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Abstract

Conditional sampling distributions (CSDs), sometimes referred to as copying models, underlie
numerous practical tools in population genomic analyses. Though an important application that
has received much attention is the inference of population structure, the explicit exchange of
migrants at specified rates has not hitherto been incorporated into the CSD in a principled
framework. Recently, in the case of a single panmictic population, a sequentially Markov CSD has
been developed as an accurate, efficient approximation to a principled CSD derived from the
diffusion process dual to the coalescent with recombination. In this paper, the sequentially Markov
CSD framework is extended to incorporate subdivided population structure, thus providing an
efficiently computable CSD that admits a genealogical interpretation related to the structured
coalescent with migration and recombination. As a concrete application, it is demonstrated
empirically that the CSD developed here can be employed to yield accurate estimation of a wide
range of migration rates.
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1. Introduction

Under a given population genetic model, the conditional sampling distribution (CSD), also
called a copying model by some authors, describes the probability that an additionally
sampled haplotype is of a certain type, given that a collection of haplotypes has already been
observed. As described below, various applications in population genomics make use of the
CSD. Although the CSD is of much importance, no exact closed-form expressions are
known in the situations to which it has been applied, and so a number of approximations
have been proposed.

Following the seminal work of Stephens and Donnelly (2000) and Fearnhead and Donnelly
(2001), Li and Stephens (2003) proposed a widely used CSD, denoted 7, ., which models the
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additionally observed haplotype as an imperfect mosaic of the haplotypes already observed.
The model underlying 7, , can be cast as a hidden Markov model (HMM), thus admitting e
cient implementation. In their paper, Li and Stephens used the CSD 7, in a pseudo-
likelihood framework to estimate fine-scale recombination rates, and subsequently 7, , and
its extensions have been used in numerous other population genetic applications, including
estimating gene-conversion parameters (Gay et al., 2007; Yin et al., 2009), and phasing
genotype sequence data into haplotype sequence data and imputing missing data (Stephens
and Scheet, 2005; Li and Abecasis, 2006; Li et al., 2010; Marchini et al., 2007; Howie et al.,
2009).

Another important application of the CSD that has received much attention is the inference
of population structure and demography. Hellenthal et al. (2008) employed 7, , to model
human colonization history as a sequence of founder events and estimated the order of the
founding events, as well as the relative contribution of different founding populations during
the events. To estimate the splitting time of two populations Davison et al. (2009) modified
7, to incorporate the split into the copying model, and used the same pseudo-likelihood
framework as Li and Stephens (2003) to estimate the time of splitting. In a more recent
study, Lawson et al. (2012) applied 7, to a sample of DNA sequences and used properties
of the inferred mosaic pattern to reveal structure in the underlying population.

To handle admixture, a modification to 7, was introduced by Price et al. (2009), who
assumed that the previously observed haplotypes in the CSD are from two distinct ancestral
populations (e.g., African and European). In modeling the mosaic pattern for a haplotype
sampled from the admixed population (e.g., African American), it is then assumed more
likely that adjacent segments originate from the same ancestral population, rather than from
two different ancestral populations. Price et al. applied this modified copying model to
detect chromosomal segments of distinct ancestry in admixed individuals and estimated
admixture fractions in recently admixed populations. The same model was applied by
Wegmann et al. (2011), who used the inferred ancestry switch-points to estimate relative
recombination rates between different populations.

As discussed above, 7  is a very useful CSD with a variety of applications, but it was not
derivedfrom, though was certainly motivated by, principles underlying the coalescent
process. To derive CSDs in a principled way, De lorio and Griffiths (2004a) introduced a
general approximation technique based on the diffusion process dual to the coalescent; this
work was first presented in the case of a single locus and a panmictic population, but in a
companion paper (De lorio and Griffiths, 2004b) the authors applied the method to the case
of a subdivided population with migration. Griffiths et al. (2008) extended the diffusion
approximation technique to handle recombination in the special case of two loci with parent-
independent mutation at each locus, and Paul and Song (2010) later generalized the
framework to an arbitrary number of loci and an arbitrary finite-alleles mutation model.

Although more accurate than the CSDs developed by Fearnhead and Donnelly (2001) and
by Li and Stephens (2003), the CSD 7, proposed by Paul and Song (2010) is not amenable
to efficient evaluation. More precisely, 7, can be computed by solving a recursion that
becomes intractable for a large number of loci. However, utilizing ideas related to the
sequentially Markov coalescent (SMC) (Wiuf and Hein, 1999; McVean and Cardin, 2005;
Marjoram and Wall, 2006), which is a simplified genealogical process that captures the
essential features of the full coalescent model with recombination, we (Paul et al., 2011)
recently developed an approximation to 7, that could be cast as an HMM with continuous
hidden state space. Furthermore, upon discretizing this continuous state space, we obtained

Theor Popul Biol. Author manuscript; available in PMC 2014 August 01.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Steinriicken et al.

Page 3

an accurate approximation with computational efficiency comparable to the CSDs of
Fearnhead and Donnelly (2001) and Li and Stephens (2003).

In this paper, we extend our previous work on the sequentially Markov CSD to incorporate
subdivided population structure with migration. Following Paul and Song (2010), we
describe a genealogical process for an additionally sampled haplotype conditioned on the
genealogy of already observed haplotypes. We present a recursion that can be used to
compute the probability of the additionally sampled haplotype, but, as in Paul and Song
(2010), solving this recursion is tractable only for a small number of loci. As in Paul et al.
(2011), we apply the sequentially Markov framework to the conditional genealogical
process with migration and recombination, and obtain an accurate approximation that
facilitates computation for a large number of loci. As a concrete application, we demonstrate
empirically that our new CSD can be employed in various pseudo-likelihoods to produce
accurate estimation of a wide range of migration rates.

The remainder of this paper is organized as follows: In Section 2, we introduce the notation
adopted throughout the paper and describe the relevant population genetic model, the
coalescent with recombination and migration. We then describe the genealogical
interpretation of our CSD in Section 3 and introduce several approximations in Section 4 to
obtain a CSD for which computation is tractable. In Section 5, we demonstrate the
applicability of our CSD by employing it to the estimation of migration rates from simulated
data. Finally, we conclude in Section 6 with a discussion of further applications and
extensions of the CSD developed herein to estimate demographic parameters in more
complex scenarios.

2. Background

2.1. Notation

In this section, we briefly describe how migration is integrated into the coalescent with
recombination, and recall the CSD 7, proposed by Paul and Song (2010), which we extend
to incorporate migration in the following section. We begin by defining some general
notation that will be used throughout.

