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Gravin Orchestrates Protein Kinase A and [32-Adrenergic
Receptor Signaling Critical for Synaptic Plasticity and
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A kinase-anchoring proteins (AKAPs) organize compartmentalized pools of protein kinase A (PKA) to enable localized signaling events
within neurons. However, it is unclear which of the many expressed AKAPs in neurons target PKA to signaling complexes important for
long-lasting forms of synaptic plasticity and memory storage. In the forebrain, the anchoring protein gravin recruits a signaling complex
containing PKA, PKC, calmodulin, and PDE4D (phosphodiesterase 4D) to the 32-adrenergic receptor. Here, we show that mice lacking
the a-isoform of gravin have deficits in PKA-dependent long-lasting forms of hippocampal synaptic plasticity including 32-adrenergic
receptor-mediated plasticity, and selective impairments of long-term memory storage. Furthermore, both hippocampal 32-adrenergic
receptor phosphorylation by PKA, and learning-induced activation of ERK in the CA1 region of the hippocampus are attenuated in mice
lacking gravin-a.. We conclude that gravin compartmentalizes a significant pool of PKA that regulates learning-induced (32-adrenergic
receptor signaling and ERK activation in the hippocampus in vivo, thereby organizing molecular interactions between glutamatergicand

noradrenergic signaling pathways for long-lasting synaptic plasticity, and memory storage.

Introduction

A-kinase anchoring proteins (AKAPs) are a family of functionally
distinct but structurally related proteins that localize protein ki-
nase A (PKA) and other signaling molecules to specific subcellu-
lar compartments (e.g., synapses) (Welch et al., 2010). Genetic
and pharmacological inhibition of PKA anchoring impairs hip-
pocampal synaptic plasticity and memory (Moita et al., 2002;
Snyder et al., 2005; Huang et al., 2006; Nie et al., 2007; Nijholt et
al., 2007), but the specific AKAPs involved in these PKA-
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dependent processes, and the details of their exact functions, have
not been clearly identified.

Genetic analysis of AKAP complexes involved in mediating
synaptic plasticity and memory has focused on the AKAP5 gene
(also known as AKAP150 in mice), because it is associated with
AMPA and NMDA receptors (Colledge et al., 2000). Loss of
AKAPI150 disrupts hippocampal LTD, alters AMPA receptor-
mediated synaptic transmission, and results in memory deficits
in the Morris water maze (Tunquist et al., 2008). Surprisingly, a
genetic mutation leading to a selective disruption of PKA-
AKAP150 binding disrupts long-term potentiation (LTP) in
adult mice (Lu et al., 2007) but does not induce a memory deficit
in the Morris water maze (Weisenhaus et al., 2010). These find-
ings suggest that either (1) other AKAP150 binding partners or
(2) distinct PKA-AKAP complexes contribute to hippocampal
synaptic plasticity and memory formation.

B-Adrenergic receptors (8-ARs) play a critical role in emo-
tional arousal, metaplasticity, and long-term memory formation
(McGaugh, 2000; Gibbs and Summers, 2002) through activation
of the cAMP signaling pathway (O’Dell et al., 2010). Occupancy
of B2-adrenergic receptors (32-ARs) by their ligand noradrena-
line (norepinephrine) leads to the coupling of the receptor with
guanine nucleotide regulatory proteins (Gas), cCAMP produc-
tion, and the association of PKA with the B2-AR (Shih et al., 1999;
Lin et al., 2000). Phosphorylation of the 82-AR by PKA switches
the coupling from Ges to inhibitory guanine nucleotide regula-
tory protein (Gai), thereby activating Gai-linked signaling path-
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ways implicated in memory such as the extracellular-regulated
kinase 1/2 (ERK1/2) pathway (Daaka et al., 1997; Atkins et al.,
1998; Baillie et al., 2003; Sindreu et al., 2007). One anchoring
protein that recruits PKA to the 32-AR upon receptor occupancy
is the anchoring protein gravin (Tao et al., 2003). Gravin, also
known as Src-suppressed C kinase substrate (SSeCKS), AKAP12,
and AKAP250 (Lin et al., 1996; Willoughby et al., 2006), is a
multivalent scaffolding protein that binds PKA and PKC
(Nauert et al., 1997), sequesters calmodulin (Lin and Gelman,
2002), and targets phosphodiesterase 4D (PDE4D) to the
plasma membrane (Willoughby et al., 2006).

Although gravin modulates 32-AR signaling complexes in
vitro, it remains to be determined whether gravin plays a role in
hippocampal synaptic plasticity and memory formation in vivo.
We answered this important question by using a gene-trap mouse
model (referred to as gravin GT mice) that lacks the a-isoform of
gravin (Camus et al., 2001) and defined the role of gravin-« in
B2-AR-mediated signaling events important for learning-
induced ERK1/2 activation, long-lasting forms of synaptic plas-
ticity and long-term memory.

Materials and Methods

Animals

The gravin GT mice, also referred to as SSeCKS mutants (Camus et al.,
2001), were a gift from Dr. Jacqueline Barra (Institut Pasteur, Paris,
France) and backcrossed to a C57BL/6] background for >10 generations.
Male and female 3- to 5-month-old gravin GT mice and wild-type litter-
mates had ad libitum access to food and water and were maintained on a
12 h light/dark cycle with behavioral testing occurring during the light
phase. Experimentally naive mice were used for each experiment, indi-
vidually housed for 1 week, and handled for 2 min for 3 consecutive days
before the behavioral experiments. All experiments were conducted ac-
cording to National Institutes of Health guidelines for animal care and
use and were approved by the Institutional Animal Care and Use Com-
mittee of the University of Pennsylvania.

Genotyping

Tail DNA was used to genotype mice by PCR with three primers, two in
the intron sequences of gravin between exon 1A2 and 1B (AGGGCTAC-
CCAGAGAGATCC and GCTGTTTGGGAGCAGAAAAG) and one at
the 3" end of LacZ gene (GCAGAGCGAGGTATGTAGGC). The cycling
parameters for PCR genotyping were 94°C, 1 min; 60°C, 1 min; and 72°C,
1 min for 40 cycles. PCR products consisted of one 562 bp band for
homozygous GT mice, one 730 bp band for wild-type mice, or both 562
and 730 bp bands for heterozygous mice.

In situ hybridization

The sequence of the antisense oligonucleotide against gravin is CCGA-
CAATGCCTCCAGGTCACCGACCTGGTC and designed by Sigma-
Genosys. A sense probe control was accordingly designed. The
hybridization was performed on 20 wm sections of the brain of 2-month-
old C57BL/6] wild-type mice as previously described (Abel et al., 1997).

Immunohistochemistry

Transcardial perfusions and immunohistochemical stainings were con-
ducted as previously described (Havekes et al., 2006, 2007; Vecsey et al.,
2009). Sections incubated with either rabbit Map2 antibody (Millipore;
AB5622; 1:1000) or mouse gravin antibody (Sigma-Aldrich; JP74; 1:200)
followed by incubation with the appropriate Alexa Fluor 488 antibodies
(Invitrogen). Imaging was conducted on a Leica confocal microscope. In
case of the phospho-ERK1/2 staining, we used rabbit anti-phospho-
ERK1/2 (Cell Signaling; AB9101; 1:100), and phosphatase inhibitors
were included in the fixative and all buffers (Sindreu et al., 2007). After
incubation with primary antibody, sections were washed in PBS for 1 h
followed by incubation with biotinylated-conjugated goat anti-rabbit
IgG antibody (Jackson ImmunoResearch; 1:500) for 3 h. After washing in
PBS for 1 h, sections were incubated with the avidin—biotin horseradish
peroxidase complex (ABC kit; Vector Laboratories; 1:500). After 3 h of
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washing in PBS, sections were processed with diaminobenzidine (0.02%)
with 100 ul of 0.1% H,0, as a reaction initiator. Processing was visually
monitored and stopped by rinsing with PBS. Cell counts and optical
density measurements were conducted as described previously (Van der
Borght et al., 2007; Hagewoud et al., 2011) using a Micromaster light
miscroscope.

