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Physiological mechanisms for the modulation of
pannexin1 channel activity

Joanna K. Sandilos and Douglas A. Bayliss

Department of Pharmacology, University of Virginia, Charlottesville, VA, USA

Abstract It is widely recognized that ATP, along with other nucleotides, subserves important
intercellular signalling processes. Among various nucleotide release mechanisms, the relatively
recently identified pannexin 1 (Panx1) channel is gaining prominence by virtue of its ability
to support nucleotide permeation and release in a variety of different tissues. Here, we review
recent advances in our understanding of the factors that control Panx1 channel activity. By using
electrophysiological and biochemical approaches, diverse mechanisms that dynamically regulate
Panx1 channel function have been identified in various settings; these include, among others,
activation by caspase-mediated channel cleavage in apoptotic immune cells, by G protein-coupled
receptors in vascular smooth muscle, by low oxygen tension in erythrocytes and neurons, by
high extracellular K+ in various cell types and by stretch/strain in airway epithelia. Delineating
the distinct mechanisms of Panx1 modulation that prevail in different physiological contexts
provides the possibility that these channels, and ATP release, could ultimately be targeted in a
context-dependent manner.
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Introduction

ATP, first isolated from muscle tissue in the late 1920s, is
most recognized for its fundamental role as an energy
substrate in all living cells. Although some very early
studies hinted at functions outside the cell, the idea that
ATP could act as an extracellular signalling molecule
was met with considerable resistance. In 1972, the term
‘purinergic’ was coined by Burnstock on the heels of
his initial work implicating a role for ATP in neuro-
transmission (Burnstock, 1972; Burnstock et al. 1972). His
later work led to the distinction between the two classes
of purinergic receptors, P1 and P2, for adenosine and
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ATP, respectively (Ralevic & Burnstock, 1998; Burnstock,
2007). Today, extracellular nucleotides are well recognized
for their roles in paracrine signalling within a wide array of
tissues, and the list of distinct purinergic receptor subtypes
has grown to 23 (Ralevic & Burnstock, 1998; Abbracchio
et al. 2006; Gever et al. 2006).

The regulated release of nucleotides was first noted in
neurons, where ATP was found to act as a neurotransmitter
in the CNS and periphery (Su et al. 1971; Burnstock, 1976,
1999). It is now known that ATP exerts a direct effect on
a number of neuronal cell types through P2X and P2Y
purinergic receptor agonism (Bean & Friel, 1990; Koles
et al. 2011). ATP-mediated signalling has been associated
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with epilepsy-associated seizures, and with pain trans-
duction within the spinal cord and centrally (Brake &
Julius, 1996; Tsuda et al. 2003, 2005, 2009; Chiang et al.
2007; Wei et al. 2008). ATP can also play diverse roles
within the cardiovascular system with pathophysiological
implications regarding hypertension. For example, ATP
can initiate constriction or dilatation of peripheral
vasculature depending on the target cell (e.g. endothelial
or smooth muscle) and the type of purinergic receptor
they express (e.g. P2X or P2Y subtype) (Burnstock, 1985,
2007; Ellsworth, 2004; Sprague et al. 2011; Stokes et al.
2011; Gunduz et al. 2012). Purinergic signalling also
plays key roles within the immune system mediating
immune response amplification and host–pathogen inter-
actions (Champagne et al. 1995; Davis et al. 2004). ATP,
released by damaged cells or immune cells, can modulate
immune responses such as interleukin processing and
release (Harada et al. 2011; Junger, 2011), chemotaxis
(Zigmond, 1977; Chen et al. 2006; Lecut et al. 2009; Junger,
2011) and T-cell activation (Schenk et al. 2008; Woehrle
et al. 2010b; Junger, 2011). Nucleotides released from
apoptotic cells act as ‘find-me’ signals to attract mono-
cytes or macrophages to the area of cell death (Elliott et al.
2009; Chekeni et al. 2010; Elliott & Ravichandran, 2010).