We consider haplotypes in the finite-sites, finite-alleles setting. Denote the set of loci by L =
{1, ..., k& and the set of alleles at locus £€ L by £g recombination may occur between any
consecutive pair of loci, and we denote the set of potential recombination breakpoints by B
={(1, 2), ..., (k~1, A)}. The space of klocus haplotypes is denoted by ;#=F, x - -- x E}.
Given a haplotype & € 2, we denote by A[] € Epthe allele at locus £€ L, and by A[¢: {] (for
< 0) the partial haplotype (A4, ..., Al]).

We consider an island model of population structure with a finite set of demes denoted by I'
={1, ..., g}. Atagiven time, each individual belongs to a single deme, and the ancestors
and descendants of the individual may belong to different demes by means of a migration
process, detailed in Section 2.2.

A structured sample configuration of haplotypes is specified by nz(”%h)yd.v,,w where 72, p
denotes the number of haplotypes of type /7 within deme vy in the sample. The configuration
of haplotypes within deme y € I' is denoted n,,, and the total number of haplotypes in the
deme by |ny| = n,. The total number of haplotypes in n is denoted by 7= |n| = Zern,.
Finally, we use e, 5to denote the singleton configuration comprising a single haplotype /
within deme y.
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2.2. The coalescent with recombination and migration

The stochastic process underlying our work is the coalescent with recombination and
migration (Griffiths and Marjoram, 1997; Herbots, 1997). Consider a structured population
with a finite set I' of demes. We denote the relative size of deme y € T by x,,, where 0 < x,,
<land oyer x, = 1. Note that two individuals within a deme find a common ancestor at
rate inversely proportional to the relative size of the deme; in the coalescent limit,
coalescence within deme -y occurs at rate Ky_l.

To allow for migration of ancestral lineages between demes, define uyy’ to be the
probability that an individual in deme y has a parent in deme y”. In the coalescent limit, as
the population size AMtends to infinity, an ancestral lineage in deme -y migrates, backwards
in time, to deme " at rate /m,.,"/2, where m,,," = 4N, is the scaled migration rate.
Henceforward, we consider a continuous-time Markov migration process with transition rate
matrix M= (mwf/Z)y,y’El", where /my, == oz, m,,’. For ease of notation, we define

My = Gy'gy Myy'

An ancestral lineage undergoes mutation at locus £€ L at rate 6/2, where ©pis the scaled
mutation rate, and according to the stochastic mutation transition matrix PO. Further, as in
the ordinary coalescent with recombination, an ancestral lineage undergoes recombination,
backwards in time, at breakpoint 6 € B at rate py/2, where py, is the scaled recombination
rate, giving rise to two lineages (in the same deme).

A structured configuration n with 7, individuals in each deme y can be sampled as follows.
The process starts at present with n with 7, untyped lineages in each deme y, and lineages
in each deme y evolve backwards in time subject to the following possible events:

Mutation: Each lineage undergoes mutation at locus € L with rate 842 according to
the mutation transition matrix P,

Recombination: Each lineage undergoes recombination at breakpoint 6 € B with rate
py2.

Migration: Each lineage migrates to deme y” with rate myy12.
Coalescence: Each pair of lineages coalesce with rate ‘Ky_l.

When a single lineage remains, the type at each locus £is chosen according to the stationary
distribution of the mutation matrix P®, and this type is propagated toward the present,
producing a realization for the sample n.

2.3. The CSD 7, for a single panmictic population

The approximate CSD 7, (Paul and Song, 2010) for a single panmictic population is
described by a genealogical process closely related to the coalescent with recombination.
Suppose that, conditioned on having already observed a haplotype configuration n, we wish
to sample ¢ additional haplotypes. As described in Paul and Song (2010), given the true
fully-specified genealogy A, for the conditional configuration n, it is possible to sample a
conditional genealogyC for the ¢ additional haplotypes.

The conditional genealogy C comprises the following: mutation, recombination, and
coalescence within C, occurring at rates given in Section 2.2; and absorption of lineages into
the known genealogy A, occurring at rate 1 for each pair. Because the types of the lineages
of A, are known, the type of an absorbed lineage is determined. Thus, when all lineages of
Chave been absorbed, the type may be propagated forward, thereby producing a realization
for sample configuration c with |c| = ¢.
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Unfortunately, we do not generally have access to the true genealogy An. Making use of the
diffusion-generator approximation (De lorio and Griffths, 2004a,b; Griffiths et al., 2008),
Paul and Song (2010) propose the following: Assumethat A, = Ag(n), where Ag(n) is called
the frunk genealogy in which lineages do not mutate, recombine, or coalesce with one
another, but instead form a non-random “trunk” extending infinitely into the past. Note that
Ag(n) does not have a most recent common ancestor, and for this reason is improper;
nonetheless, it remains possible to sample a well-defined conditional genealogy C, and thus
to generate an additional sample c, in much the same way as described above. In particular,
lineages within Cevolve backwards in time subject to the following events:

M utation: Each lineage undergoes mutation at locus /€ L with rate 8paccording to PO,

Recombination: Each lineage undergoes recombination at breakpoint 6 € B with rate
pb

Coalescence: Each pair of lineages coalesce with rate 2.
Absorption: Each lineage is absorbed into a lineage of ¢7,=, (n) with rate 1.

Observe that the rate of absorption is the same as in the case where 7, is known. The rates
for mutation, recombination, and coalescence, on the other hand, are each a factor of two
larger than those given in Section 2.2; intuitively, this adjustment accounts for using the
(incorrect) trunk genealogy <7, (n), and notably the absence of events therein. Importantly,
the CSD 7, has been shown to be correctfor a one-locus model with parent independent
mutation (Stephens and Donnelly, 2000; De lorio and Griffiths, 2004a; Paul and Song,
2010), a strong argument in favor of the given rate adjustment. The CSD 7, is completely
characterized by the above genealogical process.

Remark. The rates given for the genealogical process governing 7, are double those given
by Paul and Song (2010) and Paul et al. (2011). Importantly, the genealogical process is
time-homogeneous, and so for the purposes of computing the conditional sampling
probability (CSP) 7, (c[n), this modification has no effect (indeed, any constant multiple of
the rates will yield the same CSP). However, we believe that the scaling adopted here admits
a natural interpretation of the absorption time as a true coalescence time. For example,
consider sampling a single haplotype conditional on a configuration n with |n| = 1;
analogous to coalescence of two lines in Kingman's coalescent, absorption in the
genealogical process associated with 7, occurs at rate 1.

