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Compensatory vasodilatation during hypoxic exercise:
mechanisms responsible for matching oxygen supply
to demand
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Abstract Hypoxia can have profound influences on the circulation. In humans, acute exposure
to moderate hypoxia has been demonstrated to result in vasodilatation in the coronary, cerebral,
splanchnic and skeletal muscle vascular beds. The combination of submaximal exercise and
hypoxia produces a ‘compensatory’ vasodilatation and augmented blood flow in contracting
skeletal muscles relative to the same level of exercise under normoxic conditions. This augmented
vasodilatation exceeds that predicted by a simple sum of the individual dilator responses to
hypoxia alone and normoxic exercise. Additionally, this enhanced hypoxic exercise hyperaemia
is proportional to the hypoxia-induced fall in arterial oxygen (O2) content, thus preserving
muscle O2 delivery and ensuring it is matched to demand. Several vasodilator pathways have been
proposed and examined as likely regulators of skeletal muscle blood flow in response to changes
in arterial O2 content. The purpose of this review is to put into context the present evidence
regarding mechanisms responsible for the compensatory vasodilatation observed during hypoxic
exercise in humans. Along these lines, this review will highlight the interactions between various
local metabolic and endothelial derived substances that influence vascular tone during hypoxic
exercise.
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Exercise hyperaemia: matching blood flow to
metabolism

ATP turnover stimulates oxygen (O2) consumption in
contracting skeletal muscles. For contractions to be
sustained, as is the case during endurance exercise, there
must be continuous supply of O2 to the contracting
muscles. At the systemic level, ventilation and gas exchange
in the lung, along with increases in cardiac output, are
critical to meet the demands of the contracting skeletal
muscle for oxygen, and within skeletal muscle there is
typically an increase in blood flow (O2 delivery) that
is proportional to what might generally be termed as
‘metabolic demand.’ Presented in Fig. 1 is an example
of the tight matching between indices of O2 demand and
increases in skeletal muscle blood flow during different
modes of exercise (Mortensen et al. 2008).

It is important to note that at rest, skeletal muscle
O2 consumption is quite low and blood flow is on the
order of 3 ml (100 g)−1 min−1. This is consistent with
the general concept that resting oxygen consumption
in normal-sized humans is ∼250 ml min−1. However,
during maximal exercise O2 consumption can increase
10- to 15-fold in untrained young subjects, and 20-
to 25-fold in elite highly trained endurance athletes.
These increases in O2 consumption are facilitated by
vast increases in cardiac output and, more importantly,
increases in skeletal muscle blood flow of 50- to

Figure 1. Matchingblood flow to metabolism during exercise
One-legged blood flow during incremental knee-extensor exercise
and incremental and supramaximal cycling to exhaustion plotted
against one-legged VO2. Adapted with permission from Mortensen
et al. (2008).

Table 1. Potential mechanisms responsible for increasing blood
flow in contracting muscle

1. Mechanical
a. Muscle pump (↑ in the arterio-venous pressure gradient for
flow)
b. Mechanical deformation of the vessel wall

2. Neural
a. Blunting of sympathetic α-adrenergic vasoconstriction
(functional sympatholysis)
b. Sympathetic cholinergic vasodilatation
c. Acetylcholine spillover from motor-end plates

3. Metabolic
Substances produced and/or released from skeletal muscle,
endothelial, and red blood cells (NO, adenosine, prostanoids,
ATP, hydrogen ion, potassium, EDHF)

4. Flow- or shear stress-induced vasodilatation
5. Conducted vasodilatation

100-fold (Andersen & Saltin, 1985; Armstrong & Laughlin,
1985; Musch, 1988). So, exercising skeletal muscles
can increase their O2 consumption markedly, and this
increase in O2 consumption drives vast increases in blood
flow.

