBS)-Tween, blots

were incubated with horseradish peroxidase (HRP)-conjugated

goat anti-rat IgG (1:1000, Catalog No. 7077, Cell Signaling) or

goat anti-rabbit IgG (1:2500, Catalog No. 7074, Cell Signaling) for

1 h at room temperature. The blots were then washed three times

with 0.1% TBS-Tween and the signals were visualized using an

ECL kit (GE Healthcare, Buckinghamshire, U.K.) according to

the manufacturer’s protocol. The densities of immunoreactive

bands were measured using Image J for Windows (NIH, Bethesda,

MD, U.S.).

Enzyme-linked Immunosorbent Assay (ELISA) of VEGF,
TNF-a, MCP-1, and ICAM-1
To quantify VEGF, TNF-a, MCP-1, and ICAM-1 protein

levels, we extracted protein from the RPE-choroid complexes on

day 3. The protein extraction and the concentration calculation

were the same as the above protocols. The VEGF, TNF-a, MCP-

1, and ICAM-1 protein levels in the supernatant were determined

using mouse VEGF, TNF-a, MCP-1, and ICAM-1 ELISA kits

(Quantikine; R&D Systems) at 450 nm to 570 nm with an

absorption spectrophotometer (BIO-RAD microplate reader 680,

U.K.). They were and normalized to total protein, according to

the manufacturer’s protocols. Four eyes were needed to extract

one protein sample, and 12 mice in each group were examined.

Immunohistochemistry of Macrophages and VEGF on
Cryo-sections
To determine the role of macrophages in VEGF production,

double immunostaining of macrophages and VEGF were

performed using F4/80 antibody and VEGF antibody on cryo-

sections on day 3. In brief, 2 mice per group were killed on day 3

after laser photocoagulation, and the eyes were fixed with 4%

paraformaldehyde (PFA) for 8 hours and dehydrated in 30%

sucrose for 6 hours at 4uC and then embedded in surgipath FSC

22 H frozen section medium (Catalog No.3801480, Leica). The

eyecups were sectioned into slices with the thickness of 8 mm. After

blocking with 5% BSA for 1 hour, these cryo-sections were

incubated with the primary antibodies of F4/80 (the same as

above) and VEGF (1:200, Catalog No. ab46154, Rabbit poly-

clonal to mouse VEGF, Abcam, USA) for 24 hours. After washing,

the cryo-sections were incubated with Alexa 488- and 546–tagged

secondary antibodies (Invitrogen, Carlsbad, CA, U.S.) and DAPI

for 1 hour. These slides were washed again and mounted as

before, and examined under the fluorescence microscope as above.

Figure 3. Inhibitory effect of curcumin on macrophages and granulocytes infiltration into CNV. (A) Immunohistochemistry of
macrophages (F4/80, red) in RPE–choroid flat mounts on day 3 (Scale bar = 100 mm). (B) The expression of F4/80 mRNA in RPE–choroid complexes on
day 3 after photocoagulation. After photocoagulation, F4/80 mRNA expression significantly increased compared with no laser photocoagulation
controls (relative to normal control). The increased F4/80 mRNA expression was significantly suppressed by curcumin treatment (n=5, *P,0.05). (C)
Immunohistochemistry of granulocytes (GR-1, green) in RPE–choroid flat mounts on day 3 (Scale bar = 100 mm). (D) Left: Representative Western blot
showing GR-1 protein expression in samples from vehicle- and curcumin-treated mice on day 3 after photocoagulation. b-actin was used as a loading
control. Right: Semi-quantitative analysis of the intensities of GR-1 bands from vehicle- and curcumin-treated mice. The mean for GR-1 in RPE–choroid
complex of untreated mice was set at 100% (n= 5, **P,0.05).
doi:10.1371/journal.pone.0053329.g003
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Figure 4. Inhibitory effects of curcumin on RPE–choroid production of angiogenic and inflammatory molecules. Curcumine
significantly suppressed RPE–choroid protein levels of VEGF (A: n= 6. *P,0.01), TNF-a (B: n=6. **P,0.05), MCP-1 (C: n= 6. ***P,0.05), and ICAM-1
(D: n=6. ****P,0.05) on day 3. (E) Double immunostaining of F4/80 and VEGF on cryo-sections on day 3. High levels of VEGF were expressed in F4/
80-positive macrophages at the photocoagulated sites. VEGF localized mainly in infiltrating macrophages at the laser injury sites. Curcumin treatment
apparently decreased VEGF immunoreactivity compared to vehicle treatment. Scale bar = 100 mm.
doi:10.1371/journal.pone.0053329.g004
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Western Blot Analysis of NF-kB and HIF21a
To determine whether curcumin treatment affected the NF-kB