3. A new CSD 7, for structured populations with recombination and

migration

We now introduce an approximate CSD 7, by extending the genealogical process of
Section 2.3 to a general structured population with |T'| = 1. Suppose that conditioned on
having already observed a structured sample configuration n, we wish to sample ¢ additional
haplotypes with ¢, of them in each deme y. As before, given the true fully-specified
genealogy 7, for the conditional configuration n, including migration events, it is possible
to sample a conditional genealogy % for the < additional haplotypes. The conditional
genealogy % comprises the events and corresponding rates of Section 2.2, this time
including migration, and the absorption of lineages in each deme v into lineages of ¢, in

deme y. These latter absorption events occur at rate «, !

In practice, we do not have access to the true genealogy 7, but the diffusion-generator
technique (De lorio and Griffiths, 2004a,b; Griffiths et al., 2008; Paul and Song, 2010) again
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implies the following approximation: Assume that =54y (m) :{% (“7)}yer, where %0 (ny)
is the non-random sub-trunk genealogy associated with deme -y, within which lineages do
not mutate, recombine, migrate, or coalesce with one another. As in Section 2.3, given this
assumption it remains possible to sample a well-defined conditional genealogy ¢, and thus
to generate the additional structured sample c Specifically, lineages within each deme -y of
& evolve backwards in time subject to the following events:

Mutation: Each lineage undergoes mutation at locus £€ L with rate 6faccording to the
mutation transition matrix PO,

Recombination: Each lineage undergoes recombination at breakpoint 6 € B with rate
pb

Migration: Each lineage migrates to deme y” with rate mw’.

Coalescence: Each pair of lineages coalesces with rate 2«,, !

Absor ption: Each lineage is absorbed into a lineage of <% (ny) with rate K;l.

Observe that the rates of mutation, recombination, migration, and coalescence are a factor of
two larger than when the true genealogy v, is known. Intuitively, this again accounts for
using the (incorrect) trunk genealogy <7, (n), and particularly the absence of events therein;

see the remark at the end of Section 2.3. The approximate CSD 7,,, is completely
characterized by this genealogical process. See Figure 1(a) for an illustration.

Remark. For strongly asymmetric migration rates, the approximate CSD 7, and in
particular the assumed trunk genealogy o7 (n), may be very inaccurate. Consider for
example the case of two demes and /2 > 1. The expected time for an additionally
sampled haplotype in deme 2 to be absorbed into the trunk in deme 1 will be very large,
since the lineages in the trunk genealogy 7 (n,) are confined to stay in deme 1. In case of
the true genealogy An, however, one would expect the lineages of the haplotypes in the
observed configuration in deme 1 to cross over to deme 2 quickly and coalesce more
recently with the additional lineage.

We now consider computing the CSP 7, (cln). It is possible to derive the following result
directly using the diffusion-generator approximation, but we defer this work to Appendix A.
Below, we obtain the result through the genealogical process detailed above; using typical

forward-backward genealogical arguments in coalescent theory, we deduce that 7,,, (c[n)
satisfies the following equation:

Ty (€M) :% . ch,h [(ny,h+c%h - ])K;]ﬂ'Mig (c - e%h|n)

yel,
he A
0 =
+ZQ‘ Z P o n e e (c ~ Cynte, sagy |“)
tel acEy (3 1)
+Z‘0b Z Mg (c ~€h +e“/~”/?b(hﬁ')+e%-@b("'>h)|n)
beB  Wes
+Zm77,JTMig (C - e%h+e)”,h|n)} >
V'#y

where .7 (h) denotes the haplotype obtained by substituting the allele at locus £of /#with
allele g and &, (h, ) denotes the haplotype obtained, via recombination about breakpoint &
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= (08 1), by joining the (partial) haplotypes A1 : § and /' [&1, A]. The first term on the right
hand side of this equation corresponds to coalescence and absorption of haplotype /in deme
v, and the subsequent terms correspond to mutation, recombination, and migration,
respectively. The normalizing constant .4” is given by

(/V:ZC), (n7+cy - 1)K;1+205+2pb+2mw: .

yel' el beB y'#y

Equation (3.1) is for the “full” (conditional) genealogical process, and, because of the
recombination terms, it cannot be directly computed by solving a set of linear equations.
However, as in Paul and Song (2010), it is possible to derive a “reduced” recursion related
to (3.1) that can be computed by solving a finite set of linear equations. Unfortunately, the
number of variables in the set of equations grows super-exponentially with both the number
of loci and the number of haplotypes in the sample configuration n, making it
computationally intractable for all but the smallest problems. In the following section, we
propose accurate approximations that allow for efficient computation.

4. An efficiently computable CSD as an approximation of 7,

As described above, the recursion for 7, (cln) becomes computationally intractable for
even modest datasets. In what follows, we adopt a set of approximations to obtain a CSD

that admits efficient implementation, while retaining the accuracy of 7.

4.1. The CSD 7y,suc: Sequentially Markov approximation of ¢

We follow Paul et al. (2011) and use ideas underlying the SMC (Wiuf and Hein, 1999;

McVean and Cardin, 2005; Marjoram and Wall, 2006) to approximate 7,,,. Briefly, observe
that a given conditional genealogy induces a marginal conditional genealogy (MCG) at each
locus, where each MCG comprises a series of mutation and migration events, and the
eventual absorption into a lineage of the sub-trunk in a certain deme. See Figure 1(b) for an
illustration. The key insight, initially provided by Wiuf and Hein (1999), is that we can
generate the conditional genealogy as a sequence of MCGs, rather than backwards in time.
Moreover, though the sequence is not formally Markov, it is well approximated (McVean
and Cardin, 2005; Marjoram and Wall, 2006; Paul et al., 2011) by a Markov process using a

two-locus transition density. Applying this approximation to 7, yields the sequentially
Markov CSD T,,sc. FOr ease of exposition, we restrict attention to the case of sampling a

single additional haplotype, denoted D, but the ideas generalize, in principle, to sampling two
or more additional haplotypes.

Since mutations can be superimposed onto the conditional genealogy, we first consider
generating a sequence of MCGs without mutations according to a Markov process. The
genealogical process underlying 7,,,, yields the following sampling procedure for the MCG
at an arbitrary locus: The ancestral lineage of the additionally sampled haplotype initially
resides in deme a, where the additional haplotype is sampled, and proceeds backwards in
time, subject to the migration process, until being absorbed into a lineage of the sub-trunk

L (ny) within the current deme y. The associated marginal distribution is used as the initial
distribution at the first locus.

