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Abstract
Network inference approaches are now widely used in biological applications to probe regulatory
relationships between molecular components such as genes or proteins. Many methods have been
proposed for this setting, but the connections and differences between their statistical formulations
have received less attention. In this paper, we show how a broad class of statistical network
inference methods, including a number of existing approaches, can be described in terms of
variable selection for the linear model. This reveals some subtle but important differences between
the methods, including the treatment of time intervals in discretely observed data. In developing a
general formulation, we also explore the relationship between single-cell stochastic dynamics and
network inference on averages over cells. This clarifies the link between biochemical networks as
they operate at the cellular level and network inference as carried out on data that are averages
over populations of cells. We present empirical results, comparing thirty-two network inference
methods that are instances of the general formulation we describe, using two published dynamical
models. Our investigation sheds light on the applicability and limitations of network inference and
provides guidance for practitioners and suggestions for experimental design.

1 Introduction
Networks of molecular components such as genes, proteins and metabolites play a
prominent role in molecular biology. A graph G = (V, E) can be used to describe a
biological network, with the vertices V identified with molecular components and the edges
E with regulatory relationships between them. For example, in a gene regulatory network [3,
13], nodes represent genes and edges transcriptional regulation, while in a protein signaling
network [61], nodes represent proteins and edges may represent the enzymatic influence of
the parent on the biochemical state of the child, for example via phosphorylation. In many
biological contexts, including disease states, the edge structure of the network may itself be
uncertain (e.g. due to genetic or epigenetic alterations). Then, an important biological goal is
to characterize the edge structure (often referred to as the “topology” of the network) in a
context-specific manner, that is, using data acquired in the biological context of interest (e.g.
a type of cancer, or a developmental state). Advances in high-throughput data acquisition
have led to much interest in such data-driven characterization of biological networks.
Statistical approaches play an increasingly important role in these “network inference”
efforts. From a statistical perspective, the goal can be viewed as making inference regarding
the edge structure E in light of biochemical data y. Since aspects of biological dynamics
may not be identifiable at steady-state, time-varying data is usually preferred, and this is the
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setting we focus on here. In many applications the data y arise from “global perturbation” of
the cellular system, for example by varying culture conditions or stimuli. The extent to
which networks can be characterized using global perturbations remains poorly understood,
since it is likely that such data expose only a subspace of the phase space associated with
cellular dynamics.

The importance of network inference in diverse biological applications, from basic biology
to diseases such as cancer, has spurred vigorous activity in this area. Many specific methods
have been proposed, in the statistical literature as well as in bioinformatics and
bioengineering, with some popular approaches reviewed in [5, 24, 34, 38]. Graphical models
play a prominent role in this literature, as does variable selection. A distinction is often made
between statistical and “mechanistic” approaches [28]. The former is usually used to refer to
models that are built on conventional regression formulations and variants thereof, while the
latter usually refers to models that are explicitly rooted in chemical kinetics, e.g. systems of
coupled ordinary differential equations (ODEs). This distinction is somewhat artificial, since
it is possible in principle to carry out formal statistical network inference based on
mechanistic models (e.g. systems of ODEs), although this remains challenging [60].

Many network inference schemes are based on formulations that are closely related in terms
of the underlying statistical model. For example, vector autoregressive (VAR) models
(including Granger causality-related approaches as special cases) [7, 40, 42, 46, 63], linear
dynamic Bayesian networks (DBNs) [29], and certain ODE-based approaches [4, 35, 44] are
intimately related, being based on linear regression, but with potentially differing
approaches to variable selection. In recent years, several empirical comparisons of
competing network inference schemes have emerged, including [2, 5, 22, 52, 57].
Assessment methodology has received attention, including attempts to automate the
generation of large scale biological network models for automatic benchmarking of
performance [37, 55]. In particular the Dialogue for Reverse Engineering Assessments and
Methods (DREAM) challenges [48] have provided an opportunity for objective empirical
assessment of competing approaches. At the same time developments in synthetic biology
have led to the availability of gold standard data from hand-crafted biological systems, such
that the underlying network is known by design [9, 10, 41]. However relatively little
attention has been paid to the (sometimes contrasting) assumptions of the statistical
formulations underlying these network inference schemes.