The mechanisms responsible for increasing blood flow
at the onset of exercise as well as maintaining it over time
involve a complex interaction between mechanical and
neural factors and various local metabolic and endothelial
derived substances that influence vascular tone (Clifford,
2007). These potential mechanisms are listed in Table 1
and have previously been reviewed in detail (Shepherd,
1983; Clifford, 2007; Joyner & Wilkins, 2007).

What happens when O2 availability is limited?

The general principles outlined above reflect the synthesis
of ideas and data generated in healthy humans with normal
haematocrit levels, exercising at low altitude. This means
that under most circumstances arterial O2 saturation
remains high (95% or greater). What happens when
arterial O2 content is lowered by hypoxia or anaemia,
or when the ability of red cells to carry and release
O2 is limited by carbon monoxide (CO)? Under these
circumstances, the relationship between blood flow and O2

demand is shifted upward so that blood flow increases but
O2 delivery to the exercising muscle remains constant. For
example, if arterial O2 saturation falls from 100% to 80% as
a result of hypoxia, there is a ∼20% increase in blood flow
so that total O2 delivery to the skeletal muscles remains
constant. The compensatory vasodilatation exceeds that
predicted by a simple sum of the individual dilator
responses to hypoxia alone and normoxic exercise. This
general principle is also seen when O2 delivery is limited
by CO or anaemia and the general concept of 1:1
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compensation is seen under all three conditions (Roach
et al. 1999; Gonzalez-Alonso et al. 2001).

Compensatory vasodilatation in the face of
sympathetic vasoconstrictor activity

One especially interesting feature associated with
compensatory vasodilatation is that during hypoxia there
is increased sympathetic vasoconstrictor activity directed
towards skeletal muscle (Hanada et al. 2003) (Fig. 2).
This means that the signals associated with the
compensatory vasodilatation are opposed by the vaso-
constrictor activity. To better understand this interaction,
we evaluated the effects of α-adrenergic blockade on
the compensatory vasodilatation during hypoxic forearm
exercise (Wilkins et al. 2008). Similar to findings under
resting conditions (Weisbrod et al. 2001), α-adrenergic
receptor blockade revealed a substantially greater vaso-
dilatation during hypoxic exercise compared to control
hypoxic exercise conditions (i.e. during saline infusion).
However, despite elevated sympathetic vasoconstrictor
activity during hypoxic exercise (compared to normoxic
exercise or hypoxia alone), substantial compensatory vaso-
dilatation persists.

Under normoxic conditions sympathetic vaso-
constrictor responses are blunted in the vascular beds of
contracting limbs (Remensnyder et al. 1962; Dinenno &
Joyner, 2003), a phenomenon referred to as ‘functional

Figure 2. Hypoxia induced increases in muscle sympathetic
nerve activity (MSNA)
Representative recordings of leg MSNA at rest and during exercise
under normoxia (F I,O2 21%; A) and hypoxia (F I,O2 ) ∼10%; B).
Adapted with permission from Hanada et al. (2003).

sympatholysis’. Moreover vasoconstrictor responses to
sympathetic stimulation and exogenous noradrenaline
are attenuated during hypoxia (Heistad & Wheeler,
1970; Heistad et al. 1975). These findings raise the
possibility that blunted vasoconstrictor responsiveness
(augmented functional sympatholysis) contributes to the
compensatory vasodilatation during hypoxic exercise.
However, we found that the compensatory vasodilator
response to hypoxic forearm exercise was not due to an
augmented functional sympatholysis (Wilkins et al. 2006).
These observations suggest that enhanced vasodilator
signals and not blunted vasoconstriction are primarily
responsible for the compensatory vasodilatation in skeletal
muscle during hypoxic exercise.