RNA isolation and cDNA synthesis

Hippocampi were dissected and stored at —80°C in 500 ul of RNAlater
(Ambion). RNA extraction and cDNA synthesis using the RETROscript
(Ambion) kit were conducted as described previously (Vecsey et al.,
2009).

Quantitative real-time reverse transcription-PCR

The reactions were assembled in 96-well optical reaction plates (Applied
Biosystems) and covered with optical adhesive covers (Applied Biosys-
tems). cDNA was diluted to 2 ng/ul with DEPC-treated H,O and added
in a quantity of 11.4 ul per well. Each well also contained 1 ul of 5 um
primers and 12.4 ul of Quantitect SYBR Green PCR master mix
(QIAGEN). Five primer sets were used to assess the relative expression of
gravin mRNA in the hippocampus. The gravin-ala and gravin-alb
primer sets probe for transcripts spanning exon 1Al to exon 2: primers
gravin-ala (forward, 5'-GCTCAGTGGCCATGGGCCCGCAG; reverse,
5'-TGCCATTTCTTTAGCTCGGTCTTTTTC), gravin-alb (forward,
5-GCTGGAGATCCCGCTGAG; reverse, 5'-GTTTCCTCCTGCTCGT
CCTT). Gravin-a2 probes for the a-isoform of gravin spanning exon
1A2 to exon 2 (forward, 5'-AAGAATGGTCAGCTGTCTGC; reverse,
5'-TGACAGTGAGTAGCTGGACG). These three primer sets all probe
for the presence of the gravin-a transcript. The gravin-B primer and LacZ
primer set probe for the B transcript (forward, 5'-AGGAGAAGGAGA
CTTCCTGG; reverse, 5'-TGACAGTGAGTAGCTGGACG), and gravin-
lacZ transcript (forward, 5'-TGGGCAAGAGGAAGAAGTCA; reverse,
5'-ATGTGAGCGAGTAACAACCCGTCGGATTCT), respectively. The
reaction was run in the Applied Biosystems ABI Prism 7000 and began
with a 2 min incubation at 50°C followed by 15 min at 90°C. Afterward,
the reaction proceeded through 40 cycles of the following: (1) 95°C for
15s; (2) 56°C for 30 s; and (3) 72°C for 30 s. Data were collected at stage
3 of each cycle and the products were examined with a dissociation curve
consisting of two sets of sequential incubations at 95°C for 15 s and 60°C
for 1 min. Data were normalized against actin G (actg), hypoxanthine
phosphoribosyltransferase (hprt), and Tubulin (tub4a). Relative expres-
sion levels were calculated according to the procedure in the Applied
Biosystems manual using the standard curve method.

Electrophysiology

Electrophysiological recordings were performed as described previously
(Vecsey et al., 2009). LTP was induced using the following protocols: spaced
four-train (four 1 s 100 Hz trains delivered 5 min apart), massed four-train
(four 15100 Hz trains delivered 5 s apart), theta-burst (bursts of four 100 Hz
pulses delivered for a total of 3 s at 5 Hz), and one-train stimulus (one 1 s 100
Hz train of pulses). LTP was also induced by pairing a 5 Hz, 3 min stimula-
tion with application of the 1 um B-adrenergic agonist isoproterenol (ISO)
for 25 min. The electrical stimulation was given 15 min into ISO treatment.
ISO (Sigma-Aldrich) was prepared daily as a 10 mm stock solution in Milli-Q
water. Synthesis of stearated Ht31 (stHt31) (St-N-DLIEEAASRIVDAVIEQV
KAAGAY-C) and pseudo-Ht31 peptide (stHt31P) (St-N-DLIEEAASRPVD
AVPEQVKAAGAY-C) (Carr etal., 1992; Vijayaraghavan et al., 1997; Huang
etal., 2006) was conducted by Quality Controlled Biochemicals. Lyophilized
powder was resuspended at a stock concentration of 10 mm in 50 mm Tris-
HCI, pH 7.0, and 0.05% DMSO and used at 10 um final concentration in
aCSF. Forskolin was dissolved in 100% ethanol to make 50 mum stock solu-
tion and used at 50 uM final concentration in aCSF. The (2-AR antagonist
3-(isopropylamino)-1-[(7-methyl-4-indanyl)oxy]butan-2-ol (ICI 118551)
(Sigma-Aldrich) was dissolved in H,O at a stock concentration of 100 um
and used at a 100 nMm final concentration in aCSF.

Tissue lyses, Western blot analyses, and PKA activity assays

Proteins were separated by SDS-PAGE and transferred to PVDF mem-
brane as described previously (Vecsey et al., 2009). The following pri-
mary antibodies were used: ERK1/2 (Cell Signaling; AB9102; 1:1000),
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PERK1/2 (Cell Signaling; AB9101; 1:1000), B2-AR (Santa Cruz; sc-569;
1:1000), pB2-AR (Santa Cruz; sc-16718; 1:200), pGluAl Ser845 (Milli-
pore; AB5849; 1:1000), and GluA1 (Millipore; MAB2263; 1:50,000). Af-
ter incubation with the primary antibodies, membranes were incubated
with HRP-conjugated secondary antibodies for 1 h at room temperature
(Santa Cruz; mouse secondary antibody, 1:1000; Santa Cruz; rabbit sec-
ondary antibody, 1:5000). PKA activity measurements were conducted
on hippocampal lysates using a PKA activity ELISA kit according to the
manufacturer’s instructions (Arbor Assays; catalog #K027-H1).

Neuronal cultures

Primary neuronal cultures were prepared from hippocampi of embry-
onic day 17.5 mice, as described previously (Banker and Cowan, 1977).
Dissociated neurons were plated onto poly-L-lysine-treated glass cover-
slips at a density of 25-50 cells/mm? and cocultured over a monolayer of
astrocytes. Cells were maintained in Neurobasal medium (Invitrogen)
supplemented with B27 and Glutamax. After incubation with the follow-
ing primary antibodies: anti-PKA RII-a polyclonal (Santa Cruz; PKA
RII-a sc-909; 1:200) and anti-gravin monoclonal (Sigma-Aldrich;
G3795; 1:200), neurons were incubated with the appropriate Alexa
Fluor-conjugated secondary antibodies for 2 h at room temperature.
Neurons were imaged with a Zeiss confocal microscope.

Coimmunoprecipitation and RII overlays

Hippocampi were pulverized under liquid nitrogen and homogenized in
HSE lysis buffer (20 mm HEPES, pH 7.2, 150 mm NaCl, 5 mm EDTA, 1%
Triton X-100). Extracts were rocked for 1 h at 4°C and subsequently
centrifuged at 19,400 X g for 20 min at 4°C. Equal amounts of protein
were subjected to immunoprecipitation with 5 ug of anti-gravin (Sigma-
Aldrich; G3795) by rocking overnight at 4°C. Lysates were recentrifuged
at 19,400 X g, and protein A and protein G beads (1:1 slurry) were added
for 1 h. Beads were collected by centrifugation and washed four times in
HSE lysis buffer. Bound proteins were eluted with 2X LDS sample buffer,
separated on 4—12% SDS-PAGE gels (Bio-Rad) and transferred to nitrocel-
lulose for immunoblotting. The following antibodies were used: anti-gravin
monoclonal antibody (Sigma-Aldrich; G3795; 1:1000), anti-GAPDH (Sig-
ma-Aldrich; G8795; 1:1000), anti-MAP2 (Sigma-Aldrich; M9942; 1:1000),
anti- 3-galactosidase (Promega; Z378A; 1:200), anti-pERK1/2 (Cell Signal-
ing; AB9101; 1:1000), ERK1/2 (Cell Signaling; AB9102; 1:1000), and anti-
AKAP150 (V088; 1:1000). Western blot data were collected using an Alpha
Innotech Multilmage ITT with FluoroChemQ software. For the RII overlays,
nitrocellulose membranes were blocked and then incubated with
digoxigenin-labeled PKA RII overnight at 4°C. Binding was detected using
HRP-labeled anti-digoxigenin (Abcam; ab62120).