Conditional on the marginal genealogy at locus ¢- 1, the marginal genealogy at locus £can
be sampled by first placing recombination events onto the MCG at locus &1 according to a
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Poisson process with rate pgj ¢ If no recombination occurs, the marginal genealogy at locus
lis identical to the one at locus &1. If recombination does occur, the MCG at locus Zis

identical to the MCG at locus £- 1 up to the time £, of the most recent recombination event.
At this point, the lineage resides in the same deme in which the ancestral lineage at locus -
1 resided at the time of the recombination event, and, independently of the lineage at locus ¢
- 1, proceeds backwards in time, subject to the migration process, until being absorbed into

a lineage of the sub-trunk 0 (ny) within the current deme y. Figure 2 illustrates this
transition mechanism for the Markov process.

Conditional on the MCG at locus £ mutations are superimposed onto the MCG according to
a Poisson process with rate 8, The MCG is absorbed into a trunk lineage corresponding to
some haplotype #, thereby specifying an “ancestral” allele A[f. This allele is then propagated
to the present according to the mutations and the mutation transition matrix PO, thereby
generating an allele at locus £of the additional haplotype. We refer to the associated
distribution of alleles as the emission distribution.

It is possible to write down explicit expressions for the initial, transition, and emission

distributions for 7, <\c. However, as the state space for the MCG at each locus includes the
entire migrational history, an efficient algorithm for computing the CSP is not known. In the
next subsections, we introduce further approximations to this model in order to admit an
efficient implementation.

Although we do not prove it here, we note that, analogous to Paul et al. (2011), the
sequentially Markov version of the CSD can be obtained from the genealogical process
introduced in Section 3 by prohibiting coalescence events in the conditional genealogy
between lineages not ancestral to any overlapping parts of the additionally sampled
haplotypes. In the case of sampling one additional haplotype, this corresponds to prohibiting
all coalescence events in the conditional genealogy. This observation allows one to write

down a recursive formula to compute probabilities under 7y, <\, but this again does not
lead to an efficient implementation.

4.2. The CSD Ty,,sue-a0: Keeping track of the absorption time only

As noted in the previous subsection, if we keep track of all demes in which the additional
ancestral lineage at a given locus resides at any given time in the past, then the MCG is a
complicated object. To remedy this, we approximate the full marginal genealogy by just
recording the time until absorption, as well as the deme in which the ancestral lineage
resides at the time of absorption and also the absorbing haplotype. The reduced MCG at

locus Cis thus given by a triplet of random variables (G?, T;, H?) €' xRyo X 7 that the

deme absorption G}, the absorption time 77, and the absorbing haplotype H;'.
Henceforward, of Sto denote I" x Rsg x 7.

Now, observe that the marginal migration dynamics of the ancestral lineage at a single locus
can be described by a continuous-time Markov chain with a finite state space. The states can
be divided in two groups: one state for each deme denoting residence in that deme before
being absorbed into the trunk, and another one for each deme to represent being absorbed
into a lineage of the trunk in the given deme at some previous time. We denote the set of
states by {1, ..., g, a1, ..., dg}, Where, for 1 < /< g, state /denotes residence in deme / and
state a;denotes absorption in deme /. The dynamics of the Markov chain is given by the (2g
x 2g)-dimensional block-specified rate matrix
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where Ois a (g % g)-dimensional matrix of zeros, Mis the (g x g)-dimensional matrix of
migration rates which govern the transitions between the first group of states (the non-
absorbed states), and A is the (g x g)-dimensional diagonal matrix

Kl_lnl 0
A=

-1
0 . e Kg ng

which governs the transition into the second group (the absorbed states). The diagonal form
ensures that the absorbed state a;can be reached only if the ancestral lineage currently

resides in deme /. Also, note that absorption is proportional to the inverse of relative size k'
of deme /, as well as the number of trunk-lineages #7;in deme /. Because the absorbing states
are also absorbing in the context of the Markov chain, the rows of .Z corresponding to these
states are set to zero.

The process generating the conditional genealogy for the whole additional haplotype
proceeds sequentially along the haplotype, and thus admits a natural interpretation in an
HMM framework, where the MCG at a given locus is the hidden state and the allele of the
additionally sampled haplotype at this locus is the emitted symbol. We now describe the
initial density, the transition density, and the emission probability.

4.2.1. Initial density—Standard theory of Markov chains yields that the probabilities of
interest for the initial density can be found in the respective entries of the transition
semigroup. If the additional haplotype is sampled at present in deme a, the probability of
residing in deme 7and not being absorbed more recently than time Zinto the past is (efz)q,,-.
On the other hand, the cumulative probability of being absorbed in deme /more recently
than time tis given by (efz)aya,. Thus, the initial density of state s= (w, 4, 9, that is the
density of being absorbed in deme w at time zinto the trunk-lineage of haplotype 4, is given
by the derivative of the latter matrix exponential:

(W (s) =4P{G*=w,T* <1, HA=h}

=4 {wa(er), ) @1)
= "y‘lﬂ (Ze’z )

w @,dy,

The factor 1, n/71,, comes from the fact that absorption into a specific lineage of the trunk is
uniform amongst those present in deme w.

4.2.2. Transition density—The density for transition from locus £- 1 to fusing the full
MCG, described in Section 4.1, conditions on the full migration history of the lineage of the
additionally sampled haplotype at locus - 1. Thus, at the time of a possible recombination
event, all demes up to this event, including the deme where the event takes place are
determined. If only the time and the deme of absorption are recorded, then the deme in
which the ancestral lineage resides at the time of the recombination event is a random

variable with a distribution determined by the dynamics of the Markov chain. Let Gﬁ denote
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the random deme in which the ancestral lineage of the additional haplotype resides at the
time £, of the recombination event. Then, for -y € T', the distribution is given by

[efhz] I:Ze(t/— 1 ﬂ‘h)Z]
@y

[Ze17]

Vsl

4.2)

P {G3=)’|T24_1 =lr-1, G?_l =‘U(—l} =

@dw,_

The transition from spq to Spis now given as follows: The time #;, of the potential
recombination event is chosen according to an exponential distribution with rate pe g. If 4
= f-1, no recombination occurs and the MCG sis identical to spq. If 4 < 4, then
recombination occurs and we use (4.2) to determine the probability that the ancestral lineage
resided in a certain deme at the time of the recombination event. The ancestral lineage at
locus proceeds from time 4, in this deme and is again subject to migration according to the
dynamics of the Markov chain governed by rate matrix Z, until it is absorbed. Integrating
over the possible times of the recombination event and summing over the different possible
demes yields the following transition density of the hidden state spat locus £ given sy at the
previous locus:

