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Abstract

Retinal ganglion cells (RGCs), which survive in large numbers following neurodegenerative diseases, could be stimulated
with extracellular electric pulses to elicit artificial percepts. How do the RGCs respond to electrical stimulation at the sub-
cellular level under different stimulus configurations, and how does this influence the whole-cell response? At the
population level, why have experiments yielded conflicting evidence regarding the extent of passing axon activation? We
addressed these questions through simulations of morphologically and biophysically detailed computational RGC models
on high performance computing clusters. We conducted the analyses on both large-field RGCs and small-field midget RGCs.
The latter neurons are unique to primates. We found that at the single cell level the electric potential gradient in
conjunction with neuronal element excitability, rather than the electrode center location per se, determined the response
threshold and latency. In addition, stimulus positioning strongly influenced the location of RGC response initiation and
subsequent activity propagation through the cellular structure. These findings were robust with respect to inhomogeneous
tissue resistivity perpendicular to the electrode plane. At the population level, RGC cellular structures gave rise to low
threshold hotspots, which limited axonal and multi-cell activation with threshold stimuli. Finally, due to variations in
neuronal element excitability over space, following supra-threshold stimulation some locations favored localized activation
of multiple cells, while others favored axonal activation of cells over extended space.
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Introduction

Neural prosthetic devices using electric pulses to stimulate the

central nervous system have been used to restore motor function

[1] and auditory percepts [2] in disabled individuals. Electrical

stimulation of the retina has also become a promising strategy for

restoring sight to the blind [3–6]. The effects of electrical

stimulation on the central nervous system have been studied

through both experimental [7–11] and theoretical approaches

[12,13]. For neurons in the brain, at the single-cell level,

extracellular stimuli activate neuronal elements within a small

volume around the electrode [10]. Within this volume, highly

excitable elements such as the axon (in particular, the axon initial

segment and the nodes of Ranvier) are preferentially recruited

[9,14]. At the population-level, such a pattern of excitation would

presumably elicit sparse but spatially extended activation of

neurons. This hypothesis is supported by a recent imaging study

of activity in a cortical neuronal population following electrical

microstimulation [7]. Following progression of neurodegenerative

diseases, the retinal ganglion cells (RGCs) continue to survive in

large numbers [15]. Similar to cortical neurons, these cells could

be stimulated electrically to elicit responses [16–22]. However, the

retinal neural-anatomical structure is considerably different from

the brain. In particular, the axons of RGCs are unmyelinated in

the eye between the soma and the optic disk, and run along a

plane over the retinal inner surface. Therefore neurophysiological

findings from the brain may not readily generalize to the retina.

It is not clear how the RGCs respond to extracellular electrical

stimulation at the sub-cellular level and how this influences the

whole-cell response. It has also proven elusive to determine the

extent of axonal stimulation, and more broadly, how this might

affect the number and extent of RGCs activated as a population.

Clinical investigations have reported variable percepts ranging

from a small spot to an oval, or sometimes a line [5,23,24]. These

latter percepts were thought to be a consequence of spatially

extensive neuronal recruitment through passing axons. In

addressing this issue, electrophysiological studies have yielded

conflicting results. Some studies reported focal activation of single

cells (of the same type) [18,25], while others found evidence of

extensive passing axon activation [17,26].

Taking advantage of the computational power of high

performance computing clusters and recent advances in tech-
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niques for large-scale simulations of morphologically and biophy-

sically detailed neuronal models [27–29], we began by examining

how individual RGCs respond to electrical stimulation under a

variety of stimulus conditions. Notably, we found the threshold to

be strongly determined by the electric potential gradient in

relation to the neuronal elements, rather than the electrode center

position per se. Next, we extended the analyses to a population of

RGCs. Here the cells formed low threshold hotspots, thereby

promoting focal activation when stimulating at threshold. Follow-

ing supra-threshold stimulation, some locations favored activation

over extended space, while others favored localized activation.

The responses predicted at the population level can explain the

more complex types of percepts reported in clinical studies and

suggest that the neurons’ morphology and biophysics, in addition

to the electric potential of the artificial stimuli, strongly influence

the responses elicited.

Results

The Model Reproduces Biological Observations
Retinal ganglion cells (RGCs) survive in large numbers

following neurodegenerative diseases [15]. These cells could be

stimulated by extracellular electrical pulses to produce visual

percepts in the blind [4–6,24]. To examine how the anatomically

complex RGC neuronal elements respond to extracellular

electrical stimulation, we constructed morphologically and bio-

physically detailed models of large-field mammalian On and Off

RGCs (Figure 1A). The biophysics was based on formalizations

that reproduced a wide range of experimental observations

[30,31]. To ascertain that the model neurons also adequately

captured biological behaviors following extracellular electrical

stimulation, we compared their stimulation threshold to experi-

mental results. The threshold is defined as the lowest stimulus

current that elicited an RGC action potential. We delivered a

cathodic-first biphasic stimulus via a disk electrode from the

vitreous-side 40 mm axial distance above the RGC somatic center.

We determined the axon initial segment (AIS) threshold of the

model RGCs by taking the mean threshold over three locations

along the AIS: the proximal end, the mid-point and the distal end.

The model RGCs closely reproduced the experimental observa-

tions [25] under comparable conditions over a range of electrode

sizes (Figure 1B).

Spike Elicitation Threshold along the RGC
Compartmental Structure

For all electrode sizes, the modeled responses of On cells have a

slightly lower threshold than those of Off cells, consistent with

experimental results [18]. What might account for this difference

despite otherwise identical biophysics in the model cells? First, we

checked if the lower stratification depth of the On cell dendrites

(Figure 1A), and thus closer proximity to the stimulating electrode,

may underlie the lower threshold. We removed the dendritic tree

of both RGCs, thereby eliminating dendritic variations. This had

little effect on the AIS threshold for both cell types. Close

examination of the morphology revealed that the On cell proximal

axon (including the AIS) was approximately 2 mm closer to the

stimulating electrode than the Off cell axon. Thus, while leaving

the dendritic processes of both cells unperturbed, we moved the

first 100 mm of the Off cell proximal axon (including the AIS)

2 mm closer to the electrode, to match the On cell. After this

manipulation the thresholds of these two cell types were

comparable. Together, these data suggest that the On and Off

cell AIS threshold differences could be strongly influenced by the

axonal location. The dendrites played little role in this, despite

their total volume and extensive spatial coverage.