ATP is generally thought to exit the cell by exocytosis,
via plasma membrane channels or transporters, or
through the complete breakdown of plasma membrane
integrity. Exocytotic release was one of the earliest
known mechanisms for regulated ATP release, described
in chromaffin cells, pancreatic acini and epithelial cells
(Li et al. 2010; Riteau et al. 2010). More recently, a
number of candidate ATP-releasing channels have come
to the forefront, specifically the connexins and pannexins
(Silverman et al. 2009; Chen et al. 2010; Lazarowski et al.
2011). Connexins typically make gap junctions but they
can also form so-called plasma membrane hemichannels
and have been associated with ATP release in a number of
cell types (Beyer & Steinberg, 1991; Cotrina et al. 1998;
Romanello et al. 2001; Arcuino et al. 2002; Contreras
et al. 2002; Goldberg et al. 2002; Lazarowski et al. 2011).
Pannexins are topologically similar to the connexins based
on hydrophobicity analysis; however, they function as a
membrane channel rather than forming gap junctions
(Sosinsky et al. 2011). Pannexin 1 (Panx1), specifically,
has recently emerged as a candidate ATP release channel
within a variety of different physiological contexts (Bao
et al. 2004; Locovei et al. 2006a; Iglesias et al. 2009;
Ransford et al. 2009; Silverman et al. 2009; Kawamura
et al. 2010; Kim & Kang, 2011).

Pannexin 1 channel properties

Panx1, originally cloned as MRS1 in 1998 (Dahl & Keane,
2012), is the most ubiquitously expressed of the pannexins,

while pannexins 2 and 3 are predominantly expressed
in brain (Panx2) and skin and bone (Panx3). Perhaps
due to its widespread expression and easily recorded
plasma membrane channel activity in Panx1-expressing
cells, Panx1 has garnered the most attention to date
(Bruzzone et al. 2003). Pannexins contain four trans-
membrane domains, an intracellular loop, intracellular
N and C termini as well as regularly spaced, highly
conserved cysteine residues within the two extracellular
loops (Panchin et al. 2000; Locovei et al. 2006a). By
analogy with connexons, and supported by biochemical
analyses (Ambrosi et al. 2010), it is believed that six sub-
units hexamerize to form a single Panx1 channel. Although
best known for supporting efflux of nucleotides, Panx1 is
a non-selective channel that allows permeation by small
molecules up to 1 kDa in size including both positively
and negatively charged dyes (Bao et al. 2004; Locovei et al.
2006a; Boassa et al. 2007; Ma et al. 2009; Qiu & Dahl,
2009; Ambrosi et al. 2010); it has also been implicated in
release of glutamate, arachidonic acid and its metabolites
(Bao et al. 2004; Pelegrin & Surprenant, 2006; Jiang et al.
2007; Chekeni et al. 2010).

Pannexin 1 was first demonstrated to act as an
ATP-permeant channel in 2004 (Bao et al. 2004). Sub-
sequent work solidified a role for Panx1 as a major ATP
release channel in a variety of cell types including neurons
(Kawamura et al. 2010), astrocytes (Iglesias et al. 2009;
Silverman et al. 2009; Kim & Kang, 2011), taste bud
cells (Dando & Roper, 2009; Huang et al. 2009), T-cells
(Schenk et al. 2008; Chekeni et al. 2010; Woehrle et al.
2010a), erythrocytes (Locovei et al. 2006a; Sridharan
et al. 2010), airway epithelial cells (Ransford et al. 2009;
Seminario-Vidal et al. 2011), endothelial cells (Goedecke
et al. 2011), skeletal and smooth muscle cells (Buvinic
et al. 2009; Billaud et al. 2011), and pituitary cells (Li et al.
2011a,b).

Panx1 currents can be distinguished pharmacologically
from connexin hemichannels by their differential
sensitivity to a number of gap junction blockers (Bruzzone
et al. 2005). For example, Panx1 is strongly inhibited
by carbenoxolone (CBX) (IC50 = 5 μM) and probenecid
(IC50 = 150 μM), but only weakly by flufenamic acid (FFA)
(IC50 = 0.3 mM). Connexins, however, are much more
strongly inhibited by FFA with potency approximately
equal to their CBX sensitivity (IC50 = 3–100 μM) and
are insensitive to the Panx1 channel blocker probenecid
(Silverman et al. 2008; D’hondt et al. 2009). Panx1 currents
are weakly outwardly rectifying and are activated at
increasingly depolarized potentials (Bruzzone et al. 2003;
Ma et al. 2009).