Inferential limitations due to estimator bias and nonidentifiability remain incompletely
understood. It is clear that chemical reaction networks (CRNs; these are graphs that give
detailed descriptions of individual reactions comprising the overall system) underlying
biological networks are not in general identifiable [11]. Indeed, there exist topologically
distinct CRNs which produce identical dynamics under mass-action kinetics. Moreover even
when the true network structure is known, reaction rates themselves may be nonidentifiable.
However, mainstream descriptions of biological networks, e.g. gene regulatory or protein
signaling networks, are coarser than CRNs. Such networks are useful because they are
closely tied to validation experiments in which interventions (e.g. RNA interference or
inhibitors) target network vertices. For example, inference of an edge in a gene regulatory
network corresponds to the qualitative prediction that intervention on the parent will
influence the child (via transcription factor activity). It remains unclear to what extent such
biological network structure can be usefully identified from various kinds of data. On the
other hand [58, 59] discuss a number of general issues relating to stochastic modeling for
systems biology, but do not discuss network inference per se in detail. This paper
complements existing empirical work by focusing on statistical issues associated with linear
models commonly used in network inference applications.
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Network inference methods can be viewed as generating hypotheses about cell biology. Yet
the link between biochemical networks at the cellular level and network inference as applied
to bulk or aggregate data (i.e. data that are averages over large numbers of cells) from assays
such as microarrays remains unclear. In applications to noisy time-varying data there is
uncertainty in the predictor variables of the same order of magnitude as uncertainty in the
responses, yet often only the latter is explicitly accounted for. Moreover, the treatment of
time intervals in discretely observed data remains unclear, with contradictory approaches
appearing in the literature. Most high-throughput assays, including array based technologies
(e.g. gene expression or protein arrays), as well as single-cell approaches (e.g. FACS-based)
involve destructive sampling, i.e. cells are destroyed to obtain the molecular measurements.
The impact of the resulting nonlongitudinality upon inference does not appear to have been
investigated.

The contributions of this paper are threefold. First, we explore the connection between
biological networks at the cellular level and the linear statistical models that are widely used
for inference. Starting from a description of stochastic dynamics at the single-cell level we
describe a general statistical approach rooted in the linear model. This makes explicit the
assumptions that underlie a broad class of network inference approaches. This also clarifies
the relationship between “statistical” and “mechanistic” approaches to biological networks.
Second, we explore how a number of published network inference approaches can be
recovered as special cases of the model we arrive at. This sheds light on the differences
between them, including how different assumptions lead to quite different treatments of the
time step. Third, we present an empirical study comparing 32 different approaches that are
special cases of the general model we describe. To do so, we simulate stochastic dynamics at
the single-cell level from known networks, under global perturbation of two published
dynamical models. This enables a clear assessment of the network inference methods in
terms of estimation bias and consistency, since the true data-generating network is known.
Furthermore, the simulation accounts for both averaging over cells, nonlongitudinality due
to destructive sampling and the fact that only a subspace of the dynamical phase space is
explored. Using this approach, we investigate a number of data regimes, including both even
and uneven sampling, longitudinal and nonlongitudinal data and the large sample, low noise
limit. We find that the net effect of predictor uncertainty, nonlongitudinality and limited
exploration of the dynamical phase space is such that certain network estimators fail to
converge to the data-generating network even in the limits of large datasets and low noise.
However, we point to a simple formulation which might represent a default choice,
delivering promising performance in a number of regimes.