signaling pathway in the laser-induced CNV model, the nuclear

extract of RPE-choroid complexes from 5 mice were prepared for

western blot analysis 6 hours after laser photocoagulation, which

was performed according to the method of Andrews [37]. Protein

preparation for HIF21a and the protocols of western blot were

the same as the above, except the first antibody and the second

antibody. Here, the membranes were incubated with the first

antibody of a rabbit polyclonal anti-NF-kB p65 antibody (1:1000,

Catalog SC-109, Santa Cruz, CA, U.S.) or a rabbit monoclonal

anti-HIF21a antibody (1:500, Catalog 100–105, Novus, U.S.) or

a anti-GAPDH (14C10) (1:1000, Catalog No.2118, Cell Signal-

ing), and the second antibody of a horseradish peroxidase (HRP)-

conjugated goat anti-rabbit IgG (1:2500, Catalog No. 7074, Cell

Signaling).

Statistical Analysis
Results are expressed as the mean 6 SE with n as indicated.

Student’s t test and one-way ANOVA were used for statistical

comparisons of two groups and multiple groups. Differences

between the means were considered statistically significant at

P,0.05.

Results

Suppression of CNV Formation in Mice Treated with
Curcumin
Curcumin treatment did not induce any significant side effects

in present study, such as weight loss, severe infection and death.

However, clumps of curcumin precipitations were detected in

abdominal cavity of all the mice treated with 90 mg/kg curcumin

on day 7 and day 14, while in 10 mg/kg or 30 mg/kg curcumin

treated mice, no curcumin precipitations were detected (Data not

shown).

An analysis of RPE-choroid flatmounts showed the distinct

reduction in CNV area after curcumin treatment (Fig. 1A). On

day 7, the mean CNV area was 18,317.1061014.13 mm2 in

vehicle-treated mice (n=42 spots). It significantly decreased in

10 mg/kg curcumin-treated mice (15,019.486823.40 mm2, n=45

spots), 30 mg/kg curcumin-treated mice (12,186.476836.01 mm2,

n=42 spots) and 90 mg/kg curcumin-treated mice

(11,745.976883.89 mm2, n=39 spots). They respectively trans-

Figure 5. Suppression of NF-kB and HIF21a by curcumin treatment. (A) Representative Western blot showing NF- kB protein in the nuclear
extract in samples from vehicle- and curcumin-treated mice 6 hours after laser injury. GAPDH was used as a loading control. (B) Semiquantitative
analysis of the intensities of NF- k B bands in nuclear extracts from vehicle- and curcumin-treated mice. The mean for NF- k B in RPE–choroid complex
of untreated mice was set at 100% (n= 5, *P,0.05). (C) Representative Western blot showing HIF21a protein expression in samples from vehicle- and
curcumin-treated mice on day 3 after photocoagulation. GAPDH was used as a loading control. (D) Semiquantitative analysis of the intensities of
HIF21a bands from vehicle- and curcumin-treated mice. The mean for HIF21a in RPE–choroid complex of untreated mice was set at 100% (n= 5,
**P,0.05).
doi:10.1371/journal.pone.0053329.g005
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lated into 18%, 33% and 36% decrease in CNV area by curcumin

treatment (P,0.05) (Fig. 1B). On day 14, the mean CNV area was

21,300.536894.57 mm2 in vehicle-treated mice (n=66 spots). It

also significantly decreased in 10 mg/kg curcumin-treated mice

(17,821.716819.62 mm2, n=54 spots), 30 mg/kg curcumin-trea-

ted mice (14,445.556709.74 mm2, n=60 spots) and 90 mg/kg

curcumin-treated mice (13,752.266680.79 mm2, n=63 spots).