Behavioral testing
Morris water maze. Training and testing in the hidden platform version of
the water maze were performed as described previously (Abel et al.,
1997). Naive mice were used in the visible platform experiment in the
Morris water maze.

Object-place recognition task and novel object recognition task. Both
tasks were performed as described previously (Oliveira et al., 2010).

Fear conditioning. Experiments were performed in standard condi-
tioning chambers (San Diego Instruments) as described previously (Abel
et al., 1997). Freezing behavior (defined as complete immobility except
for breathing) was scored during the training and retention sessions.

Rotarod. Mice were placed on a 3-cm-diameter rotating rod elevated
16 cm and allowed to walk on it for 30 s at 4 rpm. Twenty-four hours
later, mice were placed on the rotating rod again for no more than 5 min
as itaccelerated from 4 to 40 rpm. The time at which each mouse fell was
recorded, and each was placed on the rod twice more at 1 h intervals. This
procedure was repeated for 3 consecutive testing days.

Exploratory and locomotor activity. Baseline exploratory and locomo-
tor activities were measured in a gray rectangular box (60 X 50 X 26 cm)
built of polyvinyl chloride plastic. Mice were placed in the open field for
10 min. The time spent in peripheral and central areas and the velocity of
travel were recorded using a video tracking system (Clever Systems).

Zero maze. Anxiety-related behavior was tested in the elevated zero
maze as described previously (Tretter et al., 2009).
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Data analysis

Data analysis was performed using SPSS. Behavioral data were analyzed
using two-way ANOVAs (in some cases with repeated measures as the
within-subject variable) or Student’s ¢ tests. Tukey—Kramer tests were
used for post hoc analyses when necessary. Biochemical data were ana-
lyzed using independent ¢ tests. Electrophysiological data were analyzed
using nonparametric tests (Nie et al., 2007). The initial slope of the fEPSP
at each time point was analyzed. For comparisons of the average slope
over the last 20 min of the recording, the Mann—Whitney U test was used.
Differences were considered statistically significant when p < 0.05. Data
are plotted as mean * SEM.

Results

Hippocampal gravin-a but not gravin-f3 is lost due to gene
trap insertion in gravin GT mice

In rodents, three gravin isoforms (e, 3, and 7y) are transcribed
from a single gene locus ( gravin). The transcription of each iso-
form is controlled by different promoters, yielding distinct
mRNA transcripts and proteins that differ at their N termini
(Streb et al., 2004). The « and 3 isoforms are expressed widely
throughout the body, but the y isoform is only found in the testis
(Camus etal., 2001). The unique N-terminal myristoylation mo-
tif in gravin-a facilitates enrichment at the plasma membrane
(Lin et al., 1996; Streb et al., 2004), where it can interact with
G-protein-coupled receptors such as the B2-AR (Shih et al,
1999). Gravin mRNA expression is observed in mouse forebrain
regions (Fig. 1A, B), including the three major hippocampal re-
gions [CA1, CA3, and dentate gyrus (DG)]. Moderate labeling
was observed in the granule cells of the cerebellum (Fig. 1C).
Immunohistochemical analyses confirmed the mRNA studies
showing protein expression of gravin in the dorsal hippocampus
(Fig. 1 D). Higher magnification images reveal prominent gravin
expression in the perinuclear region of CA1 and CA3 pyramidal
cells (Fig. 1 E, F) and dentate gyrus granular cells (Fig. 1G). Signals
for gravin and the RII-a isoform of PKA overlap in cultured
mouse hippocampal neurons (Fig. 1H-J), consistent with the
role of gravin as an A-kinase anchoring protein.

To examine the role of this anchoring protein in hippocampal
function, we used gravin GT mice because these animals give us
the opportunity to exclusively assess the function of the myris-
toylated a-isoform of gravin. The gravin GT mouse line was gen-
erated by a gene trap insertion of the LacZ reporter into the
genomic sequence encoding gravin between exon 1A2 and 1B
(Fig. 1K) (Camus et al., 2001). A significant decrease in gravin-a
mRNA levels was detected using three distinct primer sets:
gravin-ala (both groups, n = 6; Student’s ¢ test, p = 0.009; Fig.
1L), gravin-alb (both groups, n = 3; Student’s ¢ test, p = 0.039;
Fig. 1L), and gravin-a2 (both groups, n = 6; Student’s t test, p =
0.013; Fig. 1L), all representing the gravin-a transcript. Gravin
GT mice exhibit normal expression of the gravin-B isoform (both
groups, n = 6; Student’s ¢ test, p = 0.444; Fig. 1 L), suggesting that
loss of the gravin-a transcript does not result in compensatory
upregulation of the gravin- 3 transcript in the hippocampus.

Biochemical approaches were used to further characterize
gravin GT mice. Western blot analyses indicated that the majority
of full-length gravin was lost in these animals, with the remaining
fraction representing the B-isoform of gravin (Fig. 1M, left
panel). Gravin GT mice expressed a truncated form of gravin of
~150 kDa (Fig. 1M, left panel) that consisted of an N-terminal
portion of the anchoring protein fused to lacZ (Fig. 1 M, middle
panel). The RII-overlay assay confirmed that this truncated fu-
sion protein did not bind PKA (Fig. 1M, right panel). Because
gravin and another anchoring protein, AKAP150, both coordi-
nate 82-AR-mediated signaling (Tao and Malbon, 2008), we
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Figure1.  Expression of the a-isoform of gravin is reduced in gravin GT mice. A, A sagittal brain section showing gravin mRNA expression in the hippocampus, striatum, cortex, and olfactory bulb.
B, A coronal brain section showing gravin mRNA in the hippocampus, cortex, amygdala, and striatum. C, Gravin mRNA is expressed at lower levels in the granular cell layer of the cerebellum. Scale
bar, 800 .m. D, Gravin protein expression in the dorsal hippocampus. Scale bar, 200 r.m. Higher magnification images of gravin protein expression in CA1 pyramidal cells (), CA3 pyramidal cells
(F), and granular cells of the dentate gyrus (G). Scale bar, 20 um. Gravin (H) and PKA RII-cx (1) are strongly colocalized (/) in cultured mouse hippocampal neurons. Scale bar, 20 um. K, A schematic
representation of the gravin gene. The gravin-c« transcript consists of exons 1A1, 1A2, 2, and 3. The gravin- 3 transcript consists of exons 1B, 2, and 3. The gravin GT mice carry a LacZ insertion in the
intron between exons 1A2 and 1B (Camus et al., 2001). This insertion site precedes the promoter region for the 3 transcript (Camus et al., 2001). L, Quantitative PCR experiments reveal reduced
expression levels of gravin-cin gravin GT mice. mRNA levels for gravin-ce7a (Student's t test, n = 6, p = 0.009), gravin-cc7b (Student's t test, n = 3, p = 0.039), and gravin-c:2 (Student’s  test,
n=6,p = 0.014). Gravin-3 expression was not affected in gravin GT mice (Student's t test, n = 6, p = 0.444). M, Gravin GT mice express a truncated form of gravin-c of ~150 kDa (left panel),
which contains LacZ (middle panel) but lacks an Rl binding site (right panel). N, Hippocampal AKAP150 protein levels are not altered in gravin GT mice (n = 7 for both groups; Student’s t tests, p =
0.79). *p << 0.05; **p << 0.01. Error bars indicate SEM.
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Figure 2.

