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Abstract
BACKGROUND—Although the incidence of cannabis abuse/dependence in Americans is rising,
the neurobiology of cannabis addiction is not well understood. Imaging studies have demonstrated
deficits in striatal D2/D3 receptor availability in several substance-dependent populations.
However, this has not been studied in currently-using chronic cannabis users.

OBJECTIVE—The purpose of this study was to compare striatal D2/D3 receptor availability
between currently-using chronic cannabis users and healthy controls.

METHODS—Eighteen right-handed males age 18–34 were studied. Ten subjects were chronic
cannabis users; eight were demographically matched controls. Subjects underwent a [11C]
raclopride (RAC) PET scan. Striatal RAC binding potential (BPND) was calculated on a voxel-
wise basis. Prior to scanning, urine samples were obtained from cannabis users for quantification
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of urine Δ-9-tetrahydrocannabinol (THC) and THC metabolites (11-nor-Δ-9-THC-9-carboxylic
acid; THC-COOH and 11-hydroxy-THC;OH-THC).

Results—There were no differences in D2/D3 receptor availability between cannabis users and
controls. Voxel-wise analyses revealed that RAC BPND values were negatively associated with
both urine levels of cannabis metabolites and self-report of recent cannabis consumption.

CONCLUSIONS—In this sample, current cannabis use was not associated with deficits in striatal
D2/D3 receptor availability. There was an inverse relationship between chronic cannabis use and
striatal RAC BPND. Additional studies are needed to identify the neurochemical consequences of
chronic cannabis use on the dopamine system.
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1 INTRODUCTION
Marijuana (Cannabis sativa) is one of the most commonly abused illicit drugs in the United
States. Over 106 million people age 12 and above (42%) have reported using cannabis at
least once. Although the addictive liability of cannabis is a source of debate, cannabis
dependence remains a serious health concern (Clapper et al., 2009): over 1,000,000
Americans received treatment for cannabis abuse or dependence within the past year
(SAMHSA, 2010). The large number of Americans at risk for cannabis abuse and
dependence necessitates a better understanding of the neurobiology of cannabis use
disorders.

The main psychoactive component of cannabis, Δ9-tetrahydrocannabinol (THC), exerts its
effects via binding the cannabinoid type 1 (CB1) receptor (Devane et al., 1988; Herkenham
et al., 1991, 1990; Mailleux and Vanderhaeghen, 1992). CB1 receptors are expressed
throughout the brain, with high densities in the cortex, hippocampus, cerebellum, and
striatum. This heterogeneous distribution of CB1 has been confirmed in both humans and
non-human primates (Eggan and Lewis, 2007). The role of the striatum in cannabis use is of
particular interest, as this structure is often involved in multiple cognitive processes that
subserve addiction. The striatum is heavily innervated by midbrain dopamine (DA) neurons,
and striatal dopaminergic neurotransmission is believed to mediate both the development
and maintenance of addictions (for review see Robinson and Berridge, 2001, 2003).

There is a growing body of in vivo evidence that suggests striatal DA receptors may be
altered in human addicts. PET and SPECT imaging studies have documented deficits in
striatal D2/D3 receptor availability in several populations of abstinent and/or detoxified
substance-dependent individuals, including users of cocaine (Martinez et al., 2009; Volkow
et al., 1997), methamphetamine (Volkow et al., 2001), opiates (Wang et al., 1997), and
alcohol [(Hietala et al., 1994; Martinez et al., 2005; Volkow et al., 1996, 2002), although see
(Guardia et al., 2000; Repo et al., 1999)]. Interestingly, this phenomenon has not been
demonstrated in cannabis users. Three studies investigating striatal D2/D3 receptor
availability in subjects with a history of cannabis use found negligible differences between
cannabis users and controls (Sevy et al., 2008; Stokes et al., 2011; Urban et al., 2012).
However, these studies were conducted in subjects that had been abstinent from cannabis for
an average of 15 weeks (Sevy et al., 2008), 18 months (Stokes et al., 2011), and 4 weeks
(Urban et al., 2012). There is evidence to suggest that reduced D2/D3 receptor availability in
addicts may recover after extended periods of abstinence (Volkow et al., 2002), although the
rate of recovery is highly variable between individuals (Nader et al., 2006).
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In order to better understand the role of DA in cannabis dependence, it is crucial to study
individuals who are current heavy cannabis users. To date, no one has examined striatal D2/
D3 binding in currently-using chronic cannabis users. Here, we used PET and
[11C]raclopride (RAC), a D2/D3 antagonist, to compare striatal D2/D3 availability in
currently-using chronic cannabis users and age-matched healthy controls. We hypothesized
that RAC binding availability would be lower in chronic cannabis smokers relative to
controls.