To examine how the stimulating electrode position affects the

threshold, we mapped the RGCs’ threshold over a two-dimen-

sional plane with a 10 mm electrode (Figure 1C). For both the Off

(Figure 1D1) and On (Figure 1E1) cell the region of lowest

threshold aligned with the AIS (Figure 1D3 and 1E3, c.f. boxed

region in Figure 1D1 and 1E1) and the axons also formed a low

threshold corridor. These results are consistent with experimental

observations [32] and recent theoretical predictions [33]. Less well

understood is the RGC threshold around the dendro-somatic axis.

This area also encompassed a region of relatively low threshold.

However, for both RGC types the minimum threshold of the

dendritic region was always higher than the AIS and the axon

proper (Figure 1D2 and 1E2).

The AIS has the Lowest Threshold in Inhomogeneous
Tissue

The retinal resistivity was homogeneous in the foregoing

analyses. It has been suggested that the somatic layer may have

up to twice the resistivity of the dendritic and axonal layers

[34,35]. We examined how such inhomogeneity might affect RGC

threshold. We varied the stimulation transfer resistivity by an

axial-distance-dependent scaling factor, which peaked at the RGC

somatic layer and reduced with increasing distance from this

region (Figure 2A1). The extent of inhomogeneity in the direction

perpendicular to the electrode is succinctly expressed as a ratio of

resistivity at the somatic layer (Rpeak) over resistivity at a distant

depth level (Rdistant). Increasing the inhomogeneity reduced the

response threshold (Figure 2A2). The reduction was most apparent

for the distal dendrites while minimal at the AIS. Nonetheless, the

AIS always had the lowest threshold. The threshold map also

resembled that of homogeneous tissue (Figure 1D1), even at the

highest inhomogeneity tested (Figure 2A3).

The dendrites of direction selective RGCs (DSGCs) are capable

of firing sodium-dependent spikes [36–38]. Although the gener-

ality of this phenomenon among the RGCs is not well understood,

we also investigated the effects of enhanced dendritic excitability

on extracellular stimulation. While the threshold for stimulating

the distal dendrites decreased with increasing dendritic INa, the

other regions (proximal dendrites, soma, AIS and axon) were

minimally affected (Figure 2B1). The AIS consistently had the

lowest threshold, even at the highest dendritic INa conductance

tested (80 mS/cm2; Figure 2B2).

In summary, the location of lowest threshold was dictated by the

AIS. This observation was invariant across the range of resistance

inhomogeneity and dendritic excitability we examined. Therefore

we only consider homogeneous tissue and nominal dendritic INa of

40 mS/cm2 in the remaining analyses.

Stimulus Location Influences Activity Propagation
through RGC Structures

The dendritic voltage-gated conductances influence neurons’

behavior under physiological conditions [39]. How does the

depolarizing event propagate through the complex RGC structure

following extracellular stimulation? We recorded the Vm of a

model Off cell at the AIS, soma and distal dendrite (Figure 3A),

while stimulating at the AIS, soma or one of two peripheral

locations. The threshold stimulus was delivered through a 10 mm

electrode. With the electrode over the AIS (position 1, Figure 3A),

the stimulus elicited an AIS spike (latency = 0.300 ms, Figure 3B),

followed by a somatic spike (0.875 ms latency). Finally, a spike was

observed in the distal dendrite 1.250 ms after stimulus presenta-
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tion. A similar phenomenon was observed with the stimulating

electrode over the soma (latency in ms, AIS = 0.550, soma = 1.200,

distal dendrite = 1.575, Figure 3B). Stimulating at the cell’s

periphery produced very different response profiles. At position

3, the stimulus elicited a small transient depolarization at all

recording locations prior to full action potential (latency in ms,

AIS = 2.950, soma = 3.450, distal dendrite = 3.750, Figure 3B). At

position 4, the stimulus first elicited a dendritic spike, similar to

those observed in RGC dendritic recordings [36–38]. Action

potentials then occurred at the AIS, soma and dendrite, in that

order (latencies in ms, AIS = 2.275, soma = 5.850, distal den-

drite = 6.200). Notably, this configuration resulted in two dendritic

spikes, a smaller initial spike and a larger back-propagating late

spike. These four examples highlight the impact of stimulus

location on RGC response profile following extracellular stimu-

lation.

To investigate the dynamics of activity propagation at high

spatial detail for the above stimulus positions, we examined the

Vm of the entire cell at discrete time points. At position 1

(Figure 3C1), depolarization began at the AIS, then travelled

orthodromically down the axon and antidromically towards the

soma, before invasion throughout the dendrites. At position 3,

(Figure 3C2) depolarization began at the dendrites closest to the

stimulus, before propagating into the soma and axon. A spike was

then generated at the AIS. Finally, the depolarization spread to

dendrites distal to the stimulating electrode. At position 4

Figure 1. Morphology and threshold of large-field RGCs. (A) Top and side skeletal view of the On and Off large-field RGCs. Triangles indicate
axons. Boxed regions indicate AIS. These cells were traced from mice retinas. (B) Comparison of the model neurons’ AIS thresholds to experimental
results under equivalent conditions. The disk electrode was 40 mm axially above the cells’ somatic center. (C) Illustration of the threshold mapping
procedure. A 10 mm radius disk electrode was moved through a 2D plane 40 mm axially above the somatic center. (D1) Threshold map of the Off RGC
and expanded view of the dendro-somatic region (D2) and axo-somatic region (D3). (E1) Threshold map of the On RGC and expanded view of the
dendro-somatic region (E2) and axo-somatic region (E3). Number next to each+symbol represents the threshold (in mA) at the marked location.
doi:10.1371/journal.pone.0053357.g001
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(Figure 3C3), depolarization also began at the dendrites closest to

the stimulus. It then propagated toward the other neuronal

elements. The resulting AIS spike antidromically evoked a somatic

spike. Similar to back propagating action potentials (bAPs)

observed in cortical neurons [40], the antidromic spike subse-

quently invaded the dendrites where the initial depolarization

occurred, and elicited a second spike at this location. In summary,

the active properties along the cellular structure strongly

influenced RGCs’ response dynamics at the subcellular level

following extracellular electrical stimulation.