There is some discrepancy in the literature regarding
single channel properties of Panx1. Single channel
recordings in excised patches from Panx1-expressing
oocytes identified a main single channel conductance
of ∼500 pS, with no less than four additional
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subconductance states (Bao et al. 2004). In a recent
publication, however, Ma et al. (2009) recorded
a 68 pS CBX-sensitive anion-selective channel from
Panx1-transfected mammalian cells. The nature of that
smaller conductance channel remains uncertain. Although
differences in single channel properties could reflect the
use of different expression systems (e.g. mammalian cells
vs. Xenopus oocytes) and a truly smaller mammalian
cell-specific main conductance, the reported anion
selectivity of the recorded 68 pS channel is difficult to
reconcile with previous work by multiple groups showing
permeation by both positively and negatively charged
dyes through Panx1 (Locovei et al. 2006a; Pelegrin &
Surprenant, 2006; Boassa et al. 2007; Ma et al. 2009; Qiu
& Dahl, 2009).

An additional surrogate measure of Panx1 channel
function is the cellular uptake of fluorescent DNA
binding dyes such as the monomeric cyanine dyes
(YO-PRO-1, TO-PRO-3, etc.), allowing for a higher
throughput means of assessing Panx1-dependent plasma
membrane permeability in larger populations of
cells (Fig. 1). The combination of molecular biology
techniques (mutagenesis, siRNA and over-expression)
with pharmacological characterization, dye uptake and/or
electrophysiology, provides the most compelling way to
confidently identify Panx1 channel activity in native cells.

Given that pannexins allow permeation of ATP and
additional large molecules, these channels must be very
tightly regulated to avoid dissipation of important electro-
chemical gradients or loss of critical cellular constituents
that would result in the rapid demise of the cell. Regulation
of Panx1 function has been observed at the level of the
plasma membrane channel activity as well as by dynamics
of channel trafficking to the membrane (see Fig. 2).

Pannexin 1 channel regulation by trafficking

A defining characteristic of Panx1 is its glycosylation
at residue N254 that is required for full plasma
membrane localization. Three glycosylation species of
Panx1 have been identified: non-glycosylated core–Gly0,
high mannose–Gly1 and the complex glycosylated–Gly2
species (Boassa et al. 2007). Site-directed mutagenesis
of the N-linked glycosylation residue N254 results in
intracellular localization of the channel (Boassa et al.
2007). Recent work implicated a role for the Panx1
C terminus in cell surface trafficking as well. A truncated
mutant Panx1�307 was primarily glycosylated to the high
mannose form and did not mature to the Gly2 species,
resulting in its retention in the endoplasmic reticulum
(Gehi et al. 2011). Pharmacological disruption of actin
microfilaments with cytochalasin B results in a loss of
cell surface Panx1 and further co-immunoprecipitation
studies revealed that the C terminus of Panx1 can bind

F-actin. Panx1 was also shown to be highly mobile
via COPII (coat protein II)-dependent endoplasmic
reticulum-to-Golgi trafficking and dynamin II-dependent
internalization pathways (Bhalla-Gehi et al. 2010). Taken
together, it appears that Panx1 trafficking is a highly
dynamic process that may take part in regulating the
level of channel activity on the cell surface at any
particular moment. Panx1 trafficking towards membrane
protrusions may be indicative of a role in cell motility, a
hypothesis supported by the observation that the absence
of Panx1 from corneal epithelial leading edge in P2X7−/−

mice was associated with compromised corneal wound
healing (Mayo et al. 2008).

Pannexin 1 channel regulation by mechanosensitivity

Environmental factors that can activate Panx1 include
tonicity and stretch/strain (Bao et al. 2004). These
mechanisms are particularly relevant to erythrocytes,
which are known to release ATP in response to both
low oxygen tension and shear stress (Fig. 2). Since
erythrocytes do not express the machinery necessary for
vesicular release, Panx1 was a prime candidate and its
role in hypoxia- or shear stress-induced ATP release by
erythrocytes has been verified pharmacologically and by
genetic knockout (Locovei et al. 2006a; Sridharan et al.
2010; Qiu et al. 2011b). Panx1 was recently identified as
the mechanosensitive conduit by which ATP is released
from airway epithelia. Mechanical forces during breathing,
coughing and hypotonic secretions can exert strain on
epithelial cell membranes resulting in Panx1 activation.
It has also been suggested that mechanosensitivity of
Panx1 may underlie T-cell activation during hypertonic
saline treatment (Woehrle et al. 2010b). Panx1 mechano-
sensitivity may be a channel-intrinsic property since
stretch activation of Panx1 was observed in cell-free
oocyte membrane patches (Bao et al. 2004). A different
mechanism may prevail in the case of airway epithelial
cells, where osmotic strain-dependent RhoA activation
and subsequent Rho kinase-dependent myosin light chain
phosphorylation were identified as upstream factors
in Panx1 mechanosensitivity (Seminario-Vidal et al.
2011).