An implication of our analysis is that uneven time steps may pose inferential problems, even
when using models that apparently handle the sampling intervals explicitly. We therefore
investigate this case by carrying out network inference on unevenly sampled data using a
variety of statistical models. We find that the ability to reconstruct the data-generating
network is much reduced in all cases, with some approaches faring better than others. Since
biological data are often unevenly resolved in time, this observation has important
implications for experimental design.

The remainder of this paper is organized as follows. We begin in Section 2 with a
description of stochastic dynamics in single-cells and show how a series of assumptions
allow us to arrive at a statistical framework rooted in the linear model. Section 3 contains an
empirical comparison of several inference schemes, addressing questions of performance
and consistency in a number of regimes. In Section 4 we discuss our results and point to
several specific areas for future work.
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2 Methods
The cellular dynamics that underlie network inference are subject to stochastic effects [17,
32, 39, 49, 53]. We therefore begin our description of the data-generating process at the
level of single cells and then discuss the relationship to aggregate data of the kind acquired
in high-throughput biochemical assays. We then develop a general statistical approach,
rooted in the linear model, for data from such a system observed discretely in time. We
discuss inference and show how a number of existing approaches can be recovered as
special cases of the general model we describe. Our exposition clarifies a number of
technical but important distinctions between published methodologies, which until now have
received little attention.

2.1 Data-generating process

2.1.1 Stochastic dynamics in single cells—Let  denote a state
vector describing the abundance of molecular quantities of interest, on a space  chosen
according to physical and statistical considerations. The components of the state vector (e.g.
mRNA, protein or metabolite levels) are identified with the vertices of the graph G that
describes the biological network of interest. In this paper the “expression levels” X(t) of a
single cell at time t are modeled as continuous random variables that we assume satisfy a
time-homogenous stochastic delay differential equation (SDDE)

(1)

where f, g are drift and diffusion functions respectively,  is the natural
filtration (the history of the state vector X) and B denotes a standard Brownian motion. A
continuous state space  is appropriate as a modeling assumption only if the copy numbers
of all molecular components are sufficiently high. This is thought to be the case for the
biological systems considered in this paper, but in general the stochasticity due to low copy
number will need to be encoded into inference [49]. The edge structure E of the biological
network G is defined by the drift function f, such that  depends on Xi.

We further assume that the functions f, g are sufficiently regular and depend only on recent
history . For example in the context of gene regulation τ might be the time
required for one cycle of transcription, translation and binding of a transcription factor to its
target site; the characteristic time scale for gene regulation. This is a finite memory
requirement and can be considered a generalization of the Markov property. Equivalently,
this property codifies the modeling assumption that the observed processes are sufficient to
explain their own dynamics; that there are no latent variables. It is common practice to take
τ = 0, in which case the process defined by Eqn. 1 is Markovian. This stochastic dynamical
system with phase space  forms the basis of the following exposition.

2.1.2 Aggregate data—A variety of experimental techniques, including notably

microarrays and related assays, capture average expression levels  over
cells, where Xk denotes the expression levels in cell k. This paper does not consider effects
due to inter-cellular signaling, which are typically assumed to be negligible. Then averaging
sacrifices the finite memory property (a generalization of the fact that the sum of two
independent Markov processes is not itself Markovian). However it is usually possible to
construct a finite memory approximation of the form

(2)
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using a so-called “system size expansion” [56]. Approximations of this kind derive from a
coarsening of the underlying state space, assuming that the new state vector X(N) captures
every quantity relevant to the dynamics. The statistical models discussed in this paper rely
upon coarsening assumptions in order to control the dimensionality of state space.

Using the mild regularity conditions upon cellular stochasticity g the laws of large numbers

gives that in the large sample limit the sample average  equals the
expected state of a single cell (almost surely). We note that the relationship between the
single-cell dynamics as it appears in Eqn. 1 and this deterministic limit may be complicated,

since in general . However for linear f, say for simplicity f ≡ f(X) =
AX, we have

(3)

where  almost surely as N → ∞, and so . In
other words, the average over large numbers of cells shares the same drift function as the
single cell, so that inference based on averaged data applies directly to single cell dynamics.