Threshold Map Changes with Electrode Size
A range of electrode sizes has been used clinically. We therefore

examined the threshold map for other electrode dimensions

(radius = 25,100 mm, Figure 4A). The region with lowest

threshold (marked by +) aligned with the AIS (red box). The

dotted locations had threshold within 1% of the lowest value. With

increasing electrode size, the region migrated away from the AIS.

To elucidate the reason for the changing threshold map with

increasing electrode size, we inspected the electric potential

generated by the electrode at position 1 and position 2. In

Figures 4B1 and 4C1 the circular contour designates the

normalized electric potential (e/emax). Each line represents 10%

change. At both positions the electric potential is approximately

constant around a region spanning roughly the electrode radius.

However, for position 1 (Figure 4B1) the potential gradient

changed rapidly in close proximity to the AIS, the most excitable

element. Cellular depolarization began at these regions

(Figure 4B2). In contrast, at position 2 (Figure 4C1) the electric

potential was homogeneous along the proximal axon and the AIS.

The regions with rapid potential change encompassed the

dendrites beyond the soma and along the axon some 100 mm

distal to the AIS. Response initiation began at these dendritic and

axonal regions (Figure 4C2), which had higher threshold

comparing to the AIS. Therefore, lowest threshold was produced

by having the potential changing (the derivative) rapidly in close

proximity to the AIS. This phenomenon was particularly

prominent for large electrodes. Within the radial region of the

electrode, the electric potential was approximately constant and

only began to change rapidly at, and beyond, the electrode edge.

In summary, the site of response initiation was strongly influenced

by the location of potential gradient variation in relation to the

neuronal elements, rather than the location of the electrode center

per se.

Low Threshold Hotspots in the RGC Mosaic Limits Multi-
cell Activation

How do the RGCs respond to electrical stimulation as a

population? We began by creating a mosaic of Off RGCs

(Figure 5A) and examined the threshold map for a region (boxed

in Figure 5A) within this mosaic for small (10 mm radius) and large

(100 mm radius) electrodes. With the small electrodes, the lowest

threshold region coincided with the locations of the AIS. The

axons also formed a low threshold corridor (Figure 5B1). With

increasing electrode size, the lowest threshold regions migrated

away from the AIS (Figure 5C1). These observations are consistent

with the single cell observations (Figure 4A). Finally, both maps

contain repeated motifs of low threshold hotspots.

Although the threshold maps reveal neuronal excitability in

space, they do not tell us how many nor which cells are activated

when stimulating at threshold. These variables have direct impact

on the psychophysical outcomes of retinal implants. We counted

the number of active cells for each location in the test region

(boxed in Figure 5A) following threshold stimulation. Here the

threshold is defined as the minimum current that elicited a spike in

one or more RGCs in the mosaic. In these analyses, all RGCs in

the mosaic were considered, including those outside the test

region. Furthermore, the RGC tiling extended beyond the

electrode radii (hence the smaller test region in relation to the

cell mosaic). Notably, threshold stimulation at most locations

activated only one cell. This was true for both the small

(Figure 5B2) and large (Figure 5C2) electrode. The stimulus

activated at most two cells, but only rarely (2.2% with 10 mm

electrode, 0.25% with 100 mm electrode). These results suggest

limited neuronal activation when stimulating at threshold,

irrespective of electrode size and despite the extensive passing

axons.

We next identified the RGC(s) responsible for the responses at

each location in the test region following threshold stimulation for

the small (Figure 5B3) and large (Figure 5C3) electrode. Each cell

is uniquely identified by color. The regions with a single active cell

generally covered a large continuous area, which were spatially

correlated to the low threshold hotspots (Figure 5B1 and 5C1). In

Figure 5B3 and 5C3 the square boxes mark spots with two active

cells. The colors within each box designate the active cells’

identity. These co-activation spots occupied places with moderate

to high threshold; and were displaced from the axons with mean

Euclidean distance of 31.7 mm and 52.7 mm for the small and

large electrodes, respectively (Figure 5B4 and 5C4). Finally, co-

activations were generally limited to neighboring cells, except for

two locations (circled in Figure 5B3), where the stimulus activated

a cell with soma several hundred mm away (* in Figure 5B3). In

summary, the RGCs formed low threshold hotspots, thereby

limited multi-cell activation and promoted localized recruitment

when stimulating at threshold. In addition, the probability of

multi-cell activation increased by stimulating at locations slightly

displaced from the axonal trajectory, rather than directly over the

axons.