¢,(;;)(S€|S[71) =P {G?=w€, T} € dth?:th?_]:w[—hT?_]ztf—l,H[A_]:hé—l}
[+7],., [Ze(tff 1-1)Z ]

[ze't-17]

—e Ple-1§ (4.3)

+n<u[.h( ftH/\fe —opts Z
sese1t 5= Jy=0 €
¢ b yel

yawp ) [Ze(’f_’b)z] dty,

@awg_) Vslw,
where f1 A fpdenotes the minimum of £, and #

4.2.3. Emission probability—Since the mutation rate does not depend on the deme in
which the ancestral lineage of the additional haplotype resides, the emission probability at
locus Lonly depends on the absorption time #and the allele of the absorbing haplotype at
that locus A{f. As described above, a Poisson number (with mean #8) of mutation events is
placed onto the MCG spand the “ancestral” allele is propagated to the present according to
the mutation transition matrix PO. Thus, the probability that the allele of the additional
haplotype is D [€], given the hidden state s; can be written as the following matrix
exponential:

& 01 ls) =P (S=b101G)=wr. T)=te, H}=he|
:[et[Q[(P(l)_I)] (4.9)
hel£10LEY

where ¢, denotes the random allele emitted at locus £
4.2.4. A hidden Markov model formulation to compute the CSP—Using the

quantities introduced in the previous Sections, we can now employ the forward algorithm
for this HMM with continuous hidden state space (Cappé et al., 2005) by defining the

quantity f[f’ () recursively. The base case for the first locus is

A= B[ 1s1) - ™ (1),

and the recursive step for the transition from locus £- 1 to lis

D (s =£0" O L0 +50) - [i (selse—1) £, (se-1) dsey,
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where b= (8- 1, §. Finally, the CSP 7y, «\c_x0 O an additional haplotype D given the
already observed sample configuration n is given by:

Tyesucno O = [ £ (s0) dsi.

The sequentially Markov genealogical process corresponding to the CSD 7, snic-a0 IS
illustrated in Figure 1(c).

Note that the dynamics of the Markov chain on the hidden states is reversible with respect to
the initial density, i.e.,

o (5115) 2™ () =a3" (1) ™ (s)

holds for all recombination rates p € R, and hidden states s, s € S. Thus, the initial

density 2™ (-)is in fact the stationary distribution of the Markov chain on the hidden state
space. Reversibility also ensures that the CSP computed starting at the first locus and
proceeding forward is the same as the CSP computed when starting at the final locus and
proceeding backward.

4.3. Discretizing time

The reduced hidden state space of the HMM introduced in the previous subsection yields an
approximation to the full sequentially Markov conditional sampling distribution. However,
the hidden state space (in particular the absorption time) is continuous, making
implementation with standard (discrete) HMM methodology impossible. Thus, as in Paul et
al. (2011), we propose a further approximation, by discretizing the positive real line into a
finite number of intervals and recording the interval that the absorption time falls into.
Formally, this corresponds to the approximation that the transition density and emission
probability are equal for times that belong to the same interval.

To this end, assume that 0=x,<x| < - - - <x;=c0 is a finite, strictly increasing sequence in

.....

denote the discretized hidden state space I' X {1,...,d} X # py T and the hidden states by
o=(w,i,h) € %, where /is the index of the interval of absorption. As before, w denotes the
deme and /the trunk lineage of absorption. Based on the partition &, denote the discretized
version of the initial density as

" (@) =P{G*=w.T* € Di, H*=h)
=[ (™ (, 1,k di

N h

ny ’

=u(w,i) -

where

u (LL), l) :frED-(ZEtZ)a,a dt:(e‘xiz)a,a B (exi_lz)a/,a ’

w

Note that the event {TA € Di} encodes that we only record the time interval in which
absorption happens.
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Similarly, we can derive the discretized version of the transition density as
oW (o) =P {GA—cu[, T/ e Dl[,HA =h(|G} \=wi1. Tp | € D, HY \=h;1
((m(m 1)f f o, W (e, te helwe-t, tr-1, he=1) E™ (@1, te-1, he—y) die_ydte (4.5)

Neph
=Yp, (We—1,10-1) 5cf Ve H 2, (Wes delwe1, 1) =5 ’,

where explicit expressions of y,, (we-1, ic-1) and z,p, (we, iclwe-1, ic—-1) are shown in Appendix
C. Note that we again only record the intervals containing the absorption times at locus £- 1
and £

Finally, the emission probabilities in the discretized HMM can be obtained via

o 01000 = {sn b[€11GE=we, T} € Dy, Hp=hy)
L, € L e, tesh) & (et he) die, (49)

n)( )

and we again provide a more explicit form of this quantity in Appendix C. Note that the
emission probability (4.4) in the continuous case is only dependent on the time of absorption
and the allele that the absorbing haplotype bears at the given locus. The discretized analog
(4.6) on the other hand also depends on the deme that the absorbing haplotype resides in.
This is due to the fact that the latter conditions on being absorbed at any point in a given
time interval, and since the rate of absorption during that interval depends on the deme, this
dependence enters expression (4.6).

With the state space discretized, the CSP can be computed via the standard forward

algorithm for HMMs (Cappé et al., 2005). Thus, we define the quantity F;’ (o¢) recursively
along loci. At the first locus, we have

FY (o) =& O[]l - 2™ ().

The transition from locus £- 1 to locus lis given by

Fy (oo =8 OLelo) - Y dy (@doe) Fy_ (o),

o1 EX

and the probability of observing haplotype b under the discretized HMM is given by

?MigSMC—AOD (bn) := Z F/Iz (1),

OLEX

which provides an approximation to 7, .qyc_ao (BIM).

Remark.

1. 1. InPauletal. (2011), the authors advocate using a discretization based on points
obtained from Gaussian quadrature. However, we obtained numerically more stable
results when using a logarithmic discretization, that is x;= —(1/r) log((a&~//}),
where ris the harmonic mean of the absorption rates in each deme.
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2. 2. The runtime of the standard implementation of the forward algorithm for HMMs
described in the previous paragraph is quadratic in the number of hidden states. In
Paul et al. (2011), the authors describe a straightforward implementation of their
model that leads to a better bound on the runtime. Since our transition density is of
similar form, a similar improvement can be applied here.