Long-lasting hippocampal LTP is impaired in gravin GT mice. A, Input— output curves relating the amplitude of the

presynaptic fiber volley to the initial slope of the corresponding fEPSP at various stimulus intensities was not altered in slices from
gravin GT mice (one-way ANOVA, F; 1) = 0.128, p = 0.727). B, Paired-pulse facilitation, a short-term form of synaptic plasticity,
was not changed in slices from gravin GT mice (two-way repeated-measures ANOVA, ., .,y = 0.415,p = 0.797). C, One-train LTP
was unaltered in hippocampal slices from gravin GT mice (Kruskal—-Wallis ANOVA, p > 0.05). D, Spaced four-train LTP is impaired

in slices from gravin GT mice (Kruskal-Wallis ANOVA, p < 0.05).

E, Along-lasting form of LTP induced by theta-burst stimulation

(15 bursts) was impaired in slices from gravin GT mice (Kruskal-Wallis ANOVA, p << 0.05). F, Bath application with the 32-AR
antagonist IC1 1185571 (100 nm) impairs a long-lasting form of LTP induced by theta-burst stimulation (15 bursts) (Kruskal-Wallis
ANOVA, p < 0.05). G, Massed four-train LTP, a PKA-independent form of long-lasting LTP was not impaired in slices from gravin
GT mice (Kruskal-Wallis ANOVA, p > 0.05). H, Forskolin-mediated synaptic potentiation was notimpaired in slices from gravin GT

mice (Kruskal-Wallis ANOVA, p > 0.05). In all sample sweeps, b

lack traces indicate baseline, and red traces were acquired at 1h

after tetanus (for €) or ~2 h after stimulation (for D—H). Calibration: 2 mV, 10 ms. Error bars indicate SEM.

monitored AKAP150 protein levels in hippocampal lysates from
GT mice and wild-type littermates. AKAP150 protein levels were
not affected by the loss of gravin-a (both groups, n = 7; Student’s
t test, p = 0.79; Fig. 1N). To assess possible neuroanatomical

alterations in gravin GT mice, we stained

cresyl violet and an antibody against MAP2, which is heavily
expressed in neuronal dendrites (Zhong et al., 2009). No abnor-
malities were observed in brain architecture or dendrite structure

(data not shown).

brain sections with
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Gravin GT mice have impairments in
PKA-dependent long-lasting forms of
hippocampal synaptic plasticity

Initial electrophysiological characteriza-
tion of Schaffer collateral-CA1l synapses
in gravin GT mice involved measuring
basal synaptic transmission by paired-
pulse facilitation (PPF), an index of short-
term plasticity. These experiments did not
detect any alterations in basal synaptic
transmission (WT, n = 6; GT, n = 6; one-
way ANOVA, F, ,,, = 0.128, p > 0.05;
Fig. 2A) and PPF (WT, n = 6; GT, n = 6;
two-way repeated-measures ANOVA,
Fi444)=0.415,p > 0.05; Fig. 2 B) in gravin
GT mice. Furthermore, maximum fEPSP
slopes were not significantly different be-
tween gravin GT mice (—8.14 = 1.73 mV/
ms) and wild-type mice (—9.33 *= 2.08
mV/ms) (one-way ANOVA, F ¢
0.195, p > 0.05).

To determine whether gravin-a plays a
role in synaptic plasticity, we examined
LTP at Schaffer collateral-CA1 synapses
in hippocampal slices. E-LTP is a transient
form of this phenomena, induced by a
single 1 s 100 Hz train, that lasts 1-2 h in
hippocampal slices. E-LTP requires
activation of the calcium/calmodulin-
dependent kinase e (CaMKIla), but
does not require PKA or de novo protein
synthesis (Frey et al., 1993). As expected,
E-LTP was not affected by loss of gravin-«
(WT, n = 6; GT, n = 7; Kruskal-Wallis
ANOVA, p > 0.05; Fig. 2C).

In contrast to E-LTP, long-lasting
LTP, which is induced by the spaced pre-
sentation of repeated trains of electrical
stimuli, lasts for several hours, requires
protein synthesis, PKA activity, and
B-ARs (Frey et al., 1993; Abel et al., 1997;
Kemp and Manahan-Vaughan, 2008). We
have previously shown that pharmacolog-
ical or genetic inhibition of PKA anchor-
ing impairs PKA-dependent hippocampal
long-lasting forms of LTP (Huang et al.,
2006; Nie et al., 2007). Therefore, we rea-
soned that long-lasting forms of LTP
might be attenuated in gravin GT mice.
Hippocampal spaced four-train LTP at
Schaffer collateral-CA1 synapses was im-
paired in slices from gravin GT mice (WT,
n =5 GIT, n 7; Kruskal-Wallis
ANOVA, p < 0.05; Fig. 2D). The mean

fEPSP slope over the last 20 min of the recording was significantly
reduced in gravin GT mice (WT, 185.3 = 7.1%; GT, 136.9 =
11.6%; Mann—Whitney U test, p = 0.007). We also examined
another form of long-lasting LTP that requires PKA anchoring
(Nie et al., 2007), B-ARs (Yang et al., 2002), and is induced by
theta-burst stimulation, which resembles the rhythmic hip-
pocampal electrical activity observed during spatial exploration
(Buzsdki, 2005). We found that theta-burst LTP (four 100 Hz

pulses delivered in bursts that are 200 ms apart for a total of 3 s) at
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Schaffer collateral-CA1 synapses was impaired in slices from
gravin GT mice (WT, n = 6; GT, n = 7; Kruskal-Wallis ANOVA,
p < 0.05; Fig. 2E). The mean fEPSP slope over the last 20 min of
the recording was significantly reduced in gravin GT mice (WT,
183.1 * 11.6%; GT, 114.1 = 7.7%; Mann—Whitney U test, p =
0.004). To determine whether theta-burst LTP requires 32-ARs,
we repeated the experiment in wild-type mice with bath applica-
tion of the B32-AR antagonist ICI 118551 (100 nm). Theta-burst
LTP at Schaffer collateral-CA1 synapses was impaired in slices
from wild-type slices treated with the 82-AR antagonist (WT,
n = 5; GT, n = 6; Kruskal-Wallis ANOVA, p < 0.05; Fig. 2F).
The mean fEPSP slope over the last 20 min of the recording was
significantly reduced under conditions of the 32-AR blocker (ve-
hicle, 156.3 £ 10.1%; ICI 118551, 119.3 * 7.1%; Mann—Whitney
U test, p = 0.007). Together, these data indicate that loss of
gravin-o impairs long-lasting forms of synaptic plasticity.

LTP induced by four high-frequency trains of stimuli applied
at 5 s intervals (massed four-train LTP) produces a form of long-
lasting LTP that does not require cAMP/PKA signaling (Woo et
al., 2003). Therefore, we anticipated that this form of LTP would
not be impaired by loss of gravin-a. As expected, massed four-
train LTP was not affected by loss of gravin-a (WT, n = 5; GT,
n = 5; Kruskal-Wallis ANOVA, p > 0.05; Fig. 2G). Together,
these data indicate that loss of gravin-a impairs long-lasting LTP
that requires PKA anchoring without affecting PKA-independent
forms of LTP.