Similar Response Characteristics also Emerge with
Different Mosaics and Cell Types

How robust are the above observations? We examined another

mosaic (Figure 6A), with a slightly different coverage pattern and

cell type (On RGCs). Consistent with the foregoing results, for

both small (10 mm) and large (100 mm) electrodes the threshold

map contained low threshold hotspots (Figures 6B1 and 6C1). Also

paralleling the previous results, stimulating at threshold: (1)

activated predominantly one cell (99.0% and 99.6% of all

Figure 2. The influences of tissue resistance inhomogeneity and dendritic excitability on RGC threshold. The stimulation electrode had
10 mm radius. (A1) Variation of tissue resistivity as a function of retinal depth. Peak resistivity occurred at the center of RGC somatic layer. (A2)
Threshold variation of cellular locations, marked in (A3), with increasing tissue resistance inhomogeneity. (A3) Threshold map for the Off RGC when
the maximum (Rpeak) and minimum (Rdistant) resistivity differed by a factor of 2. Number next to the symbols (+, o and D) designates threshold (in mA)
at the marked location. The shape of the threshold map is comparable to those with homogeneous tissue. In particular, the AIS (boxed region)
continued to have the lowest threshold. (B1) Increasing dendritic INa reduced the threshold of distal dendrites, but had little effect on the threshold of
other cellular components. The default conductance used in this study is 40 mS/cm2. (B2) Threshold map of the Off RGC with 80 mS/cm2 dendritic INa

(twice the value used throughout this study).
doi:10.1371/journal.pone.0053357.g002
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Figure 3. The effects of electrode placement on response propagation along cellular structures. (A) Recording electrodes were placed at
the AIS (red), soma (green) and distal dendrite (blue) on the model Off RGC. Four stimulus locations were tested (pos1,pos4). The stimulating
electrode had 10 mm radius. (B) Intracellular responses at the AIS, soma and distal dendrite for the four stimulus locations. (C1– C3) Membrane
voltage for the entire cell at discrete time points when stimulating at pos1 (C1), pos3 (C2) and pos4 (C3). The circles designate the electrode location.
doi:10.1371/journal.pone.0053357.g003
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locations for small and large electrodes, respectively. Figure 6B2

and 6C2); (2) the regions with a single active cell generally covered

a large continuous area (Figure 6B3 and 6C3); and (3) at restricted

locations (circled in Figure 6B3) the stimulus activated cell with

soma several hundred mm away (* in Figure 6B3). Thus limited

multi-cell activation and localized recruitment were generally

insensitive to cell types, cell arrangement and electrode size, when

stimulating at threshold.

Recruitment Profile of Supra-threshold Stimuli is Affected
by Stimulus Location

We used threshold stimuli in the foregoing analyses. How would

a cluster of RGCs (of the same type) respond to supra-threshold

stimuli? We conducted the analysis with a 10 mm radius electrode

at two spots in the Off cell mosaic, one with low threshold (+ in

Figure 7A) and another with high threshold (D in Figure 7A). The

stimulus activated one cell at the low threshold spot, and continued

to do so until 3x threshold current. At this current level, the

number of activated cells abruptly increased to four (Figure 7B1).

The additional cells recruited were activated via their passing

axons in close proximity to the electrode. These neurons spanned

a streak across the cell cluster (Figure 7B2). In contrast, at the high

threshold spot the number of activated cells increased progres-

sively with stimulus strength (Figure 7C1). The stimulus activated

two neighboring cells before recruiting distant cells via their

passing axons (Figure 7C2). These two examples illustrate that the

number and spatial profile of neurons recruited by supra-threshold

stimuli were profoundly affected by the stimulus location in the cell

cluster. Some locations favored activation over extended space,

while others favored localized activation.

Midget Cell Response Profiles are Generally Comparable
to Large-field RGCs

Midget RGCs are unique to primates. These cells account for

approximately 80% of the RGC population [41] and are critical

elements of the image-forming pathway and for providing high

acuity vision in human. These cells have small dendritic span

(5,100 mm; [42]) and are present with high spatial density near

the fovea [43]. How might these characteristics affect their

electrically evoked responses as a single-cell and as a population?

Figure 4. Threshold map and the migration of low threshold region with increasing electrode size. (A) Threshold map for 25, 50 and
100 mm radius electrodes. Red box, AIS. Number next to the ‘+’ and ‘D’ symbols is the threshold at that location. Dots, locations within 1% of the
lowest threshold. (B1 and C1) Electric potential of the 100 mm electrode delivering threshold stimulus at pos1 (B1) and pos2 (C1). Each circular
contour represents 10% relative change in field potential. Red box, AIS. (B2 and C2) Response initiation and propagation along the subcellular
structures with the 100 mm stimulating electrode at pos1 (B2) and pos2 (C2).
doi:10.1371/journal.pone.0053357.g004
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We built a detailed midget cell computational model using the

morphology of a marmoset monkey midget RGC (Figure 8A). We

began by examining the cell’s threshold. For a small electrode

(Figure 8B1; 10 mm), the region of lowest threshold aligned with

the AIS (boxed region). With increasing electrode size (Figure 8B2;

100 mm), the lowest threshold region migrated away from the AIS.

These observations are analogous to those of the large-field RGCs

(Figure 4).

Next, we explored how a mosaic of midget RGCs responds to

extracellular stimulation. We moved a disk electrode across a two-

dimensional plane within a midget cell cluster (boxed region in

Figure 8C). With threshold stimuli the small electrode (10 mm)

activated one cell in the tested region, and very rarely, two cells

(Figure 8D1). In the identity map, regions with one active cell

covered large continuous areas (Figure 8E1). These features are

comparable to those of the large-field RGC cluster. Due to the AIS

displacement from the soma, the soma of most recruited cells was

outside the test region. We also examined how the midget RGC

cluster responded to a large electrode (100 mm). At most locations,

threshold stimulation activated one cell, and occasionally two cells

(Figure 8D2). Triple-cell activation only occurred at one location

when stimulating with the large electrode (arrow in Figure 8E2).

The large electrode also created a fragmented identity map and

the somatic location of all activated cells was outside the test region

(Figure 8E2).

