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Abstract
Iterative image reconstruction algorithms for optoacoustic tomography (OAT), also known as
photoacoustic tomography, have the ability to improve image quality over analytic algorithms due
to their ability to incorporate accurate models of the imaging physics, instrument response, and
measurement noise. However, to date, there have been few reported attempts to employ advanced
iterative image reconstruction algorithms for improving image quality in three-dimensional (3D)
OAT. In this work, we implement and investigate two iterative image reconstruction methods for
use with a 3D OAT small animal imager: namely, a penalized least-squares (PLS) method
employing a quadratic smoothness penalty and a PLS method employing a total variation norm
penalty. The reconstruction algorithms employ accurate models of the ultrasonic transducer
impulse responses. Experimental data sets are employed to compare the performances of the
iterative reconstruction algorithms to that of a 3D filtered backprojection (FBP) algorithm. By use
of quantitative measures of image quality, we demonstrate that the iterative reconstruction
algorithms can mitigate image artifacts and preserve spatial resolution more effectively than FBP
algorithms. These features suggest that the use of advanced image reconstruction algorithms can
improve the effectiveness of 3D OAT while reducing the amount of data required for biomedical
applications.

1. INTRODUCTION
Optoacoustic tomography (OAT), also known as photoacoustic tomography, is a rapidly
emerging imaging modality that has great potential for a wide range of biomedical imaging
applications (Oraevsky & Karabutov, 2003; Wang, 2008; Kruger, et al., 1999; Cox, et al.,
2006). OAT is a hybrid imaging method in which biological tissues are illuminated with
short laser pulses, which results in the generation of internal acoustic wavefields via the
thermoacoustic effect. The initial amplitudes of the induced acoustic wavefields are
proportional to the spatially variant absorbed optical energy density in the tissue. The
propagated acoustic wavefields are detected by use of a collection of wide-band ultrasonic
transducers that are located outside the object. From knowledge of these acoustic data, an
image reconstruction algorithm is employed to estimate the absorbed optical energy density
within the tissue.

A variety of analytic image reconstruction algorithms for three-dimensional (3D) OAT have
been developed (Kunyansky, 2007; Finch, et al., 2004; Xu & Wang, 2005; Xu, et al., 2002).
These algorithms are of filtered backprojection forms and assume that the underlying model
that relates the object function to measured data is a spherical Radon transform. Analytic
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image reconstruction algorithms generally possess several limitations that impair their
performance. For example, analytic algorithms are often based on discretization of a
continuous reconstruction formula and require the measured data to be densely sampled on
an aperture that encloses the object. This is problematic for 3D OAT, in which acquiring
densely sampled acoustic measurements on a two-dimensional (2D) surface can require
expensive transducer arrays and/or long data-acquisition times if a mechanical scanning is
employed. Moreover, the simplified forward models, such as the spherical Radon transform,
upon which analytic image reconstruction algorithms are based, do not comprehensively
describe the imaging physics or response of the detection system (Wang, et al., 2011a).
Finally, analytic methods ignore measurement noise and will generally yield images that
have suboptimal trade-offs between image variances and spatial resolution. The use of
iterative image reconstruction algorithms (Fessler, 1994; Anastasio, et al., 2005; Wernick M.
N. & Aarsvold, 2004; Pan, et al., 2009) can circumvent all of these shortcomings.

When coupled with suitable OAT imager designs, iterative image reconstruction algorithms
can improve image quality and permit reductions in data-acquistion times as compared with
those yielded by use of analytic reconstruction algorithms. Because of this, the development
and investigation of iterative image reconstruction algorithms for OAT (Paltauf, et al., 2002)
is an important research topic of current interest. Recent studies have sought to develop
improved discrete imaging models (Yuan & Jiang, 2007; Ephrat, et al., 2008; Buehler, et al.,
2011; Wang et al., 2011a) as well as advanced reconstruction algorithms (Provost & Lesage,
2009; Guo, et al., 2010; Wang, et al., 2011b). The majority of these studies utilize
approximate 2D imaging models and measurement geometries in which focused transducers
are employed to suppress out-of-plane acoustic signals and/or a thin object embedded in an
acoustically homogeneous background is employed. Because image reconstruction of
extended objects in OAT is inherently a 3D problem, 2D image reconstruction approaches
may not yield accurate values of the absorbed optical energy density even when the
measurement data are densely sampled. This is due to the fact that simplified 2D imaging
models cannot accurately describe transducer focusing and out-of-plane acoustic scattering
effects; this results in inconsistencies between the imaging model and the measured data that
can result in artifacts and loss of accuracy in the reconstructed images.

Several 3D OAT imaging systems have been constructed and investigated (Kruger, et al.,
2010; Ephrat et al., 2008; Brecht, et al., 2009b). These systems employ unfocused ultrasonic
transducers and analytic 3D image reconstruction algorithms. Only limited studies of the use
of iterative 3D algorithms for reconstructing extended objects have been conducted; and
these studies employed simple phantom objects (Paltauf et al., 2002; Wang et al., 2011b;
Wang, et al., 2012; Ephrat et al., 2008). Moreover, iterative image reconstruction in 3D
OAT can be extremely computationally burdensome, which can require the use of high
performance computing platforms. Graphics processing units (GPUs) can now be employed
to accelerate 3D iterative image reconstruction algorithms to the point where they are
feasible. However, there remains an important need for the development of accurate discrete
imaging models and image reconstruction algorithms for 3D OAT and an investigation of
their ability to mitigate different types of measurement errors found in real-world
implementations.

In this work, we implement and investigate two 3D iterative image reconstruction methods
for use with a small animal OAT imager. Both reconstruction algorithms compensate for the
ultrasonic transducer responses but employ different regularization strategies. We compare
the different regularization strategies by use of quantitative measures of image quality.
Unlike previous studies, we apply the 3D image reconstruction algorithms not only to
experimental phantom data but also to the data from a mouse whole-body imaging
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experiment. The aim of this study is to demonstrate the feasibility and efficacy of iterative
image reconstruction in 3D OAT and to identify current limitations in its performance.

The remainder of the article is organized as follows: In Section 2, we derive the numerical
imaging model that is employed by the iterative image reconstruction algorithms and briefly
review the three image reconstruction algorithms. Section 3 describes the experimental
studies including the data acquisition, implementation details, and approaches for image
quality assessment. The numerical results are presented in Section 4, and a discussion of our
findings is presented in Section 5.