They translated into 16%, 32% and 35% decrease in CNV area

by curcumin treatment (P,0.05) (Fig. 1B).

Compared with the dose of 10 mg/kg, curcumin at the dose of

30 mg/kg and 90 mg/kg showed higher inhibitory effect (P,0.05)

both on day 7 and day 14. Although CNV size of 90 mg/kg

curcumin treated mice tend to be smaller than that of 30 mg/kg

curcumin treated mice, they had no significant difference in

statistics (P.0.05).

Reduction of CNV Leakage Under Curcumin Treatment
All laser spots, which showed a central depigmented crater

surrounded by irregular hyperpigmentation in fundus photograph,

demonstrated evident fluorescein leakage in FA on day 14 after

photocoagulation. Comparisons of fluorescein angiograms be-

tween vehicle- and curcumin-treated mice confirmed that the

formation of CNV was less severe in curcumin-treated mice

(Fig. 2A). Curcumin treatment significantly reduced fluorescein

leakage from the photocoagulated lesions by approximately 36%

(n=18 spots, P,0.001, Fig. 2B).

Inhibition of Macrophages and Granulocytes Infiltration
Under Curcumin Treatment
In the immunohistochemistry of RPE-choroid flatmounts, F4/

80-positive macrophages (Fig. 3A) and GR-1-positive granulocytes

(Fig. 3C) were substantially rarer in curcumin-treated mice than in

vehicle-treated mice.

In quantitative analyses, we detected very low-level F4/

80 mRNA expression and GR-1 protein expression in RPE-

choroid complexes in normal mice (without laser treatment). On

day 3 after laser photocoagulation, the expression of F4/80 and

GR-1 dramatically increased, but curcumin treatment significantly

suppressed their expression over vehicle treatment (n=5, P,0.05,

respectively, Fig. 3B and Fig. 3D).

Inhibition of Angiogenic and Inflammatory Molecules by
Curcumin Treatment
To determine whether curcumin treatment affects angiogenic

and inflammatory molecules related to the pathogenesis of CNV,

protein levels of VEGF, TNF-a, MCP-1, and ICAM-1 in the

RPE–choroid complex were analyzed by ELISA. RPE–choroid

levels of VEGF, TNF-a, MCP-1, and ICAM-1 were significantly

higher in mice with CNV than in age-matched healthy controls.

Curcumin treatment significantly suppressed protein levels of

VEGF (217.83611.79 pg/mg vs. 165.8369.16pg/mg, P,0.01,

n=6, Fig. 4A), TNF-a (162.67614.54 pg/mg vs. 129.6769.98

pg/mg, P,0.05, n=6, Fig. 4B), MCP-1 (72.8366.04pg/mg vs.

57.1766.02 pg/mg, P,0.05, n=6, Fig. 4C), and ICAM-1

(114.5067.91 pg/mg vs. 90.6765.08 pg/mg, P,0.05, n=6,

Fig. 4D) relative to vehicle treatment.

In immunohistochemistry, strong VEGF-positive immunoreac-

tivity was detected in the laser injury sites. The immunoreactivity

was mainly localized to infiltrating F4/80-positive macrophages at

the laser injury site. Curcumin treatment decreased the VEGF

immunostaining with the reduction of F4/80-positive macro-

phages compared to vehicle treatment (Fig. 4E).

Suppression of NF-kB and HIF21a by Curcumin
Treatment
To investigate the signaling pathway involved in curcumin

treatment, we focused on NF-kB as an upstream transcriptional

factor of inflammatory mediators and analyzed nuclear trans-

location of NF-kB p65. In nuclear extracts from mice with no laser

injuries, NF-kB expression was very low. However, it had

increased significantly 6 hours after laser photocoagulation, and

this increase was reduced by curcumin treatment (n=5, P,0.05,

Fig. 5A, B). As an transcriptional factor of angiogenic mediators,

HIF21a protein expression significantly increased in choroid-

RPE complexes on day 3 after photocoagulation, and it was

markedly suppressed by curcumin treatment (n=5, P,0.05,

Fig. 5C, D).