Discussion

In this study we found that at the single-RGC level: (1) the

dendrites, despite their extensive coverage and total volume,

always had higher threshold than the AIS and the axon; (2) the

electric potential gradient in relation to the excitable neuronal

Figure 5. Responses of an Off RGC cluster following electrical stimulation. (A) A mosaic of Off cells. Boxed area denotes the stimulus test
region. (B1 and C1) Threshold map for the test region for a small (10 mm; B1) and large (100 mm; C1) electrode. (B2 and C2) Histogram for the number
of activated cells in the mosaic when stimulating at threshold in the test region for the small (B2) and large (C2) electrode. (B3 and C3) Identity map of
activated cell(s) for each location when stimulating at threshold for the small (B3) and large (C3) electrode. The square boxes denote places with
multi-cell activation. The colors in each box represent the identity of the active cells. At some locations (circled) the stimulus activated a cell several
hundred mm from the electrode (*). Places with multi-cell activation (denoted by squares) tend to occur at positions of medium to high threshold, for
both the small (B3) and large (C3) electrode. (B4 and C4) Euclidean distance of the multi-cell activation locations to the nearest axon, for the small (B4)
and large (C4) electrode.
doi:10.1371/journal.pone.0053357.g005
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elements, rather than the location of the electrode center,

determined the threshold; (3) stimulus location strongly influenced

the site of response initiation and the dynamics of subsequent

activity propagation through the cell; and (4) these findings were

robust with respect to tissue resistance inhomogeneity along the

direction perpendicular to the electrode. For a population of

RGCs we found that: (1) the RGCs formed low threshold hotspots,

thus promoting focal activation when stimulating at threshold; (2)

this phenomenon was robust with respect to electrode size, cell

type and cellular arrangement; and (3) when stimulating with a

supra-threshold stimulus, some locations favored activation over

extended space, while other locations favored localized activation.

We also developed the first framework for large-scale, parallel

simulations of morphologically and biophysically detailed multi-

cell models in the context of retinal extracellular stimulation. This

may serve as a useful tool for future investigations.

Comparison of Threshold Map to Previous Studies
The insensitivity of dendrites to extracellular stimulation here

parallels previous findings in the brain and the spinal cord (e.g.

[44–46]). Our threshold maps (e.g. Figure 1) are consistent with

experimental findings of Fried [32] and simulation work of Jeng

et al. [33]. An earlier threshold mapping study by Jensen [17]

reported a more fragmented map, which is reminiscent of our

results on midget RGCs stimulated with large electrodes. The

RGCs were not identified in [17]. Based on the present findings, if

some of the cells in Jensen’s study were small dendritic field RGCs,

this may explain the inconsistency with Fried’s findings. Further-

more, the maps in [17] were averaged over many cells. The

threshold profile was highly specific to the geometry of each cell in

our study. Thus averaging may have further smeared out the

threshold map.

Direct RGC Stimulation Produces Variable Response
Latencies

Experiments have reported a wide range of values for the

latency of direct RGC stimulation (e.g. 0.25,3.0 ms;

[16,18,47,48]). The results in this study suggest that this variability

could be accounted for by the stimulus location in relation to the

cellular structures. Stimulating the AIS produced the shortest

Figure 6. Responses of an On RGC cluster following electrical stimulation. See Figure 5 captions. Red arrow, threshold stimulus activated
three cells at this position.
doi:10.1371/journal.pone.0053357.g006
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latency, while stimulating the distal dendrites away from the axon

trajectory tended to produce long latency responses.

Electrode Position is a Poor Predictor of Response Origin
In our results the position of the stimulating electrode center was

often a poor predictor for the location of neural response. Instead,

the electric potential gradient in conjunction with neuronal

element excitability was a better determinant of response origin

and stimulus threshold. Large electrodes, due to the increased

excitability beyond the electrode edge, further exacerbated this

effect. This ‘‘edge-effect’’ (also called activation function [46,49])

has also been suggested in the context of penetrating electrodes for

deep brain stimulation [50]. Excluding the obvious cases of passing

axon activation, these two factors together could cause significa-

tion discrepancy between the excited cell’s position and the

electrode center location. This phenomenon may be an additional

reason for the percept and implant electrode positional mismatch-

es in human subjects [24].

Large Electrodes do not Necessarily Recruit More Cells
than Small Electrodes

It is generally thought that large stimulating electrodes will

necessarily activate more cells, thus eliciting coarser percepts, and

by using smaller electrodes finer percepts will be achieved. When

stimulating at threshold, both small (10 mm radius) and large

(100 mm radius) electrodes in our simulation activated very few

RGCs of the same type. Indeed, threshold stimuli activated only

one cell at most locations. Two observations could explain why

large electrodes do not necessarily recruit more cells (of the same

type). First, large variations of neuronal element excitability in

space limit multi-cell activation. When stimulating at threshold,

the current was just sufficient to activate the AIS or possibly the

axon. Given the dramatic threshold increase with distance from

these elements, the stimulus was generally insufficient to activate

multiple nearby cells. Second, the relatively iso-potential region at

the center of large electrodes was comparatively less effective at

eliciting neuronal responses than the region at, and just beyond,

the electrode edge (see Figure 4). Despite the electrode area

increasing by the radius squared, the highly effective stimulus

region beyond the electrode edge only increased linearly with

radius. Therefore, as the electrode size increases, the highly

effective stimulus region of the electrodes grows at a much slower

pace than their coverage area.

Limited Activation of Passing Axons with Threshold
Stimulus

We observed limited passing axon activation in this study when

stimulating at threshold. Generally, supra-threshold stimulation

was necessary to cause extensive axonal activation. This may

explain the disparity in experimental findings on the extent of

axonal stimulation. Our results suggest that the absence of axonal

activation, for instance reported by Sekirnjak et al. [18,25,51], was

due to stimulating near threshold in close proximity to the AIS.

Indeed, this was hypothesized in Sekirnjak et al. [25] through

RGC receptive field and threshold mapping. In contrast, extensive

passing axon activation seen in Behrend et al. [26] was likely a

consequence of supra-threshold stimulation. Consistent with this

interpretation, in order to elicit measurable calcium transients,

stimulus trains evoking a dozen or more action potentials were

necessary in that study [26].