2. Background: imaging models and reconstruction algorithms for 3D OAT
Iterative image reconstruction algorithms commonly employ a discrete imaging model that
relates the measured data to an estimate of the sought-after object function. We previously
proposed a general procedure for constructing discrete OAT imaging models that
incorporate the spatial and acousto-electric impulse responses of an ultrasonic transducer
(Wang et al., 2011a). We review the salient features of this procedure in Section 2.1. For use
in the studies presented in this work, in Section 2.2 we reformulate the discrete imaging
model in the temporal-frequency space for the case of flat rectangular ultrasonic transducers.

2.1. Discrete imaging model in the time-domain
A canonical OAT imaging model in its continuous form is expressed as (Wang & Wu, 2007;
Oraevsky & Karabutov, 2003; Wang et al., 2011a):

(1)

where p(r’, t) denotes the acoustic pressure measured at location r’ and time t, A(r) denotes
the sought-after absorbed optical energy density, I(t) describes the normalized temporal
profile of the illumination pulse, δ(t) is the Dirac delta function, V denotes the object’s
support volume, *t denotes 1D temporal convolution, and β, c0, and Cp denote the thermal
coefficient of volume expansion, (constant) speed-of-sound, and the specific heat capacity of
the medium at constant pressure, respectively. Because many OAT applications employ a
laser pulse of nano-seconds in duration, we assume I(t) ≈ δ(t) in this study. In accordance,
we drop the last temporal convolution in (1) hereafter. This model assumes an idealized
data-acquisition process and neglects finite sampling effects.

In practice, the acoustic pressure is converted to a voltage signal by use of ultrasonic
transducers that is subsequently sampled and recorded. Consider that the ultrasonic
transducers collect data at Q locations that are specified by the index q = 0,…, Q − 1 and K
temporal samples, specified by the index k = 0,…, K − 1, are acquired at each location with
a sampling interval ΔT . A continuous-to-discrete (C-D) imaging model (Barrett & Myers,
2004; Wang & Anastasio, 2011) for OAT can be generally expressed as (Wang et al.,
2011a):

(2)

where uq(t) is the pre-sampled electric voltage signal corresponding to location index q, the
surface integral is over the detecting area of the q-th transducer denoted by Οq, and he(t)
denotes the acousto-electric impulse response (EIR) of transducers. The QK × 1 vector u
denotes a lexiographically ordered version of the sampled data. The notation [u]qK+k is
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employed to denote the (qK + k)-th element of u. The pressure data function p(r’, t) is
determined by A(r) via (1). Accordingly, the C-D mapping given by (2) maps the function
A(r) to the measurement vector u.

To obtain a discrete-to-discrete (D-D) imaging model for use with iterative image
reconstruction algorithms, a finite-dimensional approximate representation of the object
function A(r) can be introduced. We have previously employed (Wang et al., 2011a) the
representation

(3)

where the superscript a indicates that Aa(r) is an approximation of A(r) and  are
expansion functions defined as

(4)

Here, rn= (xn, yn, zn)T specifies the coordinate of the n-th grid point of a uniform Cartesian
lattice and ε is the half spacing between lattice points. The n-th component of the coefficient
vector θ is defined as

(5)

where Vcube and Vsph are the volumes of a cubic voxel of dimension 2ε and of a spherical
voxel of radius ε respectively.

Let  denote the pre-sampled voltage signal that would be produced by the absorbed

optical energy density Aa(r). Note that  is an approximation of uq(t), which would be
produced by A(r). By use of (1)-(3), it can be verified that

(6)

where H(t) is Heaviside step function, p0(t) is the ‘N’-shape pressure profile produced by a

uniform sphere of radius ε, and  denotes the spatial impulse response (SIR) of the q-
th transducer. By temporally sampling (6) and employing the approximation

, one can establish (Wang et al., 2011a) a D-D imaging model as

(7)

where the system matrix Ht maps the coefficient vector θ, which determines Aa(r), to the
measured temporal samples of the voltage signals.
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2.2. Temporal frequency-domain version of the discrete imaging model
Because a transducer’s EIR he(t) must typically be measured, it generally cannot be
described by a simple analytic expression. Accordingly, the two temporal convolutions in
(6) must be approximated by use of discrete time convolution operations. However, both

p0(t) and  are very narrow functions of time, and therefore temporal sampling can
result in strong aliasing artifacts unless very large sampling rates are employed. As
described below, to circumvent this we reformulated the D-D imaging model in the temporal
frequency domain.

Consider (6) expressed in the temporal frequency domain:

(8)

where f is the temporal frequency variable conjugate to t and a ‘ ~ ’ above a function denotes
the Fourier transform of that function defined as:

(9)

For f ≠ 0, the temporal Fourier transform of p0(t) is given by

(10)

When the transducer has a flat and rectangular detecting surface of area a × b, under the far-
field assumption, the temporal Fourier transform of the SIR is given by (Stepanishen, 1971):

(11)

where  and  specify the transverse coordinates in a local coordinate system that is
centered at the q-th transducer, as depicted in Figure 1, corresponding to the location of a
point source described by a 3D Dirac delta function. The SIR does not depend on the third
coordinate (ztr) specifying the point-source location due to the far-field assumption. Given

the voxel location rn = (xn, yn, zn) and transducer location , expressed in
spherical coordinates as shown in Figure 1, the corresponding values of the local coordinates
can be computed as:

(12)

(13)

Equation (8) can be discretized by considering L temporal frequency samples specified by a
sampling interval Δf that are referenced by the index l = 0, 1,…, L − 1. Utilizing the

approximation  yields the D-D imaging model:
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(14)

where H is the system matrix of dimension QL × N, whose elements are defined by

(15)

The imaging model in (14) will form the basis for the iterative image reconstruction studies
described in the remainder of the article.

2.3. Reconstruction algorithms
We investigated a 3D filtered backprojection algorithm (FBP) and two iterative
reconstruction algorithms that employed different forms of regularization.