Proteolytic cleavage-mediated pannexin 1 channel
regulation

It was recently discovered that nucleotides released
from apoptotic cells are responsible for recruiting
macrophages to areas of cell death (Elliott et al.
2009). Subsequently, a critical role was identified for
Panx1 in mediating ATP release during apoptosis,
involving a novel caspase-mediated mechanism for the
apoptosis-dependent activation of the channel (Chekeni
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et al. 2010). This molecular identification of Panx1 as
the ATP release channel during cell death was verified
by another group that used Panx1 knockout mice to
show that apoptotic Panx1−/− thymocytes were deficient
in dye uptake, ATP release and recruitment of peri-
toneal macrophages (Qu et al. 2011). Although a caspase
cleavage site on the Panx1 C terminus was required for
apoptotic channel activation, the role of the C terminal
tail in channel gating was not well understood.

In subsequent work, we were able to functionally
separate Panx1 C terminal cleavage-activation from
apoptosis by using a TEV (tobacco etch virus
protease) protease cleavage model (Fig. 1). We also
provided evidence for channel activation at the level
of the plasma membrane, suggesting that it can be
a membrane-delimited and channel-intrinsic process
(Sandilos et al. 2012). By serial deletion, we identified

a C terminal region just distal to the caspase site that
is required for inhibition of Panx1; point mutations
within this small region resulted in partial activation of
the full length channel. Consistent with the C terminal
tail functioning as an independent autoinhibitory region,
we found that truncated channels could be inhibited in
trans by the isolated Panx1 C terminus either in cells
or when applied directly as a purified peptide. A recent
structure–function analysis of Panx1 provided evidence
that the distal region of the C terminus, along with select
residues in the first transmembrane domain, contribute to
the channel pore (Wang & Dahl, 2010). Using a cysteine
cross-linking approach, we showed that relief of inhibition
following cleavage requires dissociation of the C terminus
from the channel pore. Collectively, these data suggest
a mechanism of Panx1 channel regulation whereby the
intact, pore-associated C terminus inhibits the full length

Figure 1. C terminal cleavage-mediated Panx1 channel activation using a TEV protease system
A, schematic of a Panx1 (TEV) construct with TEV protease site substituted for the C terminal caspase site.
Co-expression of TEV protease results in C terminal cleavage and subsequent Panx1 channel activation leading to
YO-PRO-3 dye uptake into the cell. B, when co-transfected with TEVp in HEK293T cells, Panx1(TEV) generated
robust whole cell CBX-sensitive currents with I–V properties characteristic of Panx1. C, comparison of Panx1
channel activity assessed by membrane current recording and by dye uptake. HEK293T cells expressing C terminally
deleted, constitutively activated (Panx�C), cleavage activated (Panx1(TEV) + TEVp), and basally inactive Panx1(TEV)
were recorded in whole cell voltage clamp mode (left panel), or treated with YO-PRO-3 dye, fixed and fluorescence
measured on a plate reader (right panel). YO-PRO-3 dye uptake assay was performed in a 96-well plate format
and can reflect differences in Panx1 channel activity as measured by whole cell voltage clamp recordings.
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channel and a remarkably well-placed caspase cleavage
site allows effective removal of key inhibitory C terminal
determinants to activate Panx1 (Sandilos et al. 2012).

Receptor-mediated pannexin 1 channel regulation

Ionotropic receptors. A P2X7-dependent ‘large
permeation’ pathway had already been observed
and was thought to either be the result of P2X receptor
pore dilatation and/or coupling with a large permeation
channel. Panx1 was first associated with the P2X7 receptors
when it was shown by pharmacology and siRNA-mediated
knockdown to be required for ATP-stimulated large pore
formation and IL-1 beta release from macrophages
(Fig. 1) (Pelegrin & Surprenant, 2006). Since then,
other P2X family members (P2X1–5) have also been
shown to take part in Panx1 activation (Woehrle et al.
2010a,b; Li et al. 2011b). Moreover, this functional
P2X–Panx1 coupling has been documented in a wide
variety of immune cell processes, especially prevalent in
T-cell activation, neutrophil regulation and macrophage
chemotaxis (Chen et al. 2006, 2010; Schenk et al. 2008;
Elliott et al. 2009; Woehrle et al. 2010a,b; Junger, 2011);
it has also been identified in other physiological contexts
including purinergic signalling within the pituitary gland
(Li et al. 2011a,b), aqueous humour outflow from ciliary
epithelial cells (Li et al. 2010), and ATP release from
astrocytes, neurons and epithelial cells during ischaemic
stress (Domercq et al. 2010; Riteau et al. 2010; Iwabuchi
& Kawahara, 2011). The exact molecular mechanism of
Panx1 channel activation downstream of P2X receptor
activation is not well understood. Although it may
involve a direct interaction between P2X receptors and
Panx1 channels, one study suggests that it could be a Src
kinase-dependent process since P2X7-mediated Panx1