We next wanted to establish whether loss of gravin-o impairs
a form of synaptic potentiation that is induced by forskolin, a
pharmacological activator of adenylyl cyclase (Huang and Kan-
del, 1998). The synaptic potentiation following forskolin treat-
ment was similar in wild-type littermates and gravin GT mice
(WT, n = 6; GT, n = 5; Kruskal-Wallis ANOVA, p > 0.05; Fig.
2 H). These findings suggest that cell-wide elevation of cAMP to
supraphysiological levels overcomes the mislocalization of PKA
caused by the deletion of gravin-« in the mutant mice.

B2-Adrenergic receptor-mediated synaptic plasticity is
impaired in gravin GT mice

Gravin-coordinated signaling complexes have been proposed to
modulate B2-AR function (Tao and Malbon, 2008), but this has
not been tested physiologically. Occupancy of B-ARs, when
paired with distinct patterns of excitatory synaptic stimulation,
can enhance hippocampal LTP (Winder et al., 1999; Gelinas etal.,
2008; Qian et al., 2012). We first determined whether bath appli-
cation of the 3-AR agonist ISO alone induced changes in synaptic
strength. Twenty-five minutes of ISO treatment did not induce
any synaptic potentiation in hippocampal slices from either wild-
type or gravin GT mice (data not shown). Next, we examined
whether an ISO-induced form of plasticity is attenuated in the
gravin GT mice. Transient low-frequency stimulation (LES) (5
Hz for 3 min) does not cause persistent changes in synaptic
strength (Qian et al., 2012). However, pairing ISO with LFS es-
tablishes long-lasting LTP (Winder et al., 1999; Gelinas et al.,
2008) via the activation of PKA (Gelinas et al., 2008) and ERK1/2
(Winder et al., 1999). A recent study showed that this form of
plasticity specifically requires 2-AR activation (Qian et al.,
2012). Synaptic plasticity at Schaffer collateral-CA1 synapses in-
duced by pairing 1 um ISO with LFS (5 Hz for 3 min) was im-
paired in slices from gravin GT mice (both groups, n = 4;
Kruskal-Wallis ANOVA, p < 0.05; Fig. 3A). The mean fEPSP
slope over the last 20 min of the recording was significantly re-
duced in gravin GT mice relative to WT mice (WT, 226.2 =
17.1%; GT, 135.3 = 7.9%; Mann—-Whitney U test, p = 0.003).
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Figure 3.  Hippocampal synaptic plasticity induced by (32-adrenergic receptor activation is
impaired in gravin GT mice. A, Hippocampal plasticity induced by pairing 1 um IS0 with 5 Hz
train of LFS for 3 min was impaired in slices from gravin GT mice (Kruskal-Wallis ANOVA, p <
0.05). B, The maintenance of hippocampal synaptic plasticity induced by pairing 1 w150 with
a 5 Hz train of LFS for 3 min was impaired by disrupting PKA anchoring using membrane-
permeable stearated Ht31 after the induction of plasticity (Kruskal-Wallis ANOVA, p << 0.05).
In all sample sweeps, black traces indicate baseline, and red traces were acquired 2 h after
stimulation. Calibration: 2 mV, 10 ms. Error bars indicate SEM.

These data indicate that the loss of gravin-a impairs synaptic
plasticity that requires 32-AR occupancy.

To determine whether PKA anchoring is required during the
maintenance phase of this form of synaptic plasticity, we repeated
this experiment but now treating slices from WT mice with the
PKA-anchoring disrupting peptide Ht31 (Carr et al., 1992; Vi-
jayaraghavan et al., 1997; Huang et al., 2006). Bath application of
stHt31 (10 uM) started immediately following ISO treatment and
was continued throughout the recording (Fig. 3B). We found that
stHt31 treatment during the maintenance phase of synaptic plas-
ticity induced by pairing 1 um ISO with LFS (5 Hz for 3 min) was
sufficient to impair this form of plasticity (both groups, n = 4;
Kruskal-Wallis ANOVA, p < 0.05; Fig. 3B). The mean fEPSP
slope over the last 20 min of the recording was significantly re-
duced due to treatment with stHt31 (vehicle treatment, 154.9 +
13.5%; stHt31, 98.9 * 4.2%; Mann—Whitney U test, p = 0.029).
This reduction was not observed with bath application of stear-
ated pseudo-stHt31 control peptide (data not shown). These
findings suggest that this form of 82-AR-mediated plasticity re-
quires PKA anchoring during the maintenance phase.

Gravin GT mice exhibit impaired spatial memory in the
Morris water maze

During training in the hippocampus-dependent spatial version
of the Morris water maze (Schenk and Morris, 1985), mice have
to learn and remember the location of a hidden platform using
distal environmental cues. Because inhibition of PKA-AKAP in-
teractions impairs memory formation in the spatial version of the
Morris water maze (Nie et al., 2007; Tunquist et al., 2008), we
tested whether gravin GT mice had memory deficits in this task.
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Gravin GT mice (n = 17) and wild-type mice (n = 18) gradually
learned to locate the hidden platform (two-way repeated-
measures ANOVA, effect of day, F 5 145, = 23.20, p = 0.0001; Fig.
4A). However, gravin GT mice exhibited an overall reduced ac-
quisition rate during training (two-way repeated-measures
ANOVA, effect of genotype, F, 53y = 6.02, p = 0.02; Fig. 4A).
Nonetheless, they eventually reached the hidden platform with
similar latency compared with wild-type littermates. Control
measurements confirmed that swim speed in the gravin GT mice
was similar to that of wild-type littermates (WT, 22.6 = 1.1 cm/s;
GT, 23.0 = 1.3 cm/s; Student’s t test, p = 0.831). Thigmotaxis was
likewise not altered (WT, 15.4 = 5%; GT, 18.3 * 4%; Student’s ¢
test, p = 0.616).

During the probe trial 24 h after training, gravin GT mice
exhibited a reduced preference for the target quadrant (two-
factor ANOVA, interaction between genotype and platform,
F5.99) = 7.829, p = 0.0001; Fig. 4 B). Post hoc analyses confirmed
that wild-type mice had a strong preference for the target quad-
rant (Tukey’s test, p < 0.001, target vs other quadrants). In con-
trast, gravin GT mice extended their search for the platform to the
adjacent quadrants (Tukey’s test, p > 0.1, target vs adjacent
quadrants). Wild-type mice also exhibited more platform cross-
ings than gravin GT mice (WT, 6.4 = 0.71; GT, 4.29 * 0.63;
Student’s t test, p = 0.036). Together, these findings indicate that
loss of gravin-« attenuates spatial memory in the Morris water
maze. Gravin GT mice were not impaired in the hippocampus-
independent visible platform version of the same task (WT, n =
6; GT, n = 5; two-way repeated-measures ANOVA, effect of ge-
notype, F(; 15y = 0.056, p = 0.813; interaction between genotype
and day, F, 5y = 0.240, p = 0.743; Fig. 4C). To determine
whether the spatial memory deficits were a consequence of alter-
ations in locomotor behavior, we assessed motor coordination in
a new batch of gravin GT mice using the rotarod test. Both wild
types and gravin GT mice gradually increased the time spent on
the rotating rod (two-way repeated-measures ANOVA, effect of
day, F(, 54) = 15.634, p = 0.0001; Fig. 4 D). No effect of genotype
was found (two-way repeated-measures ANOVA, effect of geno-
type, F(; 14y = 0.001, p = 0.953). Furthermore, gravin GT mice
and wild-type littermates spent a similar time in the open arms of
the zero maze (Student’s t test, p = 0.694; Fig. 4 E) and a similar
time in the center of the open field (Student’s t test, p = 0.388; Fig.
4F), indicating that the spatial deficits observed in the gravin GT
mice were not a consequence of alterations in exploratory or
anxiety behavior.