Filtered backprojection—A variety of FBP type OAT image reconstruction algorithms
have been developed based on the continuous imaging model described by (1) (Kunyansky,
2007; Finch et al., 2004; Xu & Wang, 2005; Xu et al., 2002). If sampling effects are not
considered and a closed measurement surface is employed, these algorithms provide a
mathematically exact mapping from the acoustic pressure function p(r’, t) to the obsorbed
energy density function A(r). Since we only have direct access to electric signals in practice,
in order to apply FBP algorithms, we need to first estimate the sampled values of the
acoustic pressure data from the measured electric signals. In this study, we considered a
spherical scanning geometry. When the object is near the center of the measurement sphere,
the surface integral over Οq in (2), i.e., SIR effect, is negligible. The remaining EIR effect is
described by a temporal convolution. We employed linear regularized Fourier deconvolution
(Kruger et al., 1999) to estimate the pressure data, expressed in temporal frequency domain
as:

(16)

where  is a window function for noise suppression. In this study, we adopted the Hann
window function defined as:

(17)

where fc is the cutoff frequency. We implemented the following FBP reconstruction formula
for a spherical measurement geometry (Finch et al., 2004):

(18)

where Rs and S denote the radius and surface area of the measurement sphere respectively.
Note that the value of the cutoff frequency fc controls the degree of noise suppression during
the deconvolution, thus indirectly regularizing the FBP algorithm.

Penalized least-squares with quadratic penalty—PLS reconstruction methods seek
to minimize a cost-function of the form as:
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(19)

where R(θ) is a regularizing penalty term whose impact is controlled by the regularization
parameter α. We employed the conventional quadratic smoothness Laplacian penalty given
by (Fessler, 1994):

(20)

where kx1 and kx2 were the indices of the two neighbor voxels before and after the n-th
voxel along x-axis. Similarly, ky1, ky2 and kz1, kz2 were the indices of the neighbor voxels
along y- and z-axis respectively. The reconstruction algorithm for solving (19) was based on
the Fletcher Reeves version of conjugate gradient (CG) method (Wernick M. N. &
Aarsvold, 2004), and will be referred to as the PLS-Q algorithm.

Penalized least-squares with total variation norm penalty—We also investigated
the PLS algorithm regularized by a TV-norm penalty. This method seeks to minimize a cost-
function of the form as:

(21)

where β is the regularization parameter, and a non-negativity constraint is employed. The
TV-norm is defined as

(22)

We implemented the fast iterative shrinkage/thresholding algorithm (FISTA) to solve (21)
(Beck & Teboulle, 2009), which will be referred to as PLS-TV algorithm.

3. Descriptions of numerical studies
3.1. Experimental data acquisition

Scanning geometry—The small animal OAT imager employed in our studies has been
described in previous publications (Ermilov, et al., 2009; Brecht, et al., 2009a; Brecht et al.,
2009b). As illustrated in Figure 2-(a), the arc-shaped probe consisted of 64 transducers that
spanned 152 degrees over a circle of radius 65-mm. Each transducer possessed a square
detecting area of size 2 × 2-mm2. The laser illuminated the object from rectangular
illumination bars in orthogonal mode. During scanning, the object was mounted on the
object holder and rotated over the full 360 degrees while the probe and light illumination
stayed stationary. Scans were set to sample at 20MHz over 1536 samples with an
amplification of 60dB and 64 averages per acquisition.

Six-tube phantom—A physical phantom was created that contained three pairs of
polytetrafluoroethylene thin walled tubing of 0.81-mm in diameter that were filled with
different concentrations of nickel sulfate solution having absorption coefficient values of
5.681-cm−1, 6.18-cm−1, and 6.555cm−1. The tubes were held within a frame of two acrylic
discs of 1#x201D; diameter that were separated at a height of 3.25#x201D; and kept
attached by three garolite rods symmetrically spaced 120° apart. The tubing was such that
each pair would contain a tube that would follow along the outside of the phantom and the
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second would be diagonally inside. A photograph of the phantom is shown in Fig. 2-(b). The
entire phantom was encased inside a thin latex membrane that was filled with skim milk to
create an optically scattering medium. A titanium sapphire laser with a peak at 765-nm and a
pulse width of 16ns (Quanta Systems) were employed to irradiate the phantom. The
temperature of the water bath was kept at approximately 29.5°C with a water pump and
heater. A complete tomographic data set was acquired by rotating the object about 360° in
0.5° steps. Accordingly, data were recorded by each transducer on the probe at 720
tomographic view angles about the vertical axis.

Mouse whole-body imaging—A 6 to 7 week old athymic Nude-Foxn1nu live mouse
(Harlan, Indianapolis, Indiana) was imaged with a similar setup to the phantom scan with a
customized holder that provided air to the mouse when it was submerged in water. The
holder was essentially comprised of three parts: 1) a hollow acrylic cylinder for breathing, 2)
an acrylic disc with hole for mouse tail and an apparatus to attach the legs, and 3) pre-
tensioned fiber glass rods to connect the two acrylic pieces. The mouse was given pure
oxygen with a flow rate of 2L/min with an additional 2% isoflurane concentration for initial
anesthesia. During scanning the isoflurane was lowered to be around 1.5%. The temperature
of water was held constant at 34.7°C with the use of a PID temperature controller connected
to heat pads (Watlow Inc., Columbia, MO) underneath the water tank. A bifurcated optical
fiber was attached to a ND:YAG laser (Brilliant, Quantel, Bozeman, MT) operating at 1064-
nm wavelength with a energy pulse of about 100-mJ during scans and a pulse duration of
15-ns. The optical fiber outputs were circular beams of approximately 8-cm at the target
with an estimated 25-mJ directly out of each fiber. Illumination was done in orthogonal
mode along the sides of the water tank with in width of 16”. A complete tomographic data
set was acquired by rotating the object about 360° in 2° steps. Accordingly, data were
recorded by each transducer on the probe at 180 tomographic view angles about the vertical
axis. More details regarding the data acquisition procedure can be found in (Brecht et al.,
2009a; Brecht et al., 2009b).

3.2. Implementation of reconstruction algorithms
Six-tube phantom—The region to-be-reconstructed was of size 19.8 × 19.8 × 50.0-mm3

and centered at (−1 0, 0, −3.0)-mm. The FBP algorithm was employed to determine
estimates of A(r) that were sampled on a 3D Cartesian grid with spacing 0.1-mm by use of a
discretized form of (18). The iterative reconstruction algorithms employed spherical voxels
of 0.1-mm in diameter inscribed in the cuboids of the Cartesian grid. Accordingly, the
reconstructed image matrices for all three algorithms were of size 198 × 198 × 500. The
speed-of-sound was set at c0= 1.47-mm/μs. We selected the Grüneisen coefficient as Γ=βc2/
Cp = 2, 000 of arbitrary units for all implementations. Since the top and bottom transducers
received mainly noise for elongated structures that were aligned along z-axis, we utilized
only the data that were acquired by the central 54 transducers.