Role of local vasodilator pathways

Our lab has conducted a series of studies to evaluate at least
some of the putative metabolic vasodilating substances
(adenosine, nitric oxide (NO), prostaglandins, etc.)
as potential mediators of compensatory vasodilatation
during hypoxia. During mild rhythmic hand gripping we
found evidence that at least some of the compensatory
vasodilatation was mediated by vasodilating β-adrenergic
receptors in the active limb, stimulating the release of
NO (Wilkins et al. 2008; Casey et al. 2010). As exercise
intensity increased, there still appeared to be a role for
NO but the β-adrenergic-NO pathway was absent and
there must have been some other mechanism evoking
NO release as a mediator of compensatory vasodilatation
(Wilkins et al. 2008; Casey et al. 2011). These mechanisms
may include direct release of NO from the endothelium
as a result of luminal hypoxia (Pohl & Busse, 1989),
shear stress mediated NO release (Kooijman et al. 2008),
NO from erythrocytes in the form S-nitrosohaemoglobin
(Stamler et al. 1989), and/or increased NO release via ATP
and prostaglandins (Mortensen et al. 2007; Mortensen
et al. 2009). Nonetheless, evidence that hypoxia increases
plasma but not skeletal muscle interstitial NO in humans
is likely to suggest an endovascular or endothelial source
(Leuenberger et al. 2008).

Adenosine has also been suggested to play a role in
compensatory vasodilator responses (Bryan & Marshall,
1999a,b). However, in several human studies we (Casey
et al. 2009) and others (Heinonen et al. 2010) were
unable to find clear evidence for a primary role for
adenosine. Moreover, adenosine does not contribute
to the compensatory vasodilatation after NO synthase
inhibition, thus indicating that adenosine does not act
through a NO-independent pathway in the compensatory
vasodilator response during hypoxic exercise (Casey
et al. 2010). This is important because in the coronary
circulation adenosine appears to play an important role in
regulating blood flow to ischaemic tissue in various models
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of coronary artery disease (Laxson et al. 1993). Likewise, in
exercising human forearm muscles, inflation of a balloon
in the brachial artery upstream from the forearm causes
an immediate decrease in forearm blood flow followed
by recovery to control values and we have evidence that
adenosine does in fact contribute to the recovery of flow
under these circumstances (Casey & Joyner, 2011).

Over the past several years it has been proposed
that erythrocytes are not only responsible for sensing
and carrying O2, but also participate in the regulation
of blood flow and its distribution by releasing ATP
(Ellsworth et al. 2009). In this context, acute exposure
to hypoxia at rest as well as exercise under normoxic
conditions leads to increases in venous plasma levels
of ATP (Gonzalez-Alonso et al. 2002; Mortensen et al.
2011). Whether erythrocyte derived ATP contributes
to the compensatory vasodilatation observed during
hypoxic exercise is still unclear. Unfortunately, specific
pharmacological antagonists for P2 receptors to address
the role of ATP in the hypoxia-induced compensatory
vasodilatation are currently unavailable for human use.
Therefore, we are left to rely on plasma measures

to gain insight into the contribution of ATP in the
compensatory vasodilator response to hypoxic exercise.
Along these lines, arterial and venous plasma levels of
ATP measured via intravascular microdialysis are not
greater during hypoxic compared to normoxic exercise
(Mortensen et al. 2011). Thus the question whether ATP
contributes to compensatory vasodilatation during hypo-
xic exercise remains somewhat elusive. Figure 3 illustrates
well established as well as potential dilator signals that
contribute to compensatory vasodilatation during sub-
maximal hypoxic exercise.

What happens during whole body maximal exercise?

Under the assumption that increases in cardiac output
during exercise are directed at the active skeletal muscle,
there is evidence for compensatory vasodilatation during
submaximal whole body exercise (Stenberg et al. 1966;
Hughes et al. 1968; Vogel & Gleser, 1972). For example,
when the arterial O2 content and saturation are reduced
via acute hypoxia, there is an increase in cardiac output
that keeps O2 delivery to the skeletal muscles constant