Figure 7. Responses of a RGC cluster to supra-threshold
stimulation. (A) RGC mosaic and two stimulus locations, one had
low threshold (+) and the other had high threshold (D). The electrode
radius was 10 mm. (B1 and C1) The number of activated cells for the low
threshold (B1) and high threshold location (C1) as a function of stimulus
strength (1,3 times threshold). Number (in mA) above each arrow
denotes the threshold current at that location. (B2 and C2) Identity of
the activated cell(s) in the cell mosaic (A), at 1x, 2x and 3x threshold
current for the low threshold (B2) and high threshold (C2) location.
doi:10.1371/journal.pone.0053357.g007
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Predicting Responses in a RGC Mosaic with Multiple Cell
Types and Superimposed Soma

We examined the RGC types individually in this study. How

might a mixed-type RGC mosaic behave? RGC somas are also

stacked over several layers in the central retina. How would this

affect the RGCs’ responses? The present findings offer insights into

these more complex conditions. In a multiple-RGC-type mosaic,

the threshold for each neuron will still be determined primarily by

the AIS. Thus activation will begin with cell types having the

lowest AIS threshold. As the stimulus amplitude is increased, cell

types with higher AIS threshold are increasingly activated. At the

same time, progressively larger regions of the low-threshold RGCs

are also recruited, in ways similar to the observations in Figure 7.

The RGC neurites’ threshold to extracellular stimuli has the order:

AIS,axon,soma,dendrites. This, together with the observation

that the AIS and axon are always the elements closest to the epi-

retinal electrode, means we could expect the AIS and the axon to

be the primary determinant of RGC excitability even when the

RGC somas are stacked over multiple layers.

Implementation Considerations
An effective strategy for managing the complexity of large

neural network simulation, and hence computation time, is to use

a simplified representation for the dendrites [52]. Such reduced

models are still able to capture important biological behaviors

[29]. However, for electrical stimulation, the granularity at which

the model neurons experience the extracellular electric potential is

determined by the resolution of neurite representation. Detailed

representation of neurons in space, as we have done here, is thus

important for accurate predictions. Finally, we represented

neuronal processes as 1-dimensional cables and the extracellular

voltage profile across the cross-sectional area of the neuronal

elements is assumed to be approximately constant. If the electrode

size or the distance of the electrode to the cells is further reduced,

this assumption may no longer hold, and the model will begin to

lose accuracy.

Figure 8. Responses of midget RGCs as a single-cell and as a cluster. (A) Traced midget cell volume overlaid on original confocal fluorescent
image. Scale bar, 20 mm. (B1 and B2) Threshold map of the model midget RGC with small (10mm; B1) and large (100 mm; B2) stimulating electrodes.
Number next to each+symbol is the threshold at the marked location. Boxed region, AIS. (C) A mosaic of 33 midget RGCs, with each cell uniquely
identified by an ID. The boxed area indicates the test region. (D1 and D2) Histogram for the number of active cells with the small (D1) and large (D2)
electrode. (E1 and E2) Identity map of activated cells following threshold stimulation in the test region for the small (E1) and large (E2) electrode. The
square boxes denote places with multi-cell activation. The colors in the box designate the identity of the activated cells. The number in each color
patch is the activated cell’s ID. Arrow, location with three activated cells.
doi:10.1371/journal.pone.0053357.g008
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We leveraged the power of high performance computing

clusters to simulate morphologically and biophysically detailed

RGC models, both as a single cell and as a mosaic. Mapping the

threshold for a cluster of RGCs (e.g. Figure 5) took approximately

7.7 hours on a 128-core cluster. Running the same algorithm

serially would take a prohibitive 17.5 days (423 hours). Imple-

mented with a highly scalable architecture in NEURON and the

MPICH2 interface, the technique could be used to study bigger

and more complex neuronal networks by increasing the number of

processor cores.

We have focused on the RGCs in this study. Following low-

amplitude epiretinal stimulation, cellular activation is primarily

confined to the RGCs [16,18]. Thus the absence of presynaptic

cells in the model would not drastically affect the present findings.

Nevertheless, a logical extension is to consider cell types

presynaptic to the RGCs. This would be particularly instructive

for regimes such as subretinal [6] or suprachoroidal [53]

stimulation, where the retinal network would likely contribute

significantly to the total responses following stimulation. Finally,

the intrinsic properties of RGCs may differ between types [54,55]

and these may change with retinal degeneration ([22]; but see also

[56] for contrasting findings). If so, it would be instructive to

incorporate these changes and investigate how they affect the

RGCs’ responses to extracellular stimulation.

Implications for Retinal Prosthesis Development
We found the stimulus amplitude to be the critical determinant

for achieving focal activation. To conserve localized responses, it

may be important for implants to use current at, or only slightly

above, the threshold. Strong stimuli, even when delivered via small

electrodes, caused extensive neuronal activation. Finally, when

stimulating at threshold it may not be crucial to use small

electrodes for the purpose of achieving focal stimulation at single-

cell resolution (cell of the same type). Large electrodes also have

the additional benefits of a higher charge injection limit and being

more mechanically robust. However, the size of individual large

electrode does limit the electrode array packing density and hence

affects implant resolution.

Materials and Methods

Neuron Models
Geometry. We used Hodgkin-Huxley conductance-based

multi-compartment models [31,33] in all simulations. We exam-

ined two broad categories of RGCs, based on the size of their

dendritic span. For large-field RGCs we used the morphology of

mammalian On and Off RGCs traced from mice retinas [57]. The

On cell was a Cluster 3 RGC with 196 mm average dendritic

diameter and stratified at a depth of ,40% in the inner plexiform

layer (border of ganglion cell layer = 0%). The Off cell was a

Cluster 2 RGC with 191 mm average dendritic diameter and

stratified at a depth of ,70% in the inner plexiform layer. These

cells were chosen for their similarity to the primate parasol cells at

,4 mm eccentricity from the center of the fovea in the temporal

quadrant or ,5 mm in the nasal quadrant [58].