activation is sensitive to the Src kinase inhibitor PP2
and to exogenous application of a peptide comprising a
Src homology 3 domain of P2X7 (Iglesias et al. 2008).
In addition, recent genetic analysis identified a P451L
polymorphism of P2X7 that appears to impair large pore
formation, suggesting that the C terminal region of P2X7
encompassing P451 may be required for efficient coupling
to Panx1 (Adriouch et al. 2002; Sorge et al. 2012).

While Panx1 can be activated by extracellular ATP
through P2 receptor agonism, high levels of extracellular
ATP can also act in a negative feedback loop to inhibit
Panx1 channels directly (Fig. 1) (Qiu & Dahl, 2009;
Qiu et al. 2011a). Further mutational analysis of the
extracellular loops identified residues W74, S237, S240,
I247 and L266 to be crucial for the inhibitory effect of
several ATP analogues and led to the hypothesis that these
residues may support ATP binding or represent the ATP
binding site itself (Qiu et al. 2011a). This mechanism
of ‘a permeant regulating its permeation pore’, both
negatively and positively, provides for exquisitely precise
modulation of channel activity in response to varied ATP
concentrations.

One of the electrophysiological characteristics of
Panx1 is its activation by membrane depolarization
(Bruzzone et al. 2003). It has been suggested that
this voltage-dependent mechanism may play a role in
Panx1 activity during seizure and ischaemia (Thompson
et al. 2008; MacVicar & Thompson, 2010; Iwabuchi &
Kawahara, 2011). The molecular mechanisms through
which Panx1 is activated during seizure and ischaemia
are not well understood; however, a non-purinergic
receptor-mediated activation of Panx1 was implicated
in the context of seizure where NMDA receptor–Panx1
channel coupling was observed under conditions of
excitotoxicity (Thompson et al. 2008; MacVicar &
Thompson, 2010). Most recently, it was suggested that Src

Figure 2. Mechanisms of pannexin1
channel modulation
Schematic outlining direct mechanisms of
Panx1 channel modulation including activation
via plasma membrane stretch/strain, membrane
depolarization, extracellular potassium, low
oxygen tension, G protein-coupled receptor,
caspase cleavage and ionotropic receptors
including P2X. Panx1 can be inhibited directly
by high levels of extracellular ATP, and Panx1
channel activity at the level of the plasma
membrane can be regulated by trafficking
dynamics.
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kinase phosphorylation of Panx1 C terminus may mediate
anoxia-induced NMDA receptor activation of the channel
(Weilinger et al. 2012). Additionally, elevated extracellular
potassium associated with neuronal hyperactivity may also
activate Panx1, independent of membrane depolarization
(Silverman et al. 2009; Santiago et al. 2011).

Metabotropic receptors. While coupling between Panx1
and the ionotropic P2X receptors is the most widely
studied activation mechanism, there is evidence for
Panx1 channel activation through the metabotropic P2Y
purinergic receptors (Locovei et al. 2006b). In this case, it
was suggested that P2Y1- and P2Y2-mediated activation
of Panx1 involves a rise in intracellular calcium through
phospholipase C signalling (Locovei et al. 2006b), but this
has yet to be tested directly or reproduced by others.

A Gαq-linked G protein-coupled receptor
(GPCR)-mediated activation of Panx1 has also been
demonstrated in the context of phenylephrine-mediated
and ATP-dependent vasoconstriction. Vascular
constriction was inhibited by pharmacological blockade
and siRNA knockdown of Panx1 channels, by apyrase
treatment to hydrolyse extracellular ATP, and by blocking
ATP-activated P2Y receptors (Billaud et al. 2011).
Co-immunoprecipitation of Panx1 with α1D receptors
from native tissue led to the hypothesis of a direct
functional coupling between the receptor and channel,
a possibility that remains to be demonstrated (Billaud
et al. 2011). Most recently, another group identified
Panx1-dependent thrombin-induced ATP release in
human umbilical vein endothelial cells (Goedecke et al.
2011). They identified the channel pharmacologically,
and showed a marked reduction in thrombin-stimulated
ATP release after siRNA-mediated knockdown of Panx1.
Like the α1DR, the thrombin receptor PAR-1 is a
Gαq/11-linked GPCR. The mechanisms that underlie
GPCR-mediated Panx1 activation remain to be identified
and it is possible that a common downstream signalling
pathway is engaged by these different receptors.