Figure 3. Proposed mechanisms for hypoxia-induced vasodilatation at rest and during exercise
During hypoxic exercise NO is the final common pathway for the compensatory dilator response. Systemic
adrenaline release, acting via β-adrenergic receptors, contributes to the NO-mediated vasodilatation at lower
exercise intensities, but this β-adrenergic contribution decreases with increasing exercise intensity. ATP released
from the red blood cell remains an attractive candidate for stimulating NO during higher intensity hypoxic exercise.
Adenosine receptor activation does not appear to play a major role (either dependent or independent of NO) in
the compensatory vasodilator response during hypoxic exercise in humans. Compensatory vasodilatation persists
despite an increased sympathetic vasoconstrictor activity directed towards skeletal muscle during hypoxic exercise.
Blunted vasoconstrictor responsiveness (augmented functional sympatholysis) does not appear to contribute to
the compensatory vasodilatation during hypoxic exercise. α1 and α2 indicate α1 and α2 adrenergic receptors,
respectively; A1 and A2, adenosine receptors; β, β2 adrenergic receptors; Adr, adrenaline.
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(Hughes et al. 1968). However, during maximal exercise
involving a large muscle mass (i.e. cycling or running),
blood flow and vasodilatation in the exercising limbs are
reduced under hypoxic compared to normoxic conditions
(Calbet, 2000). The lower blood flow in exercising skeletal
muscle is likely to be related to the significant reductions
in maximal cardiac output observed during hypoxic
exercise (Calbet et al. 2003, 2009a; Lundby et al. 2006).
The potential mechanisms for reductions in maximal
cardiac output during acute hypoxia have been recently
reviewed by others (Calbet et al. 2009b). Conversely,
when small muscle mass is activated and cardiac output
is not limited, skeletal muscle blood flow is maintained
at peak exercise under hypoxic conditions (Calbet et al.
2009a).

It is apparent that exercise intensity (submaximal vs.
maximal), the amount of muscle mass, and the severity
and duration of hypoxia are all important factors in
determining the blood flow and compensatory vasodilator
responses during hypoxic exercise. The studies related
to the mechanisms responsible for compensatory vaso-
dilatation during hypoxic exercise highlighted in this
review have mainly been derived using a forearm exercise
model and local infusions of various study drugs. This
approach has allowed us, as well as others, to investigate
local vascular control without additional confounding
variables (i.e. cardiovascular reflexes) that occur with
exercise involving larger muscle mass or systemic drug
infusions. However, it is currently unclear whether the
regulatory mechanisms involved in compensatory vaso-
dilatation during forearm exercise continue to contribute
to muscle blood flow as exercise intensity and/or the
amount of active muscle mass increases. In this context,
future studies will be needed to examine vascular responses
to hypoxic exercise during ‘real world’ settings (such as
whole body exercise at altitude).

Summary

It is clear that acute reductions in available O2 via
systemic hypoxia promote compensatory vasodilatation
and an augmented blood flow in contracting skeletal
muscle during submaximal workloads. The compensatory
response is essential to preserving muscle O2 delivery
and ensuring it is matched to demand. Interestingly, the
compensatory vasodilatation and augmented flow persist
despite large increases in sympathetic vasoconstrictor
activity directed towards skeletal muscle. Thus, the
degree of vasodilatation prevails over the vasoconstrictor
response in determining vasomotor tone during hypoxic
exercise.

We have demonstrated that a key vasodilator signal in
the compensatory response is NO. However, it appears that
the NO-mediated component of the compensatory vaso-
dilatation during hypoxic exercise is regulated through

different pathways with increasing exercise intensity. That
is a β-adrenergic receptor-stimulated NO component
exists during low-intensity hypoxic exercise, whereas the
source of NO contributing to compensatory dilatation is
less dependent on β-adrenergic mechanisms as exercise
intensity increases. It is currently unclear what the
stimulus of NO release is with increasing intensity of
muscle contraction but does not appear to be adenosine.
ATP released from erythrocytes and/or endothelial
derived prostaglandins remain attractive candidates for
stimulating NO release during higher intensity hypoxic
exercise.
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