Gravin GT mice have long-term memory impairments in the
object-place recognition task, but not in the novel object
recognition task

To evaluate whether other forms of hippocampus-dependent
memory were impaired, we tested a naive batch of animals in the
object-place recognition task, a hippocampus-dependent para-
digm that examines the ability of animals to discriminate between
familiar and novel spatial locations of objects (Oliveira et al.,
2010). During training, both gravin GT mice (n = 16) and wild-
type littermates (n = 17) gradually decreased exploration of the
objects (two-way repeated-measures ANOVA, effect of genotype,
F131) = 4.924, p = 0.034). Gravin GT mice spent considerably
more time exploring the objects than wild-type mice during all
three training sessions (session 1, WT, 29.1 = 3.2's, GT, 38.7 =
4.0s;session2, WT,17.8 = 1.5, GT, 23.0 = 2.7 s; session 3, WT,
14.1 = 1.1 s, GT, 21.8 = 3.1 s; two-way repeated-measures
ANOVA effect of session, F, 5,y = 50.790, p = 0.001). Twenty-
four hours after the last training session, one of the three objects
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was moved to a novel location and mice were allowed to explore
the objects. A two-way ANOVA revealed a significant interaction
effect between genotype and object (F, 3, = 7.136, p = 0.012;
Fig. 4G). Wild-type mice significantly increased the time spent on
exploring the displaced object while decreasing the time explor-
ing the non-displaced objects (paired samples ¢ test, p = 0.003;
Fig. 4G). In contrast, gravin GT mice decreased the time spent
exploring both displaced and non-displaced object (paired sam-
ples ¢ test, p = 0.518; Fig. 4G). No difference in locomotor speed
was observed between mutant and wild-type mice (WT, 51.3 =
6.5 mm/s; GT, 47.7 = 5.3 mm/s; Student’s ¢ test, p = 0.651).
These findings indicate that the formation of object-place mem-
ories is impaired in the gravin GT mice.

To determine whether gravin GT mice also have a deficit in
detecting object novelty, gravin GT mice (n = 8) and wild-type
littermates (n = 8) were trained and tested in the novel object
recognition task, a task that is based on the animal’s spontaneous
preference for novelty (Ennaceur and Delacour, 1988). The train-
ing conditions we used do not require an intact hippocampus
(Winters et al., 2004; Oliveira et al., 2010). During training, both
groups spent a similar amount of time exploring both objects
(WT, 48.6 = 8.8 5; GT, 58.4 = 8.6 s; Student’s ¢ test, p = 0.410).
Twenty-four hours after training, mice were reintroduced to the
arena and reexposed to two objects, a familiar object and a new
object. Both groups preferentially explored the novel object (two-
factor ANOVA, F(, 54, = 5.806, p = 0.023; Fig. 4 H). No effect of
genotype (ANOVA, F(, ,5) = 0.006, p = 0.936) or interaction
effect between genotype and object (ANOVA, F | ,5) = 0.661,p =
0.423) was found. These data indicate that the formation of long-
term memories for objects does not require gravin-« signaling
complexes.

Gravin GT mice have long-term memory impairments in
contextual and tone-cued fear conditioning task

Next, we tested whether gravin GT mice showed an impairment
in hippocampus-dependent contextual fear conditioning (Logue
etal.,, 1997). During training, both groups (WT, n = 10; GT, n =
8) showed similar preshock and postshock freezing levels (Stu-
dent’s t test, p > 0.2 in both cases) (data not shown). One hour
after training, both groups were reexposed to the training context
and showed similar freezing levels (WT, 28.3 = 4.2%; GT, 31.2 =
5.4%; Student’s ¢ test, p = 0.679; Fig. 41I), indicating that gravin
GT mice form normal short-term contextual fear memories. To
test whether the formation of long-term contextual fear memo-
ries was attenuated, we repeated the contextual fear conditioning
experiment with a new batch of mice. Both groups (n = 8 each)
again showed similar preshock and postshock freezing levels dur-
ing training (Student’s t test, p > 0.5 in both cases) (data not
shown). Twenty-four hours after training, mice were reexposed
to the same context. Gravin GT mice showed reduced freezing
levels (33.2 = 5.8%) compared with wild-type littermates (54.5 =
5.6%) (Student’s t test, p = 0.019; Fig. 41). Because PKA anchor-
ing is also required for amygdala-dependent auditory fear mem-
ories (Moita et al., 2002), we subjected a third batch of mice to
cued fear conditioning that critically depends on the amygdala.
Both groups (WT, n = 18; GT, n = 19) showed similar freezing
levels when exposed to the context, tone [the conditioned stim-
ulus (CS)], and directly after receiving the shock (Student’s ¢ test,
p > 0.2 for all three cases) (data not shown). Twenty-four hours
after conditioning, mice were exposed to a novel context and
reexposed to the tone. Exposure to the novel context induced
similar freezing levels in both groups (Student’s ¢ test, p = 0.410;
Fig.4]). However, gravin GT mice showed reduced freezing levels
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Figure 4.  Long-term memory formation is impaired in gravin GT mice. A, In the spatial version of the water maze, gravin GT mice exhibited impairments during training (two-way repeated-
measures ANOVA, effect of genotype, £, 33 = 6.02, p = 0.02) but eventually reached the hidden platform with a latency similar to wild-type littermates (independent-samples t test, p = 0.523).
B, During the probe trial, wild-type mice preferentially searched in the target quadrant (post hoc Tukey's test, p << 0.001) in contrast to gravin GT mice (post hoc Tukey's test, p > 0.1, target vs
adjacent quadrants). , Gravin GT mice were not different from wild-type mice on the visible platform version of the maze (two-way repeated-measures ANOVA, F; 15 = 0.056, p = 0.813;
interaction between genotype and day, F, 15) = 0.240, p = 0.743). D, Motor coordination as assessed by the rotarod test was not altered in the gravin GT mice. Both groups gradually increased the
time spent on the rotating rod (two-way repeated-measures ANOVA, effect of day, £, ,4) = 15.634, p = 0.0001). No effect of genotype was found (two-way repeated-measures ANOVA effect of
genotype, F; 14 = 0.001, p = 0.953). E, Gravin GT mice spent a similar time in the open arms of the zero maze as wild-type mice (Student’s t test, p = 0.694). F, Gravin GT mice spent a similar time
in the center of the open field as wild-type mice (Student’s t test, p = 0.388). G, During the test session in the object-place recognition task, wild-type mice exhibited increased exploration time for
the displaced object but decreased exploration time for the non-displaced objects (paired t test, p = 0.003). Gravin GT mice exhibited reduced exploration times for both displaced and non-displaced
objects (paired ttest, p = 0.518). H, During the test session in the novel object recognition task, both wild-type and gravin GT mice preferentially explored the novel object (two-factor ANOVAF; g
= 5.806, p = 0.023). No genotype or interaction effect between genotype and object was found (ANOVA, £ ; ,¢) = 0.006, p = 0.936; ANOVA, F; ,5) = 0.661, p = 0.423, respectively). The dotted
lineindicates no preference. I, Mice were trained in the contextual fear conditioning paradigm. Wild-type and gravin GT mice showed similar freezing levels during the retention test 1 h after training
(Student's t test, p = 0.679), while gravin GT mice showed reduced freezing levels during the retention test 24 h after conditioning (Student’s ¢ test, p = 0.019). J, In the cued-fear conditioning

paradigm, gravin GT mice showed reduced freezing levels during the test session 24 h after training (Student's t test, p = 0.023). TA, Target; AL, adjacent left; AR, adjacent right; OP, opposite. *p <<
0.05; **p = 0.003; ***p << 0.001. Error bars indicate SEM.
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during the reexposure to the CS (WT,
39.6 * 5.5%; GT, 25.2 = 3.9%; Stu-
dent’s t test, p = 0.023; Fig. 4]), indicat-
ing that loss of gravin-a impairs cued
fear conditioning.