2. METHODS
All study procedures were approved by the Indiana University Institutional Review Board.
Subjects were recruited by local advertising in the greater metropolitan Indianapolis area.
All subjects signed an informed consent statement. Eighteen right-handed males completed
the study. Participants in the cannabis group (CAN; n = 10) were chronic cannabis users,
defined by consumption of at least one “joint” per week (or equivalent) in the last month and
a positive result for THC on a urine toxicology screen (Skosnik et al., 2008a, 2006, 2008b).
Control subjects (CON; n = 8) were non-cannabis smoking males with negative urine
toxicology screens. Groups were matched for age and race. Subjects underwent a screening
interview that included: the Structured Clinical Diagnostic Interview for DSM-IV disorders
(SCID) I and II, and the Edinburgh handedness inventory (Oldfield, 1971). Patterns of
alcohol and substance use were ascertained using the SCID I module E for Substance Use
Disorders. Exclusion criteria were: history of any neurological disorder, current use of
medications with CNS effects, consumption of > 14 alcoholic beverages per week,
contraindication for magnetic resonance imaging (MRI), use of any illicit substance during
the past three months (except cannabis in CAN subjects), positive urine toxicology screen
(other than cannabis in CAN subjects), and DSM-IV diagnosis of an Axis I or II psychiatric
disorder (other than nicotine abuse or dependence in any subject, and cannabis abuse or
dependence in CAN subjects). History of illicit substance abuse or dependence (other than
cannabis in CAN) was exclusionary for all subjects.

2.1. General Study Procedures
On a day subsequent to the screening visit, qualified subjects received a structural MRI and
one [11C]raclopride PET scan. Before scanning, subjects reported recent substance use-
patterns using an internally developed drug-use questionnaire. All subjects submitted a urine
sample for drug toxicology screening. Urine toxicology screens (Q10-1, Proxam) were
administered prior to scanning to corroborate self-report and clinical interview. For
quantitative cannabinoid analysis, urine samples from CAN subjects were submitted to The
Center for Human Toxicology at the University of Utah for quantification of Δ9-
tetrahydrocannabinol (THC), 11-nor-Δ9-tetrahydrocannabinol-9-carboxylic acid (THC-
COOH), 11-hydroxy-Δ9-tetrahydrocannabinol (OH-THC), and creatinine. CAN subjects
were instructed to refrain from smoking cannabis the morning before the scan to help ensure
they would not be intoxicated at the time of scanning.

2.2. Image Acquisition
A magnetized prepared rapid gradient echo (MP-RAGE) magnetic resonance image (MNI)
was acquired on all subjects using a Siemens 3T Trio for anatomic co-registration of PET
data. RAC was synthesized as reported previously (Fei et al., 2004). RAC PET scans were
acquired on an ECAT HR+ (3D mode; septa retracted). Prior to each PET scan, a 10-min
transmission scan using three internal rod sources was acquired for attenuation correction.
RAC PET scans were initiated with an IV infusion of 544.39 ± 38.7 MBq RAC over the
course of 1.5 minutes. Injected mass was 0.17 ± 0.08 nmol/kg. Dynamic data acquisition
lasted 50 minutes.
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During scanning, CAN subjects responded to statements designed to assess cannabis
craving. These included: “I want to smoke cannabis right now”; “I have an urge to smoke
cannabis right now”; “It would be great to use cannabis right now”; “Nothing would be
better than smoking cannabis right now.” Responses were given on a Likert-like scale,
anchored by 1 (strongly disagree) and 7 (strongly agree). The area under the curve (AUC)
for responses to each of the cannabis craving statements was calculated using the trapezoidal
rule. The average AUC value across all 4 statements was used as an overall craving metric.