Discussion

In the present study, we evaluated the therapeutic value of

curcumin in the treatment of a mouse model of laser-induced

CNV. Our results demonstrated that curcumin-treated mice had

smaller CNV size and less fluorescence leakage than the vehicle-

treated mice, which suggest that curcumin can effectively suppress

the experimental CNV. Dose response to curcumin treatment

showed that the dose of 30 or 90 mg/kg has higher inhibitory

effect on CNV size than that of 10 mg/kg, however, no significant

difference were detected between the former 2 doses. This maybe

caused by the precipitation of curcumin at the dose of 90 mg/kg,

which decrease the bioavailability of curcumin. At this dose

(90 mg/kg), it is also difficult to gauge how much of the injected

curcumin had been absorbed. Therefore, we determined the dose

of 30 mg/kg to investigate the possible underlying cellular and

molecular mechanisms.

To investigate the possible cellular mechanism underlying

curcumin suppression in CNV, we evaluated the infiltration of

macrophages and granulocytes on the day of peak response (Day

3) [10], [12–38]. Results demonstrated that the infiltration of

macrophages and granulocytes was significantly suppressed by

curcumin treatment. During the early phase of laser-induced

CNV, local MCP-1 was found to increase and recruit monocytes

to the site of laser injury sites [39–40]. There they become

inflammatory macrophages expressing various angiogenic cyto-

kines and inflammatory cytokines, and promote neovasculariza-

tion [22–41]. Granulocytes are another infiltrating cells in laser

lesions, which act as the potent initiator of inflammation and

angiogenesis in the early phase of laser-induced CNV [10–11].The

depletion of macrophages or granulocytes can result in significant

suppression of CNV formation [3], [9–10]. As a potent anti-

inflammatory agent, curcumin has displayed the ability to inhibit

macrophages migration in vitro, and suppress macrophage in-

filtration in a variety of preclinical animal models of inflammation-

associated diseases, such as diabetic or obstructive nephropathy,

lipopolysaccharide- or high-glucose-induced renal inflammation

and obesity-induced inflammation [42–46]. Curcumin also has

been reported to block the chemotaxis of granulocytes in vitro [47],

and inhibit influx of granulocytes in a series of chronic and acute

inflammatory diseases in animal model, such as inflammatory

bowel disease [48], pancreatitis [49], airway inflammation and

lung cancer [50], arthritis [51] and shock [52]. Our results are

consistent with these data and indicate that the suppression of

macrophages and granulocytes infiltration acts as an important

cellular mechanism for curcumin treatment in the current model.

A variety of cytokines, chemokines, and endothelial adhesion

molecules, along with cellular behavior, orchestrate the formation

of CNV [53]. In the present study, we investigated the impact of
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curcumin on the production levels of the angiogenesis- and

inflammation-associated molecules underlying macrophages, in-

cluding VEGF, TNF-a, MCP-1, and ICAM-1, which has been

shown to be up-regulated in both human and animal CNV tissues.

VEGF is a potent angiogenic stimulator that promotes pro-

liferation and migration of vascular endothelial cells and enhances

vascular permeability [54]. Previous reports regarding the

molecular mechanisms underlying the development of CNV

showed VEGF to be a crucial promoting mediator [5–8].

Curcumin has shown to inhibit VEGF production in numerous

inflammation-associated animal models of disease, such as diabetic

retinopathy, corneal neovascularization, diabetic nephropathy,

and ectopic endometrium [27] [55–59]. Consistent with these

data, our results demonstrate that curcumin can decrease VEGF

production in the early phase of laser-induced CNV. In addition, it

has been reported that the infiltrating macrophages in CNV

lesions are a rich source of VEGF and that curcumin can suppress

VEGF production in stimulated monocyte cells in vitro [4–60]. Our

results of VEGF and macrophages double immunostaining agree

with these data and indicate that macrophages play an important

role in the variation of intro-ocular VEGF after laser injury.

Therefore, in this study, the curcumin-induced suppression of the

expression of VEGF after laser injury can be explained at least in

part by treatment with curcumin, effectively inhibiting the

infiltration of macrophages secreting VEGF.