Mouse whole-body imaging—The region to-be-reconstructed was of size 29.4 × 29.4 ×
61.6-mm3 and centered at (0.49, 2.17, −2.73)-mm. The FBP algorithm was employed to
determine estimates of A(r) that were sampled on a 3D Cartesian grid with spacing 0.14-mm
by use of (18). The iterative reconstruction algorithms adopted spherical voxels of 0.14-mm
in diameter inscribed in the cuboids of the Cartesian grid. Accordingly, the reconstructed
image matrices for all three algorithms were of size 210 × 210 × 440. The speed-of-sound
was chosen as c0 = 1.54-mm/μs. We selected the Grüneisen coefficient as Γ = βc2/Cp = 2,
000 of arbitrary units for all implementations. We utilized only the data that were acquired
by the central 54 transducers.
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Parallel programming by CUDA GPU computing—Three-dimensional iterative
image reconstruction is computationally burdensome in general. It demands even more
computation when utilizing the system matrix defined by (15), as opposed to the
conventional spherical Radon transform model, mainly because the former accumulates
contributions from more voxels to compute a single data sample. In addition, calculation of
the SIR defined by (11) introduces extra computation. It can take weeks to accomplish a
single iteration by sequential programming using a single CPU, which is infeasible for
practical applications. Because the calculation of SIR for each pair of transducer and voxel
is mutually independent, we parallelized the SIR calculation by use of GPU computing with
CUDA (Stone, et al., 2008; Chou, et al., 2011) such that multiple SIR samples were
computed simultaneously, dramatically reducing the computational time. The six-tube
phantom data were processed by use of 3 NVIDIA Tesla C2050 GPU cards, taking 4.52-
hours for one iteration from the data set containing 144 tomographic views, while the
mouse-imaging data were processed by use of 6 NVIDIA Tesla C1060 GPU cards, taking
5.73-hours for one iteration from the data set containing 180 tomographic views. Though for
testing we let the reconstruction algorithms iterate for over 100 iterations, both PLS-Q and
PLS-TV usually converged within 20 iterations.

3.3. Image quality assessment
Visual inspection—We examined both the 3D images and 2D sectional images. To avoid
misinterpretations due to display colormap, we compared grayscale images. Also, for each
comparison, we varied the grayscale window to ensure the observations are minimally
dependent on the display methods. For each algorithm we reconstructed a series of images
corresponding to different values of regularization parameter over a wide range. To
understand how image intensities are affected by the choice of regularization parameter,
each 2D sectional image was displayed in the grayscale window that spanned from the
minimum to the maximum of the determined image intensities.

It is more challenging to fairly compare 3D images by visual inspection. Hence we intended
not to draw conclusions on which algorithm was superior, but instead to reveal the
similarities among algorithms when data were densely sampled. Although for each
reconstruction algorithm we reconstructed a series of images corresponding to the values of
regularization parameter over a wide range, the main structures within the images appeared
very similar in general. Thus we selected a representitive 3D image for each reconstruction
algorithms. These representative images correspond to the regularization parameters whose
values were near the center of the full ranges and have a very close range of image
intensities. We displayed these images in the same grayscale window. For a prechosen
grayscale window [θlow, θup], the reconstructed images were truncated as:

(23)

The truncated data were linearly projected to the range [0, 255] as 8-bit unsigned integers:

(24)

The 3D image data θint8 were visualized by computing maximum intensity projection (MIP)
images by use of the Osirix software (Rosset, et al., 2004).

Wang et al. Page 9

Phys Med Biol. Author manuscript; available in PMC 2012 December 30.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



Quantitative metrics—Because the six-tube phantom contained nickel sulfate solution as
the only optical absorber, the tubes were interpreted as signals in the reconstructed images,
which were contaminated by random noise, e.g., the electronic noise. Since the tubes were
immersed in nearly pure scattering media, the reconstructed images were expected to have
zero-mean background. In contrary, the mouse whole-body imaging possessed a nonzero-
mean background because the absorbing capillaries within blood-rich structures were
beyond the 0.5-mm resolution limit (Brecht et al., 2009b) of the imaging system, resulting a
diffuse background. Consequently, we interpreted the arteries and veins as signals, which
were immersed in nonzero-mean background plus random noise.

Image resolution: Because both the tubes and blood vessels were fine threadlike objects,
we quantified the spatial resolution by their thickness. To estimate the thickness of a
threadlike object lying along z-axis at certain height, we first selected the 2D sectional
image at that height. Subsequently, we truncated the 2D image into dimension of (2Nr + 1)-
by-(2Nr + 1) pixels; and adjusted the location of the truncated image such that only a
continuous group of pixels corresponding to the structure of interest, or hot spot, was present
at the center. We then fitted the 2D sectional image to a 2D Gaussian function given by:

(25)

where n1 and n2 denoted the indices of pixels in the 2D digital image with n1, n2 = −Nr, −Nr
+ 1,…, Nr in units of pixel size, G[0, 0] was the peak value of the Gaussian function located
in the center, and σr was the standard deviation of the Gaussian function to be estimated. We
let Nr = 15 and Nr = 10 for the six-tube phantom and the mouse imaging respectively.
Finally, the estimated σr was converted to full width at half maximum (FWHM) as the
spatial resolution measure, i.e.,

(26)

Contrast-to-noise ratio (CNR): For a prechosen structure, a series of adjacent 2D sectional
images were selected along the structure (i.e, along z-axis) as described above. We collected
the central voxel of each 2D image, forming the signal region-of-interest (s-ROI). The signal
intensity was calculated as:

(27)

where Ns denoted the total number of voxels within the s-ROI. For the six-tube phantom, the
s-ROI for each tube contained Ns = 200 voxels that extended from z = −10.4-mm to z = 9.6-
mm, while for the mouse-imaging study, the s-ROI for the vessel under study contained Ns

= 20 voxels that extended from z = 7.0-mm to z = 9.8-mm. For each s-ROI, we defined a
background region-of-interest (b-ROI) that has the same dimension along z-axis as the s-
ROI. For the six-tube phantom, we randomly selected 50 voxels at every height that were
within a circle of radius 5-mm centered at the hot spot of the signal. Similarly, for the
mouse-imaging study, we randomly selected 15 voxels at every height that were within a
circle of radius 2.1-mm centered at the hot spot of the signal. Correspondingly, the b-ROI
contained Nb = 10, 000 and Nb = 300 voxels for the six-tube phantom and the mouse-
imaging study, respectively. The background intensity was calculated by:
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(28)

Also, the background standard deviation was calculated by:

(29)