2.3. Image Processing
Image processing is similar to that described previously (Yoder et al., 2011, 2012). MRI
DICOM and RAC PET images were converted to Neuroimaging Informatics Technology
Initiative (NIfTI) format (http://nifti.nimh.nih.gov/) and processed with SPM5 (http://
www.fil.ion.ucl.ac.uk/spm/). For each subject, an early-time mean PET image was co-
registered to the MRI scan using the normalized mutual information algorithm in SPM5. All
dynamic PET data were co-registered to the early-time mean PET image (in native MR
space) to facilitate motion correction. Each subject’s MRI was spatially normalized to
Montreal Neurological Institute (MNI) space, and this transformation matrix was then
applied to the motion-corrected, MRI-registered PET data from each subject.

2.4. Region of Interest Analysis
Regions of interest (ROIs) were drawn on each subjects’ normalized MRI using MRIcron
(http://www.cabiatl.com/mricro/mricron/). Striatal ROIs consisted of the left and right
ventral striatum (VST), pre- and postcommissural dorsal caudate (pre-/post-DCA), and pre-
and postcommissural dorsal (pre/post-DPU) and were drawn according to specific anatomic
landmarks (Martinez et al., 2003). For the reference region (tissue that contains little to no
D2/D3 receptor density), an ROI was created that contained all cerebellar gray matter except
for the vermis. Cerebellar ROIs were created for each subject by tracing the cerebellum on
individual gray matter maps obtained with the segmentation algorithm in SPM5. Time-
activity curves for all ROIs were generated from the dynamic RAC data using the MarsBaR
toolbox for SPM5 (http://marsbar.sourceforge.net/). For each striatal ROI, D2/D3 receptor
availability was indexed with BPND, the binding potential of RAC calculated as bound
tracer concentration relative to nondisplaceable tracer concentration (Innis et al., 2007).
Estimations of BPND were conducted using the multilinear reference tissue method model
(MRTM2; Ichise et al., 2003).

2.5. Voxel-wise Analysis
BPND was estimated at each brain voxel using the multilinear reference tissue method with a
common reference region efflux rate to facilitate robust performance on noisy voxel data
(MRTM2; Ichise et al., 2003). The resulting parametric BPND images were smoothed with
an 8mm Gaussian kernel (Costes et al., 2005; Picard et al., 2006; Ziolko et al., 2006). The
search area for the voxel-wise paired t-tests was restricted to the striatum, as (1) our sole
focus was the striatum, and (2) the striatum has the highest density of D2/D3 receptors in the
brain, and is the only brain structure with high enough signal-to-noise ratio to support
quantification of D2/D3 receptor availability with RAC. A bilateral striatal restriction mask
was created by tracing the anatomical boundaries of the striatum on an averaged normalized
MRI across all subjects.

2.6. Urinalysis
THC and THC-COOH—The samples were initially analyzed for THC and THC-COOH by
gas chromatography-mass spectrometry (GC-MS) using extraction and GC-MS conditions
described previously (Foltz et al., 1983; Huang et al., 2001). The assay had an analytical
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range of 0.5 to 100 ng/mL with 1.0 mL aliquots. To ensure measurement of both analytes,
the urine samples were analyzed for THC on a 1-0-mL aliquot and THC-COOH on a 0.1-
mL aliquot. For THC, the aliquots were pretreated with β-glucuronidase for 18 hours at
37°C. For THC-COOH, the samples were prepared under basic conditions in order to free
THC-COOH from its glucuronide conjugate. Duplicate calibrators (1.0 mL with both THC-
COOH and THC) were at 0.5, 1.0, 2.5, 5, 10, 25, 50 and 100 ng/mL. Duplicate 1.0-mL (with
both THC-COOH and THC) quality control samples (QCs) were included at 1.5, 10 and 80
ng/mL. Triplicate 0.1 mL dilution QCs were included at 200 ng/mL. Samples were extracted
by a liquid-liquid procedure, derivatized with hexafluoroisopropanol/trifluoroacetic
anhydride, and analyzed by GC-MS.