Our results also show that curcumin significantly inhibited the

protein levels of TNF-a, MCP-1, and ICAM-1 in the RPE-

choroid complexes with CNV. TNF-a expressed in infiltrating

macrophages has been found in surgically excised CNV

membranes of patients with AMD [18–61]. The size and leakage

of laser-induced CNV lesions were reduced by TNF-a inhibitors in

mice [21], rats [62], and monkeys [63]. Moreover, anti-TNF-

a therapy in patients with inflammatory arthritis who also had

AMD resulted in partial CNV regression and improvements in

visual acuity [64–65]. These studies have highlighted the role of

TNF-a in CNV pathogenesis. TNF-a is a pleiotropic cytokine that

mediates angiogenic and inflammatory effects in the cells involved

in the formation of CNV. For example, TNF-a induces VEGF

production from monocytes and RPE cells [60–61]. In addition,

TNF-a can increase the production of inflammatory cytokines

from RPE cells and endothelial cells, including MCP-1 and

ICAM-1 [66–70]. MCP-1 is one of the most potent macrophages

recruiting molecules, and ICAM-1 is an important component of

cell-to-cell interactions during inflammatory responses, mediating

leukocyte (including macrophages) adhesion [41–71]. Both MCP-

1 and ICAM-1 have been shown to be associated with the

progression of CNV [6–67], [72–73]. Previous studies have shown

that curcumin can inhibit the production of TNF-a in lipopoly-

saccharide (LPS)- or phorbol methyl acetate (PMA)-stimulated

dendritic cells, monocytes, macrophages, endothelial cells, and

bone marrow cells and inhibited MCP-1 and ICAM-1 expression

in TNF-a stimulated endothelial cells [66–74]. In diabetic rats,

curcumin significantly reduced TNF-a levels in the retina,

prevented experimental diabetic retinopathy, decreased MCP-1

and ICAM-1 levels in the kidney, and ameliorated macrophage

infiltration [43–56]. Our results are consistent with these in vitro

and in vivo studies and confirm the profound inhibitory effects of

curcumin on these inflammatory cytokines.

Because transcription factor NF-kB is known to regulate the

expression of a wide range of genes critical to inflammation, we

examined the effects of curcumin on the NF-kB expression in

nuclear extracts of RPE-choroid complexes after photocoagulation

[75]. Previous studies have shown that NF-kB becomes activated

with the up-regulation of angiogenic or inflammatory molecules,

such as VEGF, MCP-1, ICAM-1, and IL-6, during the early phase

of CNV formation [22–76]. NF-kB inhibition leads to significant

suppression of experimental CNV [22]. Curcumin has been shown

to prevent NF-kB activation in numerous types of cells, including

macrophages, RPE cells, and endothelial cells, and then suppresses

various inflammation-associated gene products [77–80]. Our

results show that curcumin suppress the activation of NF-kB in

the RPE-choroid complexes with CNV, which is consistent with

the results of previous reports. HIF-1a, the main reactor of

hypoxia, can activate the transcription of various angiogenic genes

including VEGF and ICAM-1, and plays a pivotal role in

angiogenesis [81]. HIF-1a expression was detected in surgically

excised human CNV membranes [82–83] and its level elevated in

the eyes of laser induced CNV animal models (23, 18032914,

22915031) [23], [81–84]. While in pharmacologically or geneti-

cally HIF-1a-depleted mice, CNV was significantly suppressed

with reduction of intraocular VEGF and/or ICAM-1 [23], [81–

84]. Here, our results demonstrated that the HIF21a activation

induced by laser treatment was significantly suppressed by

curcumin, which are compatible with previous results that

curcumin or its derivate had the ability to down-regulated

HIF21a and VEGF expression in vascular endothelial cells and

blocked angiogenesis in vitro [85–86]. Our data, at least in part,

also suggest that the suppression of the expression of angiogenic

and inflammatory molecules observed after laser injury is due to

curcumin-induced inhibition of the NF-kB and HIF21a pathway.

Collectively, the curcumin-mediated suppression of CNV

formation observed in the present study is probably attributable

to the inhibition of multiple inflammatory and angiogenic steps

including the activation of NF-kB and HIF-1a, infiltration of

macrophages and granulocytes, and up-regulation of inflammato-

ry and angiogenic molecules. Therefore, we propose that

curcumin may serve as a therapeutic approach to the treatment

of CNV in AMD.
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