Because the reconstructed image is not a realization of an ergodic random process, the value
of σb estimated from a single reconstructed image is not equivalent to the standard deviation
of the ensemble of images reconstructed by use of a certain reconstruction algorithm.
Nevertheless, the σb can be employed as a summary measure of the noise level in the
reconstructed images. Consequently, the contrast-to-noise ratio (CNR) was calculated by:

(30)

Plot of resolution against standard deviation: All three reconstruction algorithms possess
regularization parameters that control the trade-offs among multiple aspects of image
quality. A plot of resolution against standard deviation evaluates how much spatial
resolution is degraded by a regularization method during its noise suppression. To obtain
this plot for each reconstruction algorithm, we swept the value of the regularization
parameter. For each value, we reconstructed 3D images and quantified the spatial resolution
and noise level by use of (26) and (29) respectively. The FWHM values calculated along the
structure of interest were averaged as a summary measure of resolution, denoted by .
The average was conducted over 20-mm and 2.8-mm for the six-tube phantom and the
mouse imaging respectively. The  was plotted against the standard deviation (σb).

Plot of signal intensity against standard deviation: In addition to the trade-off between
resolution and standard deviation, regularization parameters also control the trade-off
between bias and standard deviation. In general, stronger regularization may introduce
higher bias while more effectiviely reducing the variance of the reconstructed image.
Because the true values of absorbed energy density were unavailable, we plotted the signal
intensity against the image standard variation that were calculated by use of (27) and (29).
From this plot, we compared the noise level of the reconstructed images with comparable
image intensities and hence with comparable biases.

4. Experimental results
The data for the six-tube phantom and mouse whole-body imaging were collected at 720 and
180 view angles respectively, referred to as full data sets. In order to emulate the scans with
reduced numbers of views, we undersampled the full data sets to subsets with different
numbers of view angles that were evenly distributed over 2π. These subsets will be referred
to as ‘N-view data’ sets, where N is the number of view angles.

4.1. Six-tube phantom
Visual inspection of reconstructed images from densely-sampled data sets—
From densely-sampled data sets, the MIP images corresponding to the FBP and the PLS-TV
algorithms appear to be very similar as shown in Figure 3. Note that the two images were
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reconstructed from different data sets: The image reconstructed by use of the FBP algorithm
is from the full data set, i.e., the 720-view data set, while the one reconstructed by use of the
PLS-TV algorithm is from the 144-view data set. We did not apply iterative reconstruction
algorithms to the 720-view data set mainly because of the computational burden. Moreover,
the images reconstructed from the 144-view data set by use of the PLS-TV algorithm
already appear to be at least comparable with those reconstructed by use of the FBP
algorithm from full data set. Certain features are shared by both images. For example, both
images contain two tubes (indicated by white arrows) that are brighter than the others, which
is consistent with the fact that these two tubes are filled with the solution of higher
absorption coefficient (μa = 6.555cm−1). The similarities between the two images are not
surprising for two reasons: Firstly, when the pressure function is densely sampled and the
object is near the center of the measurement sphere, where the SIR can be neglected, we
would expect all three algorithms to perform similarly because the imaging models they are
based upon are equivalent in the continuous limit; Also the process of forming the MIP
images strongly attenuates the background artifacts.

However, 2D sections of the 3D images reveal cerrtain favorable characteristics of the PLS-
TV algorithm, as shown in Figure 4. Though we varied the cutoff frequency fc over a wide
range for the FBP algorithm, none of these images has background as clean as the image
reconstructed by the PLS-TV algorithm. We notice two types of artifacts in the images
reconstructed by use of the FBP algorithm: the random noise and the radial streaks centered
at the tubes. The former is caused by measurement noise while the latter is likely due to
certain unmodeled system inconsistencies that are referred to as systematic artifacts and will
be addressed in Section 5. The regularizing low-pass filter mitigates the random noise but
also degrades the spatial resolution (Figure 4-b-e). The TV-norm regularization mitigates the
background artifacts with minimal sacrifice in spatial resolution. The image reconstructed
by use of the PLS-TV algorithm shown in Figure 4-(f) has at least comparable resolution as
that of the FBP image with fc = 6-MHz (Figure 4-c).

Qualitative comparison of regularization methods—The three reconstruction
algorithms are regularized by use of the low-pass filter, the ℓ2-norm smoothness penalty and
the TV-norm penalty, respectively. The impacts of the low-pass filter are revealed in Figure
4. We observe that a slight regularization (i.e., a large value of fc) results in sharp but noisy
images while a heavy regularization (i.e., a small value of fc) produces clean but blurry
images. Also, the intensities of the tubes are lower for a smaller value of fc. Similar effects
are observed for the PLS-Q algorithm with the ℓ2-norm smoothness penalty as shown in
Figure 5. These observations agree with the conventional understandings of the impacts of
regularization summarized as two trade-offs: resolution versus variance and bias versus
variance (Fessler, 1994). The TV-norm regularization, however, mitigates the image
variance with minimal sacrifice in image resolution as shown in Figure 6. Though the signal
intensity is reduced at β = 0.1 (Figure 6-c and -f), the spatial resolution appears to be very
close to that of the images corresponding to smaller values of β (Figure 6-a and -d). In
addition, both the low-pass filter and the ℓ2-norm penalty have little effects on the systematic
artifacts while the TV algorithm effectively mitigates both the systematic artifacts and the
random measurement noise.

Tradeoff between signal intensity and noise level of reconstructed images—
The image intensities in tube-A are plotted as a function of z, as shown in Figure 7 where
the location of tube-A is indicated in the 2D image slices as shown in Figure 4-Figure 6. The
profiles corresponding to the FBP algorithm were extracted from images reconstructed from
the 720-view data set while the profiles corresponding to iterative algorithms were extracted
from images reconstructed from the 144-view data set. For each reconstruction algorithm,
two profiles are plotted that correspond to moderate and strong regularization as displayed in
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Figure 7-(a) and (b) respectively. As expected, the quantitative values are smaller when the
algorithms are heavily regularized. More importantly, images reconstructed by use of
iterative image reconstruction algorithms quantitatively match with those reconstructed by
use of FBP algorithm from densely sampled data. In addition, the signal intensities vary
gradually along z-axis because the laser was illuminated from the side resulting a higher
energy distribution near the center of z-axis. These plots demonstrate the effectiveness of
PLS-TV algorithm when the object is not piecewise constant.