Otherwise this may not hold, that is .
This has implications when using nonlinear forms, such as Michaelis-Menten or Hill
kinetics, to describe the behavior of a large sample average; these nonlinear functions are
derived from single cell biochemistry and may not apply equally to the large sample average
X∞. The error entailed by commuting drift and expectation may be assessed using the
multivariate Feynman-Kac formula for  [45].

In practice the observation process may be complex and indirect, for example measurements
of gene expression may be relative to a “housekeeping” gene, assumed to maintain constant
expression over the course of the experiment. Moreover the details of the error structure will
depend crucially on the technology used to obtain the data. To limit scope, this article
assumes the averaged expression levels X∞(t) are observed at discrete times t = tj (0 ≤ j ≤ n)
with additive zero-mean measurement error as Y(tj) = X∞(tj) + wj, where the wj are
independent, identically distributed uncorrelated Gaussian random variables.

2.2 Discrete time models
Network inference is usually carried out using coarse-grained models (Eqn. 2) that are
simpler and more amenable to inference than the process described by Eqn. 1. Here,
informed by the foregoing treatment of cellular dynamics, we develop a simple network
inference model for data observed discretely in time. We clarify the assumptions of the
statistical model, and show how several published approaches can be recovered as special
cases.

2.2.1 Approximate discrete time likelihood—Network inference entails statistical
comparison of networks , where  denotes the space of candidate networks. The space

 may be large (naively, there are 2P×P possible networks on P vertices), although biological
knowledge may provide constraints. Network comparisons require computation of a model
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selection score for each network that is considered, which in turn entails use of the
likelihood (e.g. maximization of information criteria, or integration over the likelihood in the
Bayesian setting). Therefore, exploration over large model spaces is often only feasible
given a closed-form expression for the likelihood (or preferably for the model score itself).

However the likelihood for a SDDE model (Eqn. 2) is not generally available in closed
form. There has been recent research into computationally efficient approximate likelihoods
for fully observed, noiseless diffusions [26], but it remains the case that the most efficient
(though least accurate) closed-form approximate likelihood is based on the Euler-Maruyama
discretization scheme for stochastic differential equations (SDEs), which in the more general
SDDE case may be written as (henceforth dropping the superscript N)

(4)

where ΔBj ~ N(0, ΔjI) and Δj = tj – tj–1 is the sampling time interval. Incorporating
measurement error into this so-called Riemann-Itô likelihood [12] requires an integral over
the hidden states X which would destroy the closed-form approximation. Therefore the
observed, nonlongitudinal data y are directly substituted for the latent states X, yielding the
(triply) approximate likelihood

(5)

Here  denotes a Normal density with mean μ and covariance Σ. Implicit here is
that the functions f, g depend on  only through time lags which coincide with the
measurement times tj–1.

Thus  may be obtained from a state-space approximation to the original SDDE model
(Eqn. 2). Despite reported weaknesses with the Riemann-Itô likelihood [12, 26] and the
poorly characterized error incurred by plugging in nonlongitudinal observations, this form of
approximate likelihood is widely used to facilitate network inference (Eqns. 5-6 correspond
to a Gaussian DBN for the observations y, generalized to allow dependence on history). This
is due both to the possibility of parameter orthogonality, allowing inference to be performed
for each network node separately, and the possibility of conjugacy, leading to a closed-form
marginal likelihood π(y|G).