The second category of RGCs examined was the small field

midget cells unique to primates. We used midget cells from

marmoset monkey (Callithrix jacchus) retinas. The technique for

morphological reconstruction of these cells is described in the

Experimental procedures section. The morphological data were

digitized in swc format and subsequently imported into NEURON.

For computational simulations, we chose a midget cell with

dendritic span expected for cells at ,4 mm eccentricity in the

temporal quadrant [42].

Ensuring the axon extended well beyond the test area of the

extracellular stimulating electrode, we linearly extended the axon

of all RGCs by 900 mm, starting from the end point of the

experimentally traced axon. Noting that the surface area of a

cylinder with equal length and diameter is identical to the surface

area of a sphere with the same diameter, we modeled the soma of

each cell as a cylinder. For clarity, we omitted the width

information in the Figures, and only illustrated the skeleton of

the morphology.

Biophysics. The biophysics of all RGCs was modeled

similarly. While the ionic current properties may differ between

RGC classes [54,55], limited information on current character-

ization and channel distribution in mice and primates precluded us

from incorporating these details. Each neuronal compartment was

endowed with a set of conductances to reflect the complement of

ion channels that confer excitability properties to RGCs, as

described in detail previously [31,33]. The dendritic compart-

ments contained transient voltage-gated sodium, delayed-rectify-

ing potassium, A-type potassium, L-type calcium and calcium-

gated potassium channels (in mS/cm2; gNa = 40, gK = 12,

gA = 36, gCa = 2, gKCa = 0.05). The soma and axon hillock (first

50 mm of the axon) contained transient sodium, delayed-rectifying

potassium, A-type potassium, L-type calcium and calcium-gated

potassium channels (in mS/cm2; gNa = 70, gK = 18, gA = 54,

gCa = 1.5, gKCa = 0.065). The axon initial segment (AIS) with

high density of sodium channels [32] was located ,50 mm distal to

the somatic center and spanned 50 mm length. The AIS had

identical ionic currents to the soma, except for higher sodium

conductance (gNa = 700 mS/cm2). All other axonal sections had

transient sodium, delayed-rectifying potassium and calcium gated

potassium channels (in mS/cm2, gNa = 70, gK = 18,

gKCa = 0.065). A non-specific voltage-gated leak current was

present throughout the entire cell (gL = 0.005 mS/cm2). The

reversal potential for sodium, potassium and leak was 35, 275 and

262.5 mV, respectively. The membrane capacitance and intra-

cellular axial resistance for the cells were 1 mF/cm2 and

110 V cm. To examine RGC dendritic excitability following

extracellular stimulation, we also varied dendritic INa over a range

of values (40,80 mS/cm2).

The number of model segments affects the spatial granularity at

which the RGCs experienced the extracellular electric potential.

We ensured the length of every segment was ,12 mm. We

ascertained the adequacy of this granularity by tripling the

segment number then checking the model still produced compa-

rable results.

Cell Calibration
To ensure behavioral consistency of the RGC models to

previous work [31], we examined the cells’ spiking responses to

depolarization by intracellular current injection (Figure 9A), mean

inter-spike intervals during current injection (Figure 9B), and the

phase portraits of the spiking responses (Figure 9C). Notably,

despite identical biophysics specifications, morphological varia-

tions were sufficient to produce different behaviors among the

cells. This is in agreement with [30].

Cell Cluster Models
To create a RGC cluster, we tiled multi-compartment RGCs, as

described above, over a two-dimensional plane, initially with

deterministic distance between neighboring cells. We then

introduced spatial randomness by jittering each cell’s location by

Gaussian distribution with 5 mm standard deviation. For the small

field midget cells we used 1 mm standard deviation. Spatial

coverage for the RGC can be quantified precisely by a
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dimensionless coverage factor [59]:

co�verage factor~total area � spatial density

Incomplete coverage is indicated by values less than 1, a

coverage factor of 1–3 indicates some overlap, while greater values

suggest extensive overlap. The coverage factors for the large-field

19-cell Off and On RGC mosaic in Figures 5 and 6 were 1.28 and

1.22, respectively. The midget RGC mosaic in Figure 8 had a

coverage factor of 0.90. These values are in agreement with the

characteristics of these cell types [60,61].

Electrical Stimulation
Unless noted otherwise, we considered the tissue medium to be

an isotropic ohmic conductor [62]. The stimulation electrode was

monopolar and purely resistive [34,45,63,64]. Thus the voltage at

a particular point in space can be calculated in a fashion similar to

[44]:

v(r,z)~
2IRs

p
sin{1 2a

(r{a)2zz2
� �1=2

z (rza)2zz2
� �1=2

2
4

3
5 ð1Þ

where I, a, r and z are the applied current, electrode radius, radial

and axial distance from the center of the disk electrode,

respectively. Rs is the electrode transfer resistance. We calibrated

Rs from experimental results [18]. Specifically, with experimentally

derived stimulus threshold (I), electrode radius (a) and placements

(r and z), Rs is the minimum value required for eliciting an action

potential. We used Rs = 0.725 V for a 10 mm radius platinum

electrode 40 mm above the cell. The transfer resistance for other

Figure 9. RGC responses evoked by intracellular current injection. All intracellular current pulses were applied for 500 ms. (A1,A3) Vm
responses of the Off, On and Midget RGC to 0, 20 and 40 pA depolarizing current. Gray bar, duration of current injection. (B1,B3) Mean inter-spike
intervals during depolarizing current injection. (C1,C3) Response phase portrait for 10 and 60 pA current injection.
doi:10.1371/journal.pone.0053357.g009
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electrode sizes could be calculated through surface area scaling

relative to the 10 mm electrode. To stimulate the RGC(s), a

charge-balanced, cathodic-first, biphasic pulse was delivered from

the disk electrode at the vitreous-side (epiretinal stimulation)

40 mm axial distance above the RGC somatic center. Each phase

of the biphasic pulse was 0.1 ms. No inter-phase delay was used.