From the same data sets, the signal intensities are plotted against the image standard
deviations in Figure 8-(a). This plot suggests that the images reconstructed by use of the
PLS-TV algorithm have smaller standard deviation while sharing the same bias as those of
images reconstructed by use of the FBP and the PLS-Q algorithms because the same signal
intensity indicates the same bias. Note that these curves were obtained from densely
sampled data. Visual inspections suggest the systematic artifacts contribute more to the
background standard deviation measure than does the measurement random noise. Hence, to
be more precise, this plot demonstrates the PLS-TV algorithm outperforms the FBP and the
PLS-Q algorithms in the sense of balancing the tradeoff between bias and standard deviation
when the signal is present in a uniform background.

Tradeoff between resolution and noise level of reconstructed images—The
plots of resolution ( ) against background standard deviation measure (σb) are shown
in Figure 8-(b). Clearly, the spatial resolution of the images reconstructed by use of the PLS-
TV algorithm is higher than that of the images reconstructed by the FBP and the PLS-Q
algorithms while the images having the same background standard deviation. In addition,
the curve corresponding to the PLS-TV algorithm is flatter than those corresponding to the
FBP and PLS-Q algorithm, suggesting that TV regularization mitigates image noise with
minimal sacrifice in spatial resolution. This observation is consistent with our earlier visual
inspections of the reconstructed images. It is also interesting to note that the curve
corresponding to the PLS-Q algorithm intersects the one corresponding to the FBP
algorithm, indicating that conventional iterative reconstruction algorithms may not always
outperform the FBP algorithm.

Reconstructed images from sparsely-sampled data sets—Images reconstructed
from the 72-view data set and the 36-view data set are displayed in Figure 9 and Figure 10
respectively. The regularization parameters were selected such that the quantitative values of
the images are within the similar range. As expected, from both data sets, the images
reconstructed by use of PLS-TV algorithm appear to have higher spatial resolution as well
as cleaner backgrounds, suggesting the PLS-TV algorithm can effectively mitigate data
incompleteness in 3D OAT.

4.2. Mouse whole-body imaging
Visual inspection of reconstructed images from densely-sampled data sets—
From the 180-view data set, the MIP images corresponding to the FBP and the PLS-TV
algorithms appear to be very similar as shown in Figure 11. In contrast to the images of the
six-tube phantom that have a uniform background, the mouse whole-body images have a
diffuse background. The diffuse background is due to the measurement random noise as
well as the capillaries that are beyond the resolution limit of the imaging system (Brecht et
al., 2009b), thus carrying little information regarding the object. In general, the images
reconstructed by the PLS-TV algorithm appear to have a cleaner background while
revealing a sharper appearing body vascular tree. Besides, the left kidney in the images
reconstructed by use of the PLS-TV algorithm appears to have a higher contrast than the
image reconstructed by use of the FBP algorithm. In addition, comparing with the images
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reconstructed by use of direct backprojection from the raw data, (see figure 6 in (Brecht et
al., 2009a)), both our algorithms appear to improve the continuity of blood vessels. We
believe this is because our algorithms are based on an imaging model that incorporates the
transducer SIR and EIR.

Additional details are revealed in the 2D sectional images as shown in Figure 12 and Figure
13. Obviously, the contrast of the blood vessels in the images reconstructed by use of the
PLS-TV algorithm are higher than those reconstructed by use of the FBP algorithm. In
particular, the PLS-TV algorithm significantly enhanced the appearance of peripheral blood
vessels. For example, within the ROI A in Figure 12, two blood vessels B and C can be
detected easily as two bright spots in zoomed-in image A. However, the two bright spots
have much lower visual contrast in the images reconstructed by use the FBP algorithm. In
addition, as shown in Figure 13, the PLS-TV algorithm effectively mitigates the foggy
background as well as noise with minimal sacrifice in image resolution. However, none of
the images reconstructed by use the FBP algorithm has a background as clean as the images
reconstructed by the PLS-TV algorithm.

Qualitative comparison of regularization methods—Figure 12 and Figure 13
demonstrate how the low-pass filter regularizes the FBP algorithm. Similar to the
observations from the six-tube phantom, a large value of fc results in high spatial resolution,
large signal intensities, and high noise level. For the PLS-TV algorithm, besides the image
corresponding to β = 0.05 shown in Figure 12-(d), images corresponding to β = 0.01 and β =
0.1 are displayed in Figure 14. Though the TV regularization also suppresses the
background variance as well as the signal intensities when the regularization is enhanced,
the TV regularization results in minimal sacrifice in spatial resolution.

Trade-off between signal intensity and noise level of reconstructed images—
The s-ROI is defined to be voxels within a blood vessel that extends from z = −9.87-mm to z
= −7.07-mm, including 20 voxels. At the plane of z = −8.74-mm, the blood vessel is
centered at the white dashed box D shown in Figure 14-(a). The signal intensities are plotted
against the image standard deviations in Figure 15-(a). This plot indicates that the signal
intensity in the images reconstructed by use of the PLS-TV algorithm is lower than that of
the FBP algorithm. This reveals that the PLS-TV algorithm can introduce image biases to
achieve the same level of noise suppression. This observation is different than the previous
observations from the six-tube phantom, perhaps because the PLS-TV algorithm somehow
promotes discontinuities in the diffuse background. Nevertheless, the CNR’s of the images
reconstructed by use of the PLS-TV algorithm are higher than those of the FBP algorithms
for the regularization parameters spanning a wide range as shown in Figure 15-(b).

Trade-off between image resolution and noise level of reconstructed images
—The plots of resolution against background standard deviation are shown in Figure 16.
Similar to our observations from the six-tube phantom imaging, the spatial resolution of the
images reconstructed by use of the PLS-TV algorithm is higher than that of the images
reconstructed by use of the FBP algorithm when the images have the same background
standard deviation. Also, the curve corresponding to the PLS-TV algorithm is flatter than
that of the FBP algorithm, confirming that the TV regularization mitigates image noise with
minimal sacrifice in spatial resolution.

Reconstructed images from sparsely-sampled data sets—Figure 17 and Figure
18 show sectional images at different locations. Each figure contains subfigures
reconstructed by use of the FBP and the PLS-TV algorithms from the 90-view data set and
the 45-view data set. The observations are in general consistent with those corresponding to
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densely-sampled data sets; namely the images reconstructed by use of the PLS-TV
algorithm appear to have higher spatial resolution, higher contrast, and cleaner backgrounds.