2.2.2 Linear dynamics—Kinetic models have been described for many cellular processes
[10, 51, 54, 59]. However, statistical inference for these often non-linear models may be
challenging [58, 59, 60]. Moreover, there is no guarantee that conclusions drawn from
cellular averages will apply to single cells, because as noted above the deterministic
behavior seen in averages may not coincide with the single cell drift. However, linear

dynamics satisfy  exactly, so that conclusions drawn from verages apply
directly to single cells. For notational simplicity consider the Markovian τ = 0 regime. A
Taylor approximation of the cellular drift f about the origin gives

(6)

where Df is the Jacobian matrix of f. The constant term can be omitted (f(0) = 0), since
absent any regulators there is no change in expression. Then, the Jacobian Df captures the
dynamics approximately under a linear model. Furthermore, the absence of an edge in the
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network G implies a zero entry in the Jacobian, that is . Obtaining the
Jacobean at x = 0 therefore does not imply complete knowledge of the edge structure E. We
note that the general SDDE case is similar but with additional differentiation required for the
additional dependencies of f. Henceforth we write equations for the simpler Markovian
model, although they hold more generally.

One may ask whether the restriction to linear drift functions allows the computational
difficulties associated with inference for continuous time models to be avoided, since in the
Markovian (τ = 0) case both the SDE (Eqn. 1) and limiting ordinary differential equation
(ODE) have exact closed form solutions. In the ODE case, for example, X(t) = exp(At)X0
and under Gaussian measurement error the likelihood has a closed form as products of terms

 where the parameters θ = (A, X0, M) include the model
parameters A, initial state vector X0 and the measurement error covariance M.
Unfortunately evaluation of the matrix exponential is computationally demanding and
inference for the entries of A must be performed jointly since in general exp(A) does not
factorize usefully. It therefore remains the case that inference for continuous time models is
computationally burdensome, even when the models are linear.

2.2.3 The dynamical system as a regression model—The Jacobian Df with entries

 is now the focus of inference. We can identify the Jacobian with the
unknown parameters in a linear regression problem by modeling the expression of gene p
using

(7)

where the gradients dXp(tj) are approximated by finite differences, in this case (Xp(tj) –
Xp(tj–1))/Δj. Our notation for finite differences should not be confused with the differentials
of stochastic calculus. More generally for processes with memory the matrix may be
augmented with columns corresponding to lagged state vectors and the vector (Df)p,•
augmented with the corresponding derivatives of the drift function f with respect to these
lagged states. To avoid confusion we write A for Df when discussing parameters, since the
drift f is unknown. Similarly, design matrices will be denoted by B to suppress the
dependence on the random variables X. So Eqn. 7 may be written compactly as

(8)

Inference for the parameters Ap,• may be performed independently for each variable p.
Whilst Eqn. 8 is fundamental for inference, one can equivalently consider the dynamically
intuitive expression

(9)

An interesting issue arises from the dual interpretation of the regression model as a
dynamical system (Eqn. 9), because there are natural restrictions on A to avoid the solution
tending to infinity. For instance if the sampling interval Δ is constant then we require

 for each eigenvalue λ of A + ΔI. The inference schemes which we discuss do not
account for this, because the condition forces a nontrivial coupling between rows Ap,•,
jeopardizing parameter orthogonality.
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Finally, the generative model is specified by substituting noisy, nonlongitudinal observables
Y for latent variables X into Eqn. 9 and stating the dependence of the approximation error
on the sampling interval Δj. Under uncorrelated Gaussian measurement error we arrive at a
model

(10)

where  is a variance function that must be specified and  represents the
diagonal matrix induced by the vector v.

There are a number of ways in which this regression is non-standard. For example, the
substitution of (nonlongitudinal) observations for latent variables is clearly unsatisfactory
because the linear regression framework does not explicitly allow for uncertainty in the
predictor variables B. It is unclear whether this introduces bias or leads to an overestimate of
the significance of results. Moreover, it is unclear how to choose the variance function h,
since the Euler-Maruyama approximation (Eqn. 4) is only valid for small sampling intervals
Δj, but in this regime the responses dY(tj) are dominated by measurement error, such that
the data may carry little information. These issues are investigated in Sections 3 and 4
below.