Phosphorylation of the 32-AR and
ERK1/2 is reduced after fear
conditioning in gravin GT mice

Because gravin GT mice show deficits in
the formation of hippocampus-dependent
long-term memories, we next determined
whether learning-induced activation of the
B2-AR signaling pathway was altered in the
gravin GT mice. Occupancy of the 82-AR
leads to Gas-mediated activation of PKA,
which in turn phosphorylates the receptor
at serine 345 and serine 346 (Hausdorff et
al., 1989). To determine whether the loss
of gravin-« attenuates 32-AR phosphory-
lation by PKA in vivo, mice underwent
contextual fear conditioning and hip-
pocampal tissue was collected 30 min after
training. Western blot analyses indicated
that gravin GT mice showed reduced
B2-AR phosphorylation at both serine
sites (WT, 100.0 = 9.6%; GT, 44.8 *=
6.2%; Student’s t test, p = 0.001; Fig. 5A).
Because 32-AR phosphorylation was not
affected in experimentally naive gravin
GT mice (WT, 100.0 = 1.3%; GT, 98.8 =
0.8%; Student’s t test, p = 0.448), these
data suggest that learning-induced 82-AR
phosphorylation by PKA is impaired in
gravin GT mice. The reduction in 82-AR
phosphorylation by PKA 30 min after fear
conditioning was also not a reflection of
an overall reduction of PKA activity due
to the loss of gravin-a because global PKA
activity in hippocampal lysates was not at-

<«

Student’s t test, p = 0.006). €, Immunohistochemistry for
pERK in area CA1, CA3, and DG from sections representative of
wild-type mice and gravin GT mice 30 min after fear condition-
ing training. Note the reduced pERK1/2 labeling in area CA1.
ch, Cell bodies; sr, stratum radiatum; s, stratum lucidum; mf,
mossy fibers; sm, stratum moleculare. Scale bar, 40 um. D,
The number of pERK1/2-positive cells in hippocampal subre-
gions of wild-type and gravin GT mice 30 min after fear condi-
tioning training. The number of pERK-positive cells in area CA1
was significantly reduced in gravin GT mice (Student’s t test,
p = 0.006). E, Optical density measurements of pERK1/2 im-
munoreactivity in the cell body layer and stratum radiatum of
area CA1 in wild-type mice and gravin GT mice. pERK1/2 im-
munoreactivity was significantly reduced in CA1 stratum ra-
diatum (Student’s t test, p = 0.031) and CA1 cell body layer
(Student'sttest, p = 0.034). F, Optical density measurements
of pERK1/2 immunoreactivity in the cell body layer, mossy fi-
bers, and stratum lucidum of area CA3 in wild-type mice and
gravin GT mice. G, Optical density measurements of pERK1/2
immunoreactivity in the cell body layer and molecular layer of
the DG in wild-type mice and gravin GT mice. *p < 0.05,
**p < 0.01,***p = 0.001. Error bars indicate SEM.



18146 - ). Neurosci., December 12, 2012 - 32(50):18137-18149

PDE4D |

Figureé.

degradation <

Havekes et al. @ Gravin, Synaptic Plasticity and Memory

\

i(,
IRGAY,
V2 e ./0 an

J

NS

PDE4D

Apotential mechanismillustrating the role of gravin complexesin 32-adrenergic receptor signaling. Activation of the 32-adrenergic receptor leads to the coupling with Gs proteins (1),

the recruitment of gravin signaling complexes to the plasma membrane (Tao et al., 2003), and phosphorylation of the receptor by PKA (2) (Hausdorff et al., 1989). GRK2 initiates the desensitization
process and recruitment of the 3-arrestin signaling complex (Perry et al., 2002) (3). The 32 adrenergic receptor switches coupling from Gs to Gi proteins leading to the activation of ERK1/2 (Daaka
etal., 1997) (4). The B-arrestin signaling complex attenuates local cAMP signaling through the recruited PDE4D, which degrades cAMP (Baillie et al., 2003) (5), and by preventing Gs-mediated

adenylate cyclase activation by the (32-adrenergic receptor (Perry et al., 2002) (6).

tenuated in the gravin GT mice (WT, n = 7,100 * 5.9%; GT,n =
7,102 * 8.6%; Student’s t test, p = 0.792). The latter observation
is in concordance with previous studies showing that loss of PKA
anchoring does not affect global PKA activity in hippocampal
lysates (Nie et al., 2007; Weisenhaus et al., 2010). Next, we deter-
mined whether loss of gravin affects PKA-mediated phosphory-
lation of the AMPA receptor GluA1 serine 845 site. We found that
the phosphorylation levels of this site were not altered in hip-
pocampal lysates from wild-type and gravin GT mice 30 min after
fear conditioning (WT, n = 7, 100 = 5.9%; GT, n = 7, 99.9 =
5.9%; Student’s ¢ test, p = 0.996). Together, these data suggest
that loss of gravin-« affects the phosphorylation of specific sub-
strates such as the B2-AR rather than leading to a global reduc-
tion in PKA function. PKA-mediated 82-AR phosphorylation at
serine 345 and serine 346 switches coupling of the 32-AR from
Gas to Gai-proteins leading to the activation of the ERK1/2 path-
way (Daaka et al., 1997; Baillie et al., 2003). Thus, reductions in
the phosphorylation of 82-AR phosphorylation at serine 345 and
serine 346 would be predicted to reduce the activation of ERK1/2.
Indeed, we found that phospho levels of ERK1/2 were signifi-
cantly decreased in gravin GT mice 30 min after fear conditioning
training (WT, 100.0 = 7.1%; GT, 71.0 £ 5.9%; Student’s ¢ test,
p = 0.006; Fig. 5B). This decrease in hippocampal ERK1/2 phos-
phorylation was not observed in experimentally naive mice (WT,

n = 15,100 = 3.8%; GT, n = 14, 114.7 = 8.3%; Student’s f test,
p = 0.137). A study by Sindreu et al. (2007) suggested that fear
conditioning induces changes in pERK1/2 specifically in hip-
pocampal area CAl. Therefore, we assessed whether the reduc-
tion in pERK1/2 levels in the gravin GT mice was restricted to
area CAl. Mice were trained in the fear-conditioning task and
transcardially perfused 30 min after training, and dorsal hip-
pocampal sections were stained for pERK1/2. The largest number
of pERK1/2-positive cells in the dorsal hippocampus was ob-
served in area CA1 (Fig. 5C,D). Gravin GT mice showed signifi-
cantly fewer pERK1/2-positive cells in area CA1 (WT, 41.2 *
10.7%; GT, 15.1 * 2.7%; Student’s ¢ test, p = 0.006; Fig. 5D). No
significant changes in pERK1/2-positive cells were observed in
area CA3 or in the DG. Optical density measurements in hip-
pocampal subregions showed reduced pERK1/2 labeling in stra-
tum radiatum (sr) of area CA1 (WT, 39.2 = 2.9%; GT, 30.3 =
1.7%; Student’s ¢ test, p = 0.031; Fig. 5E) and the CAL1 cell body
layer (WT, 19.5 = 1.1%; GT, 15.8 * 1.4%; Student’s f test, p =
0.034; Fig. 5E). No significant changes in staining intensity were
observed in CA3 cell bodies (WT, 12.4 = 1.7%; GT, 15.2 = 1.1%j;
Student’s t test, p = 0.422; Fig. 5F), mossy fibers (WT, 102.6 *
5.19%; GT, 92.7 = 2.3%; Student’s ¢ test, p = 0.117; Fig. 5F), or
stratum lucidum (WT, 50.0 = 2.7%; GT, 49.9 = 0.7%; Student’s
t test, p = 0.979; Fig. 5F). Likewise, no changes were observed in
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the DG cell bodies (WT, 27.3 == 1.7%; GT, 26.7 = 1.6%; Student’s
t test, p = 0.803; Fig. 5G) or molecular layer (WT, 40.5 = 1.1%;
GT, 38.0 = 1.4%; Student’s ¢ test, p = 0.193; Fig. 5G). Together,
these results indicate that training-induced ERK1/2 activation in
hippocampal area CA1 is impaired in gravin GT mice.