5. Discussion and summary
In this study, we investigated two iterative imaging reconstruction algorithms for 3D OAT:
the penalized least-squares (PLS) with a quadratic smoothness penalty (PLS-Q) and the PLS
with a TV-norm penalty (PLS-TV). To our knowledge, this was the first systematic
investigation of 3D iterative image reconstruction for OAT animal imaging. Our results
demonstrated the feasibility and advantages of 3D iterative image reconstruction algorithms
for OAT. Specifically, the PLS-TV algorithm overall outperforms the FBP algorithm
proposed by Finch et al. and the conventional iterative image reconstruction algorithm (e.g.,
PLS-Q) for reconstruction from incomplete data. Although not reported here, we observed
this result to also hold true when other mathematically equivalent FBP algorithms were
employed (Xu & Wang, 2005).

In OAT, the majority of studies of advanced image reconstruction algorithms have been
based on 2D imaging models (Guo et al., 2010; Provost & Lesage, 2009; Buehler et al.,
2011; Yao & Jiang, 2011). For a 2D imaging model to be valid in practice, it is necessary to
assume the focused transducers only receive in-plane acoustic signals. The accuracy of this
assumption is still under investigation (Rosenthal, et al., 2010). However, it is interesting to
note that none of these studies compared the performances of 2D analytic reconstruction
algorithms with those of the iterative algorithms, although the 2D analytic reconstruction
algorithms have been proposed and proved to be mathematically exact (Finch, et al., 2007;
Elbau, et al., 2012). In this work, our studies are based on a 3D imaging model that
incorporates ultrasonic transducer characteristics (Wang et al., 2011a), avoiding heuristic
assumptions regarding the transducer response. Although the FBP algorithm neglects the
SIR effect, when the region-of-interest is close to the center of the measurement sphere, the
images reconstructed by use of the FBP algorithm from densely-sampled data provide an
accurate reference image that permits quantitative evaluation of images reconstructed by use
of the PLS-Q and PLS-TV algorithms when data are incomplete. On the other hand, from
densely-sampled data, the images reconstructed by use of different algorithms are
quantitatively consistent, further validating our 3D imaging model.