Subsequently, the method was improved by using gas chromatography-tandem mass
spectrometry (GC-MS/MS) with addition of 11-hydroxy-Δ9-tetrahydrocannabinol (OH-
THC) to the assay. This assay had a quantitative range of 0.1 to 100 ng/mL with a 1.0-mL
aliquot. All samples were reanalyzed to determine OH-THC with the β-glucuronidase
pretreatment using the above methods. Samples with THC or THC-COOH results less than
the lower limit of quantitation in the initial analysis were reanalyzed.

Creatinine—Creatinine was determined using a microplate colormetric test based on the
Jaffe reaction where picric acid reacts with creatinine to form a colored product. Samples
were diluted 10-fold (0.050 mL plus 0.450 mL water). Duplicate creatinine calibrators were
run at 2, 4, 6, 8, 10, 12 and 15 mg/dL. Due to sample dilution, the calibration range was 20
to 150 mg/dL. Triplicate diluted low and high QCs were included. Samples outside the
calibration range were repeated using a smaller or larger dilution as needed.

THC, THC-COOH, and OH-THC concentrations were normalized by creatinine levels to
account for differing levels of urine dilution across subjects (THC/Cr, THC-COOH/Cr, and
OH-THC/Cr respectively).

2.7. Statistical Analysis
Independent t-tests were used to test for differences between CAN and CON in demographic
variables, substance abuse metrics, PAS, and SPQ scores, and RAC BPND. Group
differences in BPND were assessed with ROI and voxel-wise analyses. Pearson’s correlation
coefficient was used to screen variables for associations with striatal ROI BPND. Multiple
linear regression models in SPM5 were used to test for correlations on a voxel-wise basis.
SPM5 was used for voxel-wise analysis, statistical threshold was set at p < 0.05. All other
statistical procedures were performed in SPSS 19.0 (SPSS, Chicago, Illinois, USA).

3. RESULTS
3.1. Subject Data

The demographic and substance abuse characteristics of subjects are shown in Table 1. CAN
and CON subjects were not significantly different in any of the indices. Groups were well-
matched for race, ethnicity, and use of alcohol, tobacco, and caffeine. There were no
significant differences between injected radioactivity or injected mass between groups (p >
0.1).

3.2. Urine THC and THC Metabolite Corroborate Self-Report of Cannabis Consumption
THC/Cr, THC-COOH/Cr, and OH-THC/Cr levels were correlated with self-reported recent
cannabis use. One subject was excluded from this analysis because of inconsistent self-
report data. Significant positive correlations existed between: intake per day and THC-
COOH/Cr (r = 0.884, p = 0.002), intake per day and THC/Cr (r = 0.738, p = 0.023), intake
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per week and THC-COOH/Cr (r = 0.726, p = 0.027), and intake per month and THC-
COOH/Cr (r = 0.676, p = 0.045). There was a trend-level association between intake per day
and OH-THC/Cr (r = 0.647, p = 0.059). There were no significant correlations between
THC/Cr, THC-COOH/Cr, or OH-THC/Cr and cannabis craving during PET scanning.

3.3. Striatal D2/D3 Availability
3.3.1. CAN vs. CON—There were no significant between group differences in RAC BPND
detected by voxel-wise analysis. Similarly, no group differences were found for any of the
10 striatal ROIs assessed (p > 0.4) (Table 2).

3.3.2. Correlation with Recent Cannabis Consumption—Voxel-wise analysis
revealed that RAC BPND was negatively associated with both urine levels of THC-COOH
(Figure 1) and self-reported recent intake per day (Figure 2). Similar correlations were found
between BPND and THC/Cr, OH-THC/Cr, recent intake per week, and recent intake per
month (data not shown).

4. DISCUSSION
The present work is the first to demonstrate an association between the magnitude of recent
cannabis consumption and striatal D2/D3 receptor availability. RAC BPND was strongly
negatively correlated with both urine THC-COOH and self-reported recent intake per day.
We did not find the expected differences in striatal D2/D3 receptor availability between
cannabis users and controls, similar to what has been reported previously (Sevy et al., 2008;
Stokes et al., 2011; Urban et al., 2012).