Discussion

Coordination of excitatory synaptic signaling events is a complex
process that relies on the spatial and temporal segregation of
cellular signaling pathways within the neuron. This is achieved in
part by AKAPs that compartmentalize unique macromolecular
complexes consisting of PKA and other signaling molecules in-
cluding phosphatases, PDEs, and targets of PKA at defined syn-
aptic locations (Welch et al., 2010). This intricate network of
protein—protein interactions provides a molecular mechanism
that allows different extracellular signals to engage spatially dis-
tinct pools of kinases. Although studies have implicated PKA
signaling in long-lasting forms of LTP and memory, the identity
of the AKAP(s) that coordinates pools of PKA critically involved
in synaptic plasticity and memory formation is less well under-
stood. Here, we show that selective loss of the a-isoform of gravin
impairs long-lasting forms of hippocampal synaptic plasticity in-
cluding those that require 32-AR activation as well as the forma-
tion of long-term memories that require the hippocampus or
amygdala. Furthermore, our biochemical studies reveal that the
loss of gravin-a attenuates hippocampal $2-AR phosphorylation
by PKA and reduces learning-induced activation of ERK1/2 in
area CA1 of the dorsal hippocampus.

Our observation that the loss of gravin-a reduces PKA-
mediated B2-AR phosphorylation in the hippocampus tallies
with cell culture studies. These studies have shown that activation
of the B2-AR initiates the recruitment of gravin to plasma mem-
brane sites (Tao et al., 2003), the phosphorylation of gravin by
PKA, and association of PKA with the 82-AR (Shih et al., 1999;
Lin et al., 2000). However, we have significantly extended these
biochemical studies and provide a physiological context for the
findings by showing that distinct forms of hippocampal LTP that
require B32-ARs and PKA anchoring are impaired in gravin GT
mice. Importantly, we have found that PKA anchoring is required
for a form of synaptic plasticity that requires low-frequency elec-
trical stimulation in combination with activation of 82-ARs, con-
sistent with this hypothesized role of gravin in regulating 82-AR
function during sustained activation. Thus, gravin-a is a key or-
ganizational component of PKA and 82-AR-mediated signaling
in hippocampal neurons and allowed us to propose that disrup-
tion of the B2-AR-controlled component of hippocampal synap-
tic plasticity and long-term memories could be due to the
observed loss of local PKA function (Fig. 6). Future studies using
pharmacological reagents that modulate specific components of
the B2-AR signaling complex (Kahsai et al., 2011) are needed to
further unravel the role that 82-ARs play in hippocampal LTP
and memory. Because our Ht31 experiment suggests that PKA
anchoring is required during the maintenance phase of LTP, it
will also be important to elucidate whether blocking PKA activity
and B2-AR function selectively during the maintenance phase is
sufficient to impair long-lasting forms of LTP or behavior and
memory.

As with other AKAPs, gravin is a multivalent scaffolding pro-
tein that not only binds PKA but also binds PKC and calmodulin,
and recruits PDE4D to the B2-AR (Nauert et al., 1997; Lin and
Gelman, 2002; Willoughby et al., 2006), suggesting that loss of
gravin-a not only reduces the localization of cAMP responsive
enzymes such as PKA and PDE4D (Houslay and Baillie, 2003) but
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also abrogates the efficacy of other signaling molecules that reg-
ulate B2-AR function (Fig. 6). These include PKC, another en-
zyme that can phosphorylate GRK2 promoting desensitization of
the B2-ARs (Kohout and Lefkowitz, 2003) (Fig. 6), and calmod-
ulin, which relays the increases in intracellular Ca?" into activa-
tion or inhibition of downstream enzymes. The latter has been
proposed to be a signal integrator for synaptic plasticity (Xia and
Storm, 2005). In future experiments, it will be interesting to de-
termine whether gravin-mediated compartmentalization of PKC
and calmodulin contribute to synaptic plasticity important for
memory. Nevertheless, our current study suggests that the
a-isoform of gravin is particularly important for PKA signaling
and for the activation of ERK1/2.

Previous studies to define the AKAP complexes involved in
synaptic plasticity and memory processes have been complicated
by non-mnemonic behavioral side effects and neuroanatomical
abnormalities. AKAP150-null mice exhibit a reduction in motor
coordination (Tunquist et al., 2008), and mice lacking the PKA
binding site from MAP2B have an abnormal CA1 architecture
(Khuchua et al., 2003). In contrast, loss of gravin-« impairs long-
term memory formation, without affecting motor coordination,
anxiety, exploratory behavior, or hippocampal architecture. This
makes it unlikely that the observed memory deficits observed
here are an indirect consequence of the loss of gravin-a during
development. Rather, it supports the notion that gravin-a-
mediated compartmentalization of signaling complexes during
adulthood is required to maintain normal synaptic plasticity and
memory.

ERK1/2 signaling is required for long-lasting forms of LTP
(Impey et al., 1998; Patterson et al., 2001) and the formation of
long-lasting memories (Davis and Laroche, 2006). More specifi-
cally, fear conditioning training activates the ERK pathway in a
subset of hippocampal neurons specifically in area CA1 (Sindreu
et al., 2007), and blocking ERK1/2 activity in hippocampal area
CA1 during the consolidation window prevents the formation of
long-term memories (Athos et al., 2002). We discovered that loss
of gravin-« attenuates the formation of hippocampus-dependent
long-term memories (Fig. 4) and impairs learning-induced acti-
vation of ERK1/2 pathway in area CA1 of the hippocampus (Fig.
5). These observations support the idea that gravin signaling
complexes orchestrate learning-induced ERK1/2 activation in
the hippocampus important for memory consolidation. 82-AR
phosphorylation by PKA is a prerequisite for activation of the
ERK1/2 pathway by B2-ARs (Daaka et al., 1997; Baillie et al.,
2003). Therefore, our finding that 32-AR phosphorylation was
reduced in hippocampal neurons after fear conditioning training
(Fig. 5) suggests that loss of gravin-mediated PKA phosphoryla-
tion of 32-AR may hamper the activation of the ERK1/2 pathway
(Fig. 6). However, it should be noted that 32-ARs can also acti-
vate the ERK1/2 pathway through PKA-independent signaling
mechanisms (Schmitt and Stork, 2000). Furthermore, cAMP,
PKA, and ERK1/2 signaling interact in other ways (Gloerich and
Bos, 2010).

This study is the first to show that gravin-a controls PKA-
dependent forms of hippocampal synaptic plasticity and a
B2-AR-mediated form of synaptic plasticity that requires low-
frequency electrical stimulation in combination with activation
of B2-ARs, regulates hippocampal ERK1/2 signaling, and is re-
quired for specific forms of long-term memory. Furthermore, we
demonstrate that PKA anchoring is critical for the maintenance
of B2-AR-mediated synaptic plasticity. Our studies not only im-
plicate gravin-« in the subcellular targeting of PKA but also reveal
that this particular macromolecular signaling complex is critical
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for the cellular and biochemical processes underlying long-term
memory storage. By linking the glutamatergic and noradrenergic
signaling pathways, gravin signaling complexes are able to
orchestrate the formation of long-term changes in neuronal
function.
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