2.3 A unifying framework
Eqn. 10 describes a class of models with specific instances characterized by choice of design
matrix B and variance function h. Since any such model corresponds to the linear regression
Eqn. 7, the task of determining the edge structure of the network, or equivalently the
location of non-zero entries in the Jacobian A, can be cast as a variable selection problem.

A number of specific network inference schemes can now be recovered by fixing the design
matrix and variance function and coupling the resulting model with a variable selection
technique. A selection of published network inference schemes that can viewed in this way
is presented in Table 1. One might see these schemes classed as VAR models [7, 42, 46, 63],
DBNs [25, 29], or ODE-based approaches [4, 35, 44], although as we have demonstrated
this classification disguises their shared foundation in the linear model.

As shown in Table 1, the variance functions h, and therefore sampling intervals Δj, are not
treated in a consistent way in the literature. In the special case of even sampling times Δj =
Δ, a model is characterized only by its design matrix. If the standard design matrix is used
then the entire family of models

(11)

reduces to a linear VAR(1) model

(12)

where Ā = ΔA + I and . More generally the VAR(q) model is prevalent in the
literature (see Table 1), yet it does not explicitly handle uneven sampling intervals. This is a
potentially important issue since uneven sampling is commonplace in global perturbation
experiments, with high frequency sampling used to capture short term cellular response and
low frequency sampling to capture the approach to equilibrium. We discuss the importance
of modeling using a variance function, and whether a natural choice for such a function
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exists in Section 4 below. In addition we explored whether inference may be improved
through the use of either nonlinear basis functions or lagged predictors to capture
respectively nonlinearity and memory in the underlying drift function is unclear. Section 3
presents an empirical investigation of these issues.

2.4 Inference
An appealing feature of the discrete time model is that parameters corresponding to different
variables are orthogonal in the Fisher sense:

(13)

As a consequence network inference over  may be factorized into P independent variable
selection problems. For definiteness we focus on just two approaches to variable selection,
the Bayesian marginal likelihood and AIC, but note that many other approaches are
available, including those listed in Table 1, and can be applied here in analogy to what
follows. Below we assume the response vector dyph–1/2 and the columns of the design
matrix Bh–1/2 are standardized to have zero mean and unit variance, but for clarity subsume
this into unaltered notation.

2.4.1 Bayesian variable selection—For simplicity, the variance function is initially
taken to be constant (h = 1). We set up a Bayesian linear model conditional on a network G

using Zellner's g-prior [62], that is with priors  and

 where Bp is the design matrix B with non-predictors removed according to G.
We note that while the g-prior is a common choice, alternatives may offer some advantages
[14, 19].

Let mp be the number of predictors for variable p in the network G. Integrating the

likelihood (induced by Eqn. 10) against the prior for  produces the following
closed-form marginal likelihood

(14)

where . These formulae extend to arbitrary variance functions h by

substituting , . Network inference may now be carried out by
Bayesian model averaging, using the posterior probability of a directed edge from variable i
to variable j:

(15)

In experiments below, we take a network prior which, for each variable p is uniform over
the number of predictors mp up to a maximum permissible in-degree dmax, that is

, but note that richer subjective network priors are
available in the literature [43]. Finally, a network estimator Ĝ is obtained by thresholding
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posterior edge probabilities: . For small maximum
in-degree dmax, exact inference by enumeration of variable subsets may be possible.
Otherwise, Markov chain Monte Carlo (MCMC) methods can be used to explore an
effectively smaller model space [16, 21]. In the experiments below we use exact inference
by enumeration.

2.4.2 Variable selection by corrected AIC—Again, consider a constant variance
function (h = 1); rescaling as described above recovers the general case. The usual

maximum likelihood estimates  and 

induce closed forms  for the maximized factors of the likelihood function, where Cp is
a constant not depending on the choice of predictors. Corrected AIC scores [8] for each
variable p are then

(16)

Again we consider all models with maximum permissible in-degree dmax. Lowest scoring
models are chosen for each variable in turn, inducing a network estimator Ĝ.