The TV-norm regularization penalty has been intensively investigated within the context of
mature imaging modalities including X-ray computed tomography (CT) (Pan et al., 2009;
Han, et al., 2011). In a study of X-ray CT, the TV-norm regularized iterative reconstruction
algorithm has been demonstrated to achieve the same image quality as those reconstructed
by use of analytic reconstruction algorithms, while reducing the amount of data required to
one sixth of that the latter requires (Han et al., 2011). However, our images reconstructed
from sparsely-sampled data sets by use of the PLS-TV algorithm contain clear differences
from those reconstructed from densely-sampled data by use of the FBP algorithm.
Moreover, from densely-sampled data, the images reconstructed by use of the PLS-TV
algorithm also appear to be different from those reconstructed by use of the FBP algorithm.
Note the streaklike artifacts in the six-tube phantom images reconstructed by use of the FBP
algorithm in Figure 4, which remain visible even when the number of tomographic views is
increased to 720. These artifacts are likely due to the inconsistencies between the measured
data and the numerical imaging model. Such inconsistencies can be caused by unmodeled
heterogeneities in the medium (Huang, et al., 2012b; Huang, et al., 2012a; Schoonover &
Anastasio, 2011), errors in the assumed transducer response, and uncharacterized noise
sources (Xu, et al., 2010; Xu, et al., 2011). These inconsistencies can prevent OAT
reconstruction algorithms from working as effectively as their counterparts in mature
imaging modalities such as X-ray CT that are well-characterized.
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There remain several important topics for future studies that may further improve image
quality in 3D OAT. Such topics include the development and investigation of more accurate
imaging models that model the effects of acoustic heterogeneities and attenuation. Also, in
this study, we employed an unweighted least-squares data fidelity term, which is equivalent
to the maximum likelihood estimator assuming that the randomness in the measured data is
due to additive Gaussian white noise (Wernick M. N. & Aarsvold, 2004). However, additive
Gaussian white noise may not be a good approximation in practice (Telenkov & Mandelis,
2010). Identification of the noise sources and characterization of their second order
statistical properties will facilitate iterative reconstruction algorithms that may optimally
reduce noise levels in the reconstructed images. Even though our reconstruction algorithms
were implemented using GPUs, the reconstruction time were still on the order of hours,
which is undesirable for future clinical imaging applications of 3D OAT. Therefore there
remains a need for the development of accelerated reconstruction algorithms and their
evaluation for specific diagnostic tasks.
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Figure 1.
Schematic of the local coordinate system for the q-th transducer where the ztr-axis points to
the origin of the global coordinate system, the xtr and ytr-axes are along the two edges of the
rectangular transducer respectivley.
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Figure 2.
(a) Schematic of the 3D OAT scanning geometry; (b) Photograph of the six-tube phantom.
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Figure 3.
MIP renderings of the six-tube phantom images reconstructed (a) from the 720-view data by
use of the FBP algorithm with fc = 6-MHz; and (b) from the 144-view data by use of the
PLS-TV algorithm with λ = 0.1. The grayscale window is [0,7.0]. Two arrows indicate the
two tubes that were filled with the solution of the highest absorption coefficient 6.555-cm−1.
(QuickTime)
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Figure 4.
Slices corresponding to the plane z = −2.0-mm through the 3D images of the six-tube
phantom reconstructed from (a) the 720-view data by use of the FBP algorithm with fc = 10-
MHz; (b) the 720-view data by use of the FBP algorithm with fc = 8-MHz; (c) the 720-view
data by use of the FBP algorithm with fc = 6-MHz; (d) the 720-view data by use of the FBP
algorithm with fc = 4-MHz; (e) the 720-view data by use of the FBP algorithm with fc = 2-
MHz; and (f) the 144-view data by use of the PLS-TV algorithm with β = 0.1. All images
are of size 19.8 × 19.8-mm2. The ranges of the grayscale windows were determined by the
minimum and the maximum values in each image.
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Figure 5.
Slices corresponding to the plane z = 6.0-mm (top row: a-c) and the plane z = 4.5-mm
(bottom row: d-f) through the 3D-images of the six-tube phantom reconstructed from the
144-view data by use of the PLS-Q algorithm with varying regularization parameter α : (a),
(d) α = 0; (b), (e) α = 1.0 × 103; and (c), (f) α = 5.0 × 103; All images are of size 19.8 ×
19.8-mm2. The ranges of the grayscale windows were determined by the minimum and the
maximum values in each image.
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Figure 6.
Slices corresponding to the plane z = 6.0-mm (top row: a-c) and the plane z = 4.5-mm
(bottom row: d-f) through the 3D-images of the six-tube phantom reconstructed from the
144-view data by use of the PLS-TV algorithm with varying regularization parameter β : (a),
(d) β = 0.001; (b), (e) β = 0.05; and (c), (f) β = 0.1; All images are of size 19.8 × 19.8-mm2.
The ranges of the grayscale windows were determined by the minimum and the maximum
values in each image.
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Figure 7.
Image profiles along the z-axis through the center of Tube-A extracted from images
reconstructed by use of (a) the FBP algorithm with fc = 10-MHz from the 720-view data
(solid line) the PLS-Q algorithm with α = 1.0 × 103 from the 144-view data (dotted line),
and the PLS-TV algorithm with β = 0.05 from the 144-view data (dashed line). Subfigure
(b) shows the corresponding profiles for the case where each algorithm employed stronger
regularization specified by the parameters fc = 5-MHz, α = 5.0 × 103, and β = 0.1,
respectively.
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Figure 8.
(a) Signal intensity vs. standard deviation curves and (b) image resolution vs. standard
deviation curves for the images reconstructed by use of the FBP algorithm from the 144-
view data (FBP144), the PLS-Q algorithm from the 144-view data (PLS-Q144), the PLS-TV
algorithm from the 144-view data (PLS-TV144), and the FBP algorithm from the 720-view
data (FBP720).
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Figure 9.
Slices corresponding to the plane z = −2.0-mm through the 3D images of the six-tube
phantom reconstructed from the 72-view data by use of (a) the FBP algorithm with fc = 3.7-
MHz; (b) the PLS-Q algorithm with α = 1.0 × 103; and (c) the PLS-TV algorithm with β =
0.07. All images are of size 19.8 × 19.8-mm2. The ranges of the grayscale windows were
determined by the minimum and the maximum values in each image.
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Figure 10.
Slices corresponding to the plane z = −2.0-mm through the 3D images of the six-tube
phantom reconstructed from the 36-view data by use of (a) the FBP algorithm with fc = 3.3-
MHz; (b) the PLS-Q algorithm with α = 7.0; and (c) the PLS-TV algorithm with β = 0.02;
All images are of size 19.8 × 19.8-mm2. The ranges of the grayscale windows were
determined by the minimum and the maximum values in each image.
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Figure 11.
MIP renderings of the 3D images of the mouse body reconstructed from the 180-view data
by use of (a) the FBP algorithm with fc = 5-MHz; and (b) the PLS-TV algorithm with β =
0.05; The grayscale window is [0,12.0]. (QuickTime)
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Figure 12.
Slices corresponding to the plane z = −8.47-mm through the 3D images of the mouse body
reconstructed from the 180-view data by use of (a) the FBP algorithm with fc = 8-MHz; (b)
the FBP algorithm with fc = 5-MHz; (c) the FBP algorithm with fc = 3-MHz; and (d) the
PLS-TV algorithm with β = 0.05. The images are of size 29.4 × 29.4-mm2. The three
zoomed-in images correspond to the ROIs of the dashed rectangle A, and the images on the
orthogonal planes x = 8.47-mm (Intersection line is along the arrow B), and y = −3.29-mm
(Intersection line is along the arrow C), respectively. All zoomed-in images are of size 4.34
× 4.34-mm2. The ranges of the grayscale windows were determined by the minimum and the
maximum values in each image.
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Figure 13.
Slices corresponding to the plane y = −3.57-mm through the 3D images of the mouse body
reconstructed from the 180-view data by use of (a) the FBP algorithm with fc = 8-MHz; (b)
the FBP algorithm with fc = 5-MHz; (c) the FBP algorithm with fc = 3-MHz; and (d) the
PLS-TV algorithm with β = 0.05. The images are of size 22.4 × 29.4-mm2. The ranges of
the grayscale windows were determined by the minimum and the maximum values in each
image.
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Figure 14.
Slices corresponding to the plane z = −8.47-mm through the 3D images of the mouse body
reconstructed from the 180-view data by use of the PLS-TV algorithm with (a) β = 0.01; and
(b) β = 0.1. The images are of size 29.4 × 29.4-mm2. The three zoomed-in images
correspond to the ROIs of the dashed rectangle A, and the images on the orthogonal planes x
= 8.47-mm (Intersection line is along the arrow B), and y = −3.29-mm (Intersection line is
along the arrow C), respectively. All zoomed-in images are of size 4.34 × 4.34-mm2. The
ranges of the grayscale windows were determined by the minimum and the maximum values
in each image.
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Figure 15.
(a) Signal intensity vs. standard deviation curves for the images reconstructed by use of the
FBP (dashed line) and the PLS-TV (solid line) algorithms from the 180-view data; (b) CNR
vs. the cutoff frequency curve for the FBP algorithm (dashed line) and CNR vs. the
regularization parameter β curve for the PLS-TV algorithm (solid line) from the 180-view
data.
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Figure 16.
Image resolution vs. standard deviation curves for the images reconstructed by use of the
FBP and PLS-TV algorithms from the 180-view data.
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Figure 17.
Slices corresponding to the plane z = −8.47-mm through the 3D images of the mouse body
reconstructed from the 90-view-data (top row: a, b) and the 45-view data (bottom row: c, d)
by use of (a) the FBP algorithm with fc = 5-MHz; (b) the PLS-TV algorithm with β = 0.03;
(c) the FBP algorithm with fc = 5-MHz; and (d) the PLS-TV algorithm with β = 0.01. The
images are of size 29.4× 29.4-mm2. The three zoomed-in images correspond to the ROIs of
the dashed rectangle A, and the images on the orthogonal planes x = 8.47-mm (Intersection
line is along the arrow B) and y = −3.29-mm (Intersection line is along the arrow C),
respectively. All zoomed-in images are of size 4.34 × 4.34-mm2. The ranges of the grayscale
windows were determined by the minimum and the maximum valuse of each image.
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Figure 18.
Slices corresponding to the plane y = −3.57-mm through the 3D images of the mouse body
reconstructed from the 90-view data (top row: a, b) and the 45-view data (bottom row: c, d)
by use of (a) the FBP algorithm with fc = 5-MHz; (b) the PLS-TV algorithm with β = 0.03;
(c) the FBP algorithm with fc = 5-MHz; and (d) the PLS-TV algorithm with β = 0.01. The
images are of size 22.4 × 29.4-mm2. The ranges of the grayscale windows were determined
by the minimum and the maximum values in each image.
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