5. Application: Estimating migration rates

To demonstrate the utility of our approximate CSD 7y, svc-aon, We cOnsidered estimating
migration rates for data simulated under the full coalescent with recombination and
migration. In particular, we simulated data for k= 10* bi-allelic loci. For simplicity, we set
P([):( 1/2 1/2 )

6l=5x 102 and 172172 Jforall € L, and pb=5 x 1072 for all b€ B. We
considered a structured population with two demes (i.e., I' = {1,2}), and set x; = x, = 0.5
and /o = np1 = m. For each value of m € {0.001, 0.10, 1.00, 10.0}, we generated 100
datasets with /; = 7, = 10 individuals in each of the two demes.

Observe that the per-individual mutation and recombination rates are thus both
approximately 104 - 5 x 1072 = 5 x 102. In humans, for which average per-base mutation and
recombination rates are on the order of 1073, these values correspond to a genomic sequence
on the order of 500 kb. We thus reason that the haplotypes we simulated are representative
of a relatively longer genomic sequence that has been “compressed”, for reasons of
computational efficiency, into 10% loci. Further, we chose the range of migration rates to be
compliant with recent estimates in humans (Gutenkunst et al., 2009; Gravel et al., 2011), as
well as Drosophila (Wang and Hey, 2010).

We considered three approximate/composite likelihood formulations that make use of the
n

CSD. Let n be a particular sample configuration of n haplotypes, and write 11=Zi=19y,-,h,-.

LCL: In the Leave-one-out Composite Likelihood, the likelihood is approximated as a
product of CSPs with each the result of removing a single haplotype from the sample
configuration:

n 1/n
LCL (n) = ]_lﬂMigSMC—AOD (e%,him - e)’;,h[)

i=1

PAC: In the popular Product of Approximate Conditionals framework (Li and
Stephens, 2003), the likelihood is approximated by a conditional decomposition,
averaged over 20 random permutations {oj} of the haplotypes (this number of
permutations is as suggested by Li and Stephens). Defining oj(ey;4) = €y0,(), hoji’

20 n i
PAC (n) 2%2 l_[%\MigSMC—AOD oj (e)’iahi) I — Zo-j (ew,hﬂ) :
1 =1

=1 i=

PCL: In the Pairwise Composite Likelihood, the likelihood is approximated as a
product of CSPs with each a single haplotype conditioned upon a single haplotype:
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n
PCL (n) :l_ll_[’ﬁMigSMC—AOD (e“/bhi'e“/imhi/) :

=1 iI"#i

We set the values of 6 and p to the (true) values used for simulation, and considered the
approximate likelihood surfaces for the parameter m. Figure 3 shows the surfaces for two
example configurations (generated as described above) for /7= 0.10. Perhaps most
importantly, the likelihood surfaces appear to be unimodal and otherwise well-behaved. In
Figure 3(a), the likelihood curves are quite similar to one another, and the maximum
likelihood occurs near the true parameter. This is not generally true, however, as evidenced
by Figure 3(b), for which the likelihood surface for the LCL method is substantially
different than that of PAC and PCL.

We also considered the behavior of the maximum likelihood estimate (MLE) under each of
the likelihood approximations. For each simulated dataset, we computed, using golden
section search, the MLE migration rate 7;; and computed logy(i7i/m), where m s the (true)
migration rate used to generate the dataset. In this way, results for different values of mare
directly comparable; a correct estimate of the migration rate produces a value of 0, and
under- and overestimation by a factor of two produce values of —1 and 1, respectively. To
assess the performance of the MLEs based on the CSD developed in this paper, we also
compared with estimates obtained from the widely-used test statistic Fgt:

Fsr: It can be shown that the migration rate in a symmetric island model with two sub-
populations can be estimated by

, Where Fgt(n) = 1 - g(n)/mer(n), with rtg(n) denoting the average within-population
diversity and rzr(n) the overall diversity; c.f., Charlesworth (1998, Equation (4)). Note
that, although Charlesworth discusses three different estimators for Fgr, the
corresponding migration rate estimators coincide in models where the sub-populations
have equal weights.

For each true migration rate m € {0.01, 0.10, 1.00, 10.0}, box plots for the transformed
MLE under each likelihood approximation and the Fg-based estimator are presented in
Figure 4. Observe that the LCL-based MLE performs very poorly for m=0.01 (see Figure
4(a)), consistently underestimating the true value; this may be because the final haplotype to
be sampled is generally very similar to previously-sampled haplotypes within the deme,
obviating the need for migration events within the conditional genealogy. Intuitively, this
effect should be diminished when the data are produced using larger migration rates, which
does appears to be the case (see Figures 4(b), 4(c), and 4(d)).

On the other hand, the PCL-based MLE performed poorly for /m = 10.0, again consistently
underestimating the true value. This may be because, for large migration rates, there simply
is not enough information in a pairwise analysis of the haplotypes to determine the true rate;
intuitively, this effect should be diminished when the data are produced using smaller
migration rates, relative to the rate of recombination. This is indeed the case, and in fact, for
smaller migration rates, the PCL-based MLE is well-correlated with the PAC-based MLE
(data not shown).
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The PAC-based MLE appears not to suffer at either of these extremes. We speculate that
this is because PAC incorporates both pairwise and higher-order terms, making it less
susceptible to the problems we observe with the LCL- and PCL-based MLEs. We note that
Li and Stephens (2003) came to a similar conclusion.

For low migration rates, the method based on Fgt consistently overestimates the true rates
(see Figure 4(a)), but shows a small variance. For intermediate migration rates, on the other
hand, it produces underestimates (see Figures 4(b) and 4(c)), and the variance is larger than
that of the PAC-based MLE. The estimates for large migration rates (see Figure 4(d)) are
similarly biased, although the variance is comparable to the MLE methods in this case.
Overall, the PAC-based estimation is quite accurate, demonstrating that, using the CSD

Tesmc-aons It 1S Possible to attain accurate estimates of the migration rate.

6. Discussion

Numerous applications in population genomics make use of the conditional sampling
distribution, so developing accurate, efficiently computable CSDs for various population
genetic models is of much interest. Recently, we proposed an accurate sequentially Markov
CSD that follows from approximating the diffusion process dual to the coalescent with
recombination for a single panmictic population. In this paper, we have extended that
approach to incorporate subdivided population structure with migration, providing a novel
CSD that facilitates computation and also admits a useful genealogical interpretation closely
related to the structured coalescent with migration and recombination. We believe that this
extension will have several interesting applications, some of which we list below.