The inverse correlation between recent cannabis consumption (as confirmed by urine THC
metabolite levels) and D2/D3 receptor availability could be interpreted as a direct effect of
cannabis smoking via lower expression of striatal DA receptors, or increased basal DA
concentration. There is evidence that suggests that heavy cannabis use results in inhibition
of MAO activity (Schurr and Rigor, 1984; Stillman et al., 1978), and thus a higher striatal
DA tone (Kaseda et al., 1999; Lakshmana et al., 1998; Lamensdorf et al., 1996).
Alternatively, activation of CB1 receptors may also result in higher striatal DA
concentration (Chen et al., 1990; Fadda et al., 2006; Tanda et al., 1997). We must consider
the possibility that, in this study, residual THC from the most recent smoking session
increased striatal DA levels; however, several lines of evidence suggest otherwise. Human
imaging studies have attempted to demonstrate THC-induced DA release, with inconclusive
results. One study reported a small (3%) increase in striatal DA after inhaled THC (Bossong
et al., 2009), while two other groups detected no increases in striatal DA after either oral
(Stokes et al., 2009) or IV-delivered THC (Barkus et al., 2011). Additionally, in the present
work, it is unlikely that brain levels of THC or psychoactive metabolite were sufficient to
induce measurable DA release. In a recently described pig model that closely mimics the
kinetic profile of THC in humans, the concentration of a dose of IV-administered THC was
greatly reduced in the brain after six hours, and completely absent after 24 hours (Brunet et
al., 2006). Given that subjects in the present study had abstained from smoking an average
of 20.6 hours prior to scanning, it is likely that brain levels of THC were negligible.

It is also possible that the relationship between cannabis consumption and striatal D2/D3
receptor availability is a result of lower D2/D3 receptor numbers in heavy cannabis users.
Interestingly, evidence from studies of CB1 receptors supports this interpretation. CB1
receptors are co-localized with D2 receptors in the striatum (Hermann et al., 2002; Mailleux
and Vanderhaeghen, 1992; Pickel et al., 2006; Wenger et al., 2003) and D2 receptors and
CB1 receptors form heterodimeric receptor complexes (Kearn et al., 2005). A postmortem
study showed that long-term cannabis users possess a marked reduction in the density of
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CB1 in human brain (Villares, 2007). Additionally, it has been demonstrated that chronic
cannabis users exhibit motor learning deficits similar to those observed in CB1 knockout
mice, suggesting that long-term cannabis exposure induces robust downregulation and/or
desensitization of CB1 receptors (Skosnik et al., 2008a). This has recently been shown in
vivo in humans using the CB1 tracer [18F]FMPEP-d2. Hirvonen et al. (2011) demonstrated
CB1 downregulation in chronic cannabis users, which correlated with total years of cannabis
exposure. CB1 availability returned to normal levels after four weeks of monitored
abstinence. Taken together, the data from the literature indirectly suggest that chronic
exposure to cannabis may lead to downregulation of striatal D2 receptors. However, in the
present study, we did not find differences in D2/D3 receptor availability between controls
and chronic cannabis users, suggesting that chronic cannabis exposure alone is not
associated with reduced D2 receptor levels.

The present study has several limitations. The sample size is relatively small, and thus
presents a risk of both Type I and Type II errors. However, our data are consistent with
those from Sevy et al. (2008), Stokes et al. (2011), and Urban et al. (2012), which reported
that striatal D2/D3 receptor availability is not different in individuals with a history of
cannabis abuse compared to controls. Finally, although use of any illicit substance within the
last three months prior to scanning was an exclusion criterion, both cannabis users and
controls had previous experiences with other drugs. Thus, we cannot preclude the possibility
that prior use of other illicit substances confounded our data. However, qualitative
examination of the data did not indicate that subjects with previous drug experience were
outliers with respect to BPND.