Discussion

Over the past decade many roles for Panx1 in normal
physiology and disease have emerged. Although the
pannexin field is still in its infancy, it is developing
rapidly and contributions of Panx1 channels are being
recognized in a growing number of physiological and
pathophysiological contexts. It has been reported that
Panx1 functions as a tumour suppressor in the context
of glioma tumorigenesis and metastasis (Lai et al. 2007;
Bao et al. 2012), while in the context of melanoma
Panx1 expression correlates with increased tumour cell
aggressiveness (Penuela et al. 2012). This raises the
possibility that Panx1 may act as a tumour suppressor

in one context and as an oncogene in another, as was
recently demonstrated for E-cadherin (Lewis-Tuffin et al.
2010). In addition, increased gap junctional coupling
observed in the glioma cells may point to an up-regulation
of connexins, which are also known to act as tumour
suppressors (Naus & Laird, 2010). Future efforts should be
directed towards understanding the context-specific roles
of Panx1 in tumour cell aggressiveness and metastasis.
The potential for targeting Panx1 channel activity in other
human diseases is now being recognized in diverse areas
covering many fields, including inflammatory diseases,
and even HIV, as discussed in an excellent recent review
(Dahl & Keane, 2012).

Several recently generated lines of Panx1−/− mice have
already led to insights into how Panx1 contributes to the
development of seizures and its role in the immune system
(Anselmi et al. 2008; Qu et al. 2011; Santiago et al. 2011).
These global knockout animals, as well as tissue-specific
Panx1 knockouts, will undoubtedly continue to be
valuable tools in understanding the diverse physiological
roles for Panx1. That said, it is worth noting that two
different mouse models yielded contradictory results
regarding the roles of pannexins in astrocytic ATP release.
Astrocytes from Panx1−/−:Panx2−/− double knockout
mice appear to have unchanged outward current, ATP
release and dye uptake following P2X7 stimulation. On the
other hand, astrocytes from a different line of Panx1−/−

mice show a marked reduction in these same surrogate
measures of Panx1 channel function (Bargiotas et al. 2011;
Suadicani et al. 2012). The reasons for these differences
are not immediately obvious, but such discrepant results
reinforce the need to be mindful of the well-known
caveats associated with the use of knockout animals (e.g.
compensation, genetic background, etc.).

In addition, a better understanding of Panx1 activation
mechanisms will also be required to elucidate how
Panx1 functions in each physiological context. There are
probably a number of tissue-specific mechanisms of Panx1
channel modulation. For example, the cleavage-based
mechanism of Panx1 activation observed in apoptosis
seems appropriate for a terminal process; however, more
subtle mechanisms may account for other forms of
channel modulation associated with different physio-
logical conditions. A dye uptake assay that we have
developed in a 96-well plate format represents a
higher-throughput means for measuring channel function
and may be a useful tool for studying additional Panx1
activation mechanisms (Fig. 1). This assay could also lead
to the identification of more specific pharmacological
blockers and agonists for pannexins, the lack of which
remains a limitation in the field. Several widely used Panx1
channel blockers inhibit connexin hemichannels as well,
making it necessary to use a combinatorial approach to
pharmacologically distinguish the two in native tissue pre-
parations and animal models.
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Additionally, although most publications to date focus
on physiological consequences of ATP release, Panx1
is thought to release other cellular contents including
glutamate and arachidonic acid (Bao et al. 2004; Pelegrin
& Surprenant, 2006; Jiang et al. 2007; Chekeni et al. 2010).
The physiological consequences of Panx1-dependent
release of these additional factors are not known. Also, in
Panx1-expressing cells, the effects of rundown of electro-
chemical gradients or altered electroresponsive properties
following Panx1 activation are not well understood.
Continued efforts to develop better tools and to elucidate
mechanisms of Panx1 modulation within various physio-
logical contexts will allow us to understand better the
processes influenced by Panx1 in both apoptotic and
healthy tissues, and to identify new agents for modulating
Panx1 channel function in the context of human
disease.
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