Recalling the applications of CSDs described in the introduction, we note that it is

straightforward to apply 7y, snc-aop t0 @annotate segments of distinct ancestry in
individuals. As in Price et al. (2009), the already observed configuration consists of the
donor individuals from different populations. For low migration rates, the model underlying

Tu.sme-aop 1€2ds naturally to the fact that, following a recombination event, the ancestral
lineage at the next locus is more likely to get absorbed in the same deme, rather than
switching demes by a migration event and then getting absorbed in a different deme.
Whereas the method developed by Price et al. (2009) is applicable for recently admixed
individuals, we expect our model to be more accurate in situations where the mixing of the
populations happened over a long time through the continuous exchange of migrants.

Recall that Wegmann et al. (2011) estimated relative recombination rate variation in
different populations based on ancestry switch-points in the chromosome detected using the
method of Price et al. (2009). As detailed above, our model can be extended to detect
ancestry switch-points in populations that mixed over long periods of time. In such
situations we expect that the segments of different ancestry detected by our method can be
used in a similar fashion as in Wegmann et al. (2011) to analyze recombination rate
variation in different subpopulations, when no strong recent admixture is evident.

Recently, Li and Durbin (2011) performed a related analysis of human demography. They
used the SMC in the special case of a sample consisting of only two sequences, and thus
were able to obtain explicit transition functions along the sequence, as we did for our CSD
(Paul et al., 2011). Li and Durbin incorporated changes in the size of the population into
their model, thus allowing them to use the two sequences of a diploid individual to infer
population size histories of different human populations. They do not explicitly account for
population structure and migration in their analysis, but we believe that the methods
developed in this paper could be readily incorporated into their model. In a similar study,
Mailund et al. (2011) used a pair of sequences sampled from different populations in the
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SMC framework to estimate ancestral population sizes and splitting times in an isolation
model. Again, we think it is possible to incorporate migration into the model using the ideas
we developed in this paper.

Paul and Song (2012) have recently developed a framework to substantially increase the
speed of computations involved in dealing with HMMs for next-generation sequence data,
and they demonstrate their improvements in the model introduced by Paul et al. (2011).
Utilizing the fact that whole genomic sequence data consists of long stretches without
sequence variation in between SNPs, and that the observed variation can be described by a
small number of haplotype blocks, they were able to decrease the computation time by
several orders of magnitude. The same ideas can be applied to speedup our method,
fostering the application of analyses like the one detailed in Section 5 or similar applications
to whole genome sequence data.

The CSDs developed in this paper assume that the structure underlying the population
remains unchanged throughout the whole course of evolution. Furthermore the rates at
which migrants are exchanged are assumed constant. This is mirrored by the fact that the
Markov chain described by the matrix Zis time homogeneous and the number of states does
not change. For more realistic populations one would pose changes of the population
structure and the population sizes at different points in the past, as well as varying rates of
migration. The methods developed in this paper can be readily extended to scenarios where
the structural parameters of the underlying demography are piecewise constant for given
periods of time. This can be implemented by allowing the Markov chain, governing the
absorption of the additional ancestral lineage, to be piecewise homogeneous. Except for the
work of Davison et al. (2009) and Price et al. (2009), we are not aware of any other CSDs
that try to incorporate explicit population structure into the copying model. Such a CSD
accounting for a more general demographic model would allow one to estimate more
general demographic parameters like ancient population sizes and structure, as well as
migration rates, and duration of periods of migration in certain isolation-with-migration
scenarios, using, for example, the framework illustrated in Section 5, importance sampling
(Stephens and Donnelly, 2000; Fearnhead and Donnelly, 2001; Griffiths et al., 2008), or
other frameworks detailed in the introduction. Myers et al. (2008) show that demographic
studies like Gutenkunst et al. (2009) and Gravel et al. (2011), that rely exclusively on the
frequency spectrum, can be limited in resolving demographic parameters, and methods, as
the one developed in this paper, that explicitly incorporate linkage structure, might alleviate
such problems.
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Appendix A. Di usion approximation

We here provide a derivation of the sampling recursion using the diffusion generator
approximation (De lorio and Griffiths, 2004a,b; Griffiths et al., 2008; Paul and Song, 2010).
The diffusion associated with the coalescent including migration and recombination has

state given by the vector X:(x%h)yer.,ﬁ s Where x, 5 is the frequency of haplotype /7 within
deme -y. The generator for the diffiusion can then be written

Theor Popul Biol. Author manuscript; available in PMC 2014 August 01.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Steinriicken et al.

Page 17

0
LIM=) Lg—f (),
yell vk

where

ZLynf (%) =% {xy,h Z (5h,h' - Xy,h')K; 19 F®

e 6)6%;,/
()
+29[ Z xy.y’;’(h) (Pu,h[é] - 65”[“(11),h)f (X)
teL a€E;
+Zpb [ Z Yoy i) Sy 00 m) T X%h] 1o
beB neH
+Z (mwr Xy — MyXy, h) f (X)} ,
Y'#FY

and fis an arbitrary, bounded, twice-differentiable function with continuous second
derivatives.

Denote the probability of obtaining (at stationarity) an ordered sample configuration n by
g(n). Then ¢ M) =EE [g mIX)] where E denotes expectation with respect to the stationary
distribution of the diffiusion, X denotes the random vector of frequencies, and

g (nx) =Hyernhekwxz;v,f . Finally, given an additional haplotype configuration c, the true
conditional sampling probability is, by definition, w(c|n) = g(c + n)/q(n).

By general diffusion theory, E [-£'f (X)] =0, The diffusion generator approximation
assumes the existence of a distribution, with associated expectation [E, such that the previous
condition holds component-wise, that is for each -y €' and i € 52,

_ P
E [-fyh aX_yhf (X)} =0.

By analogy to the exact case, we assume that the sampling distribution is approximated by

g (m) =E [¢ (n|X)], and define the approximate CSD 7, (cln) =g (n+¢) /g (n). Using the
component-wise approximation above,

rk g [.2” 9
y.h
Cynthyh Xy

g (n+c|X)| =0.
yel hes#

Using the expressions for .Z, , and g(n+c|X), together with the definition g (n) -E [¢(mX)],
we obtain, after some algebra analogous to Paul and Song (2010, Appendix),
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q (n+c) :}Zc%h [(n%h+cy,h - 1)K;1'£[(n+c - e%h)
yell
he s

(&) -
+Z€[ Z P nd (n+c - ey,h+ey_5,,;(h))

(el acEy

+Zpb Z q(n+c h e%h+e%-”ﬂ7b(’1-h’)+e7v‘7r‘b(/"vh))
beB WeX

+merq (n+c - e%h+eygh)} ,
Y'#EY

where the normalizing constant is given by

JVZZC), (n7+cy - 1) K;1+295+Zpb+my}.

yel teL beB

Dividing this result by 7 (n), we thus obtain the given recursion for 7, (c[n). It is also
possible to derive, in much the same way, the “reduced” version of this recursion; for
details, see Paul and Song (2010).