In conclusion, the primary finding of the current study is that current cannabis use is not
associated with a reduction in striatal DA receptor availability relative to controls. We also
found that recent cannabis use is negatively correlated with striatal D2/D3 availability.
Future studies are needed to better understand the neurochemical basis of this finding.
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Fig. 1.
A. Voxel-wise correlations between urine THC-COOH/Cr with RAC BPND in cannabis
users (n = 10). The “rainbow” colorscale indicates voxels where BPND is correlated with
THC-COOH/Cr. B. Linear relationship between BPND and urine THC-COOH levels.
Average BPND value was determined for each subject by extracting BPND values with a
region of interest defined by the significant voxels from the SPM result (shown in 1A).
Display threshold is p < 0.01. MNI coordinates are: axial: 6; coronal: 24.
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Fig. 2.
A. Voxel-wise correlations between self-reported average intake per day and RAC BPND in
cannabis users (n = 9). The “rainbow” colorscale indicates voxels where BPND is correlated
with average use per day. B. Linear relationship between BPND values and recent cannabis
use per day. Average BPND value was determined for each subject by extracting BPND
values with a region of interest defined by the significant voxels from the SPM result
(shown in 2A). Display threshold is p < 0.01. MNI coordinates are: axial: 6; coronal: 24.
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Table 1

Subject demographics and drug-use characteristics. THC use is defined as a one-time session of THC
intoxication

CON (n = 8) CAN (n = 10) p

Age 26.4 ± 5.6 25.1 ± 4.6 n.s.

Race 7C, 1AA 6C, 3AA, 1I n.s.

Ethnicity 8 NHL 10 NHL n.s.

Education 14.6 ± 1.3 14.0 ± 1.8 n.s.

Recent THC use/wk N/A 12.7 ± 12

Recent THC use/month N/A 46.6 ± 42

Years of THC use N/A 8.8 ± 5

Hours since last THC use N/A 20.6 ± 8.3

Tobacco users 2 5 n.s.

Caffeine users 5 6 n.s.

Recent EtOH use 2.94 ± 2.0 3.93 ± 3.7 n.s.

Premorbid IQ 112.3 ± 6.9 110.2 ± 4.4 n.s.

Prior Drug Use: (lifetime drug use sessions)

 THC 36.1 ± 71.7 2571.4 ± 2490.5 0.01

 Sedatives 0 0.65 ± 1.7 n.s.

 MDMA 0 1.20 ± 3.1 n.s.

 Stimulants 0 0.20 ± 0.4 n.s.

 Cocaine 0.63 ± 1.8 4.20 ± 6.3 n.s.

 Opiates 0 0.10 ± 0.3 n.s.

 Hallucinogens 1.31 ± 2.7 1.20 ± 1.6 n.s.

Data are mean ± s.d.

CON: healthy controls; CAN: currently using chronic cannabis users; C: Caucasian; AA: African American; I: Asian-Indian American; NHL: Non-
Hispanic Latino: N/A: not applicable. Recent EtOH use is average drinks per week in the past month.
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Table 2

Region of interest analysis: comparison of striatal binding potential between chronic cannabis users (CAN)
and healthy controls (CON). Groups are matched for cigarette smoking status

[11C]RACLOPRIDE RECEPTOR AVAILABILITY (BPND)

Region CON (n = 8) CAN (n = 10) p

L pre-DCA 2.37 ± 0.29 2.30 ± 0.32 0.63

R pre-DCA 2.34 ± 0.30 2.23 ± 0.29 0.44

L post-DCA 1.51 ± 0.27 1.59 ± 0.28 0.56

R post-DCA 1.55 ± 0.33 1.64 ± 0.19 0.52

L pre-DPU 3.08 ± 0.32 2.92 ± 0.29 0.28

R pre-DPU 3.04 ± 0.30 2.94 ± 0.22 0.44

L post-DPU 3.11 ± 0.31 2.98 ± 0.32 0.40

R post-DPU 3.00 ± 0.33 2.92 ± 0.32 0.63

L VST 2.52 ± 0.29 2.47 ± 0.33 0.78

R VST 2.29 ± 0.25 2.35 ± 0.23 0.58

Left/right = L/R, pre/post-commissural = pre/post, dorsal caudate = DCA, dorsal putamen = DPU, ventral striatum = VST.
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