The response latency is defined as the duration between

stimulus onset and the action potential peak. The threshold is

defined as the minimum current that evoked a somatic action

potential. To map the threshold current as a function of position,

we moved the disk electrode in the X-Y plane in 10 mm

increments, and 40 mm above the somatic center. The threshold

current was determined by binary search to within 0.1 mA

resolution for the 10 mm radius electrode and within 0.5 mA for

all other electrode sizes. Spikes were detected by 0 mV threshold

crossing. All electrode movement, spike detection and threshold

searching were performed online automatically by custom-written

procedures.

Inhomogeneous Tissue Resistivity
The above formalism for extracellular stimulation assumes

homogeneous tissue [62]. The resistivity of the cell body layer

could be approximately twice that of the dendritic and axonal

layers when measured at high spatial resolution [34,35]. We also

examined how such inhomogeneity might influence the neural

responses. Given the planar retinal architecture, we achieved this

by multiplying Rs in equation (1) with an axial-distance-dependent

scaling coefficient C(z):

C(z)~1zde{0:004 z2 ð2Þ

The profile of C(z) captures the characteristics observed in

López-Aguado et al. [35]. The resistivity peaks at z = 0 mm (center

of the somatic layer), and falls with distance from this region. To

simplify presentation in Figure 2, we denote the resistivity at the

center of the somatic layer and some arbitrarily far away z-

direction position as Rpeak and Rdistant, respectively. Furthermore,

Rpeak corresponds to Rs in Equation 1. The value d determines the

difference between maximum resistivity (at the center of RGC

somatic layer) and minimum resistivity (distant to the somatic

layer). Greater inhomogeneity is achieved by increasing d.

Computation on High Performance Computing Clusters
We implemented the models in NEURON versions 7.1 and 7.2

[27,65], which we re-compiled from source for parallel computing

support on Mac OS X and Linux. Simulations were carried out on

Amazon Elastic Compute Cloud HPC (high performance

computing) clusters. Each node had two eight-core Intel Xeon

processors and 60.5 Gb of memory. Inter-node communication

took place via the MPICH2 message-passing interface over a 10

Gigabit network. We typically used a cluster consisting of

128,258 cores. We developed Python and Bash scripts for online

management of the cluster.

To set up the cluster computing environment, we: (1) began

with a EC2-specific Linux distribution, (2) created a temporary

disk space; (3) installed GNU programming toolchain, MPICH2

and other dependency libraries; (4) compiled NEURON from

source for parallel computing support and without user interface;

(5) installed the resulting binary files; and (6) configured the user

accounts. We then created an image of the temporary disk space

and stored it permanently on Elastic Block Store (EBS). A snapshot

of the machine was also created and stored as a permanent disk

image.

Parallel Computation
When computing the threshold map, we divided up the search

space and ran the threshold searching procedure for multiple

locations in parallel. This was achieved by NEURON’s Parallel-

Context object in conjunction with the MPICH2 Message Passing

Interface library. Every simulation on each core ran independent-

ly. Every simulation process reported back to the master process

prior to termination, with information on whether spikes were

evoked, and if so, the spike latency and the stimulus amplitude. It

is possible to load balance each simulation across multiple cores.

However, because a single core could complete each simulation

reasonably quickly, the extra latency and communication over-

head involved in multi-core load balancing was not warranted.

The simulation time step was 0.025 ms at 35uC. Computation

time for a threshold map of the 19-cell RGC cluster shown in

Figure 5 (approximately 10,100 segments) took approximately 7.7

hours on a cluster containing 128 processor cores. We analyzed all

results in Matlab R2010b (Mathworks).

Computing Threshold Values
To determine the stimulus threshold for a particular electrode

position, we ran the model (single cell or RGC cluster) for 40 ms.

The stimulus amplitude was either increased or decreased by a

binary search procedure. This algorithm has an average runtime

complexity of O(log n). To create a threshold map, we repeated

the threshold searching procedure over a two-dimensional plane at

10 mm resolution.

Experimental Procedures
The marmoset (Callithrix jacchus) eyes used in this study were

kindly donated by Dr Sam Solomon (Discipline of Physiology, The

University of Sydney). The eyes were enucleated and hemisected

behind the ora serrata, the lens was removed and the vitreous body

was drained. The remaining eyecup containing the sclera, pigment

epithelium and retina were transferred to a dish containing

carboxygenated (95% CO2+5% O2) Ames medium. The remain-

ing dissection procedures were carried out under infrared light. A

small piece of the retina was isolated and transferred photorecep-

tor-side down into an imaging chamber perfused with Ames’

Medium at ,5 mL/min and heated to 34,35uC. We filled the

cells with a whole-cell patch clamp electrode containing (mM): 120

KMeSO4, 10 KCl, 0.008 CaCl2, 0.5 EGTA, 1 MgCl2, 10

HEPES, 4 ATP-Na2, 0.5 GTP-Na3, 8 Neurobiotin-Cl and 0.075

Alexa Fluor 488, pH 7.2 (resistance 3.5,5 MV). Neurobiotin

loading occurred by passive diffusion for $20 min. The whole-

mount retinas were fixed with 4% paraformaldehyde in phosphate

buffer, incubated in PBS with 0.5% Triton-X and 1% BSA,

reacted against Streptavidin - Alexa Fluor 488 conjugate,

counterstained with DAPI, then mounted with Pro-long Gold.

Sigma Aldrich, Invitrogen and Vector Laboratory supplied all

chemicals and reagents. All procedures were approved and

monitored by the Animal Welfare and Ethics Committee at the

University of New South Wales and University of Sydney. We

imaged the whole-mounts on a confocal microscope with a 2060.7

NA air and a 4061.1 NA oil immersion objective lens, then

analyzed and traced the morphology with Imaris (Bitplane AG)

and Fiji (National Institute of Health, USA).
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