Appendix B. Explicit transition density

We begin by assuming that the matrix Zis diagonalizable, which is true if and only if Mis
diagonalizable. In this case, the matrix exponentials in equations (4.1) and (4.3) admit the
2 2
eigen-decomposition (etz)i,j:Zki ]emk (vewi) and (Zetz)i, i~ ki,/lkemk (ewn), Here A 4 are
the eigenvalues of Z, vy are the eigenvectors, and w are the rows of the inverse of the
matrix of eigenvectors V= (1, ..., 1,g). This eigen-decomposition can be used to evaluate
the matrix exponential in equation (4.1), and to compute the integral in equation (4.3)
analytically as

n
E)b) (selse-1)
2¢ 2g 2g

ontr Ny she o At yle—1 AL
=e it 105,501+ ur)zi;i (Ze’f—llgl ygnzlmzl;l [(Vka)a,y(Vmwm)y,amFI (Vnwn)y,aw[ X ApApe'-1tme't "I()[ (A= A — A _,Ob)] >
@awp_| k=1m=1n=

where

(e’”’ — e"“) , ifA#0,

1
1
b-a, if 1=0. (®.1)

L= [" M= {

Note that for a non-diagonalizable matrix, a similar eigen-decomposition can be employed
using generalized eigenvectors and the Jordan normal form, and similar, though more
involved, explicit computations can be performed.

Appendix C. Probabilities in discretized HMM

We now give more explicit forms of the quantities involved in the probabilities of the
discretized HMM, derived using the eigen-decomposition of the extended migration matrix
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Z= VAV Inserting equation (4.3) and (4.1) into the second to last line in equation (4.5),
z 2 A
combined with the eigen-decomposition (ze )i, j:Zkzlflket “wiij yields

2g
N
Yo (We-1,1) -m;oy,{wk)amklxi,l (& —p),

for the first term in the last line of equation (4.5), with 1 (1) defined as in equation (B.1).
For the second term we get

2g 2g 2%

2 p (W jlo, ) =755 2 3 X X 0o an VmWindy.a, 0nWn)y.a,,
yelk=1m=1n=1
X g XiAX . . XiAXj— - g Xic1AX;
X[e/lmx, e/lnxj[g X A = A — Ay — p) — em¥ign¥ji 1(‘)' *j-1 e = A — Ay — p) — m¥ic1 1;' LAX] A=A — Ay —p) +etm?

Finally, using equation (4.6) one can show that

|E| 2g
=) . . : o
B 0 ) =5 2 a0 R, (80

holds, where Eis the set of alleles at the given locus, and we used the eigen-decompositions
of Zand the mutation matrix P = @diag(y, ..., |4) QL. Here pjare the eigenvalues of the
mutation matrix, @= (g1, ..., g2p) is the matrix which has the eigenvectors of the mutation
matrix as columns, and p; denotes the fth row of oL
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Figure 1.

Ilustration of the subsequent approximations to the true conditional sampling distribution.
The three loci of each haplotype are each represented by a filled circle, with the color
indicating the allelic type at that locus. The trunk genealogies in deme 1 ¢z (n,) and deme 2
o (ny), as well as the conditional genealogy ¢’ are indicated. The different demes are
indicated by the white and the grey background. Time is represented vertically, with the
present (time 0) at the bottom of the illustration. (a) The genealogical interpretation:
Mutation events, along with the locus and resulting haplotype, are indicated by small
arrows. Recombination events, and the resulting haplotype, are indicated by branching
events in ¢’. Migration events are indicated by switching to another deme. Absorption
events, and the corresponding absorption time (49 and £9)) and haplotype (44 and A2),
respectively), are indicated by dot-dashed horizontal lines. (b) The corresponding sequential
interpretation: The marginal genealogies at the first, second, and third locus are emphasized
as dotted, dashed, and solid lines, respectively. Mutation events at each locus, along with
resulting allele, are indicated by small arrows. Absorption events at each locus are indicated
by horizontal lines. (c) The corresponding sequential interpretation where just the deme of
absorption, the time of absorption, and the absorbing haplotype are recorded. The gap in the
ancestral lineages indicates that the marginal conditional genealogy is integrated out.

Theor Popul Biol. Author manuscript; available in PMC 2014 August 01.



1duosnuey Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Steinriicken et al.

Figure2.

The transition density from locus £- 1 to locus £in the model underlying 7, sc iS

(1)

el

’
T
1

te—y

g
s

Page 23

illustrated. The white and the grey background symbolize the two different demes that the
ancestral lineage can reside in. (1) A Poisson number of recombination events is placed
uniformly onto the marginal conditional genealogy at locus - 1. (2) If the time ¢, of the
most recent recombination event is more recent than the time of absorption £, then the
marginal conditional genealogy up to this time is copied to locus £ (3) The ancestral lineage
at locus fevolves according to migration until it is absorbed at time #into the trunk in some

deme.
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Figure 3.

Re-scaled log likelihood surfaces for two sample configurations (generated for /m = 0.10,
indicated by a vertical line in the plots), and for each of the three approximate likelihood
formulations (LCL, PAC, PCL) described in the text. In both cases, the likelihoods are
computed using the true values of =5 x 1072 and p = 5 x 1072. (a) A case for which all of
the likelihood surfaces are similar (b) A case for which the LCL likelihood surface is
substantially different than the likelihood surfaces for PAC and PCL
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Figure 4.

Box plots (produced using the software package R, and including outliers) for the quantity
log, (1/m) over 100 samples, where 7; is the MLE under each of the three approximate
likelihood formulations (LCL, PAC, PCL) or the Fgt-based estimate as described in the text.
The MLE values 7; were found using golden section search within the interval (/77 1071, m
10) (@) m=0.01 (b) m=0.10 (c) m=1.00 (d) m=10.0. Note that the median of the LCL
estimator in (a) lies on the lower bound of the interval, thus at least half of the estimates
reach this bound and are most likely even smaller.
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