3 Results
In this Section, we present empirical results investigating the performance of a number of
network inference schemes that are special cases of the general formulation described by
Eqn. 10. Objective assessment of network inference is challenging [48], since for most
biological applications the true data-generating network is unknown. We therefore exploit
two published dynamical models of biological processes, namely Cantone et al. [10] and
Swat et al. [54], described in detail in Supplemental Information (SI). The first is a synthetic
gene regulatory network built in the yeast Saccharomyces cerevisiae. This five gene network
and associated delay differential equations (DDEs) has received attention in computational
biology [9, 41], and has been shown to agree with gold-standard data (at least under an

 assumption). Cantone et al. consider two experimental conditions;
“switch-on” and “switch-o ”. In this paper “switch-on” parameter values were used to
generate data. The Swat model is a gene-protein network governing the G1/S transition in
mammalian cells. The model has a nine dimensional state vector and, unlike Cantone, is
Markovian. We note that this model has not been directly verified in the manner of Cantone
but is based on a theoretical understanding of cell cycle dynamics. There is undoubtedly bias
from this essentially arbitrary choice of dynamical systems but a comprehensive sampling of
the (vast) space of possible networks and dynamics is beyond the scope of this paper.

3.1 Experimental procedure
3.1.1 Simulation—We consider global perturbation data by initializing the dynamical
systems from out of equilibrium conditions. This is a common setting for network inference
approaches, but the limitations of inference from such data remain incompletely understood.
For each dynamical system f, trajectories Xk of single cell expression levels were obtained
as solutions to the SDDE Eqn. 1 with drift f and uncorrelated diffusion 
(representing multiplicative cellular noise). Trajectories were obtained by numerically
solving SDDEs with heterogeneous initial conditions using the Euler-Maruyama
discretization scheme (Eqn. 4). MATLAB R2010a code for all simulation experiments is
available in the SI. To mimic destructive sampling and consequent nonlongitudinality,
solutions were regenerated at each time point. We are interested in data that are averages
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over a large number N of single-cell trajectories. However, the computational cost of solving
N × n SDDEs to produce each data set is prohibitive. Therefore, only a smaller number N*
<< N of cells were simulated and a larger sample N then obtained by bootstrapping, i.e. re-
sampling from the N* trajectories with replacement. In practice N* should be taken
sufficiently large such that a negligible change in experimental outcome results from further
increase in N*. Initial conditions for single cell trajectories varied with standard deviation
σcell. Finally, uncorrelated Gaussian noise of magnitude σmeas was added to simulate a
measurement process with additive error. In the experiments presented below, N = 10, 000,
N* = 30 and n = 20 time points are taken within the dynamically interesting range (0-280
minutes for Cantone and 0-100 minutes for Swat). Measurement error and cellular noise are
set to give signal-to-noise ratios  (here  represents the
average expression levels of the variables X over all generated trajectories). Fig. 1 shows
typical datasets for the two dynamical systems.

3.1.2 Inference schemes—The following inference schemes were assessed

For the design matrix “quadratic” refers to the augmentation of the predictor set by the
pairwise products of predictors, the simplest nonlinear basis functions. For the variance
function the symbol ∅ is used to denote the VAR(q) model, which formally lacks a variance
function. “Lagged predictors = Yes” indicates augmentation of the predictor set with lagged
observations (a lag of ≈ 28 mins is used for Cantone and ≈ 10 mins for Swat). There are
heuristic justifications for each of the candidate variance functions. For example the function
with α = 2 appears for small Δj when an exact Euler approximation and additive
measurement error are assumed [4], whereas α = 1 is reminiscent of the Euler-Maruyama
discretization Eqn. 4.

3.1.3 Empirical assessment—The performance of each inference scheme is quantified
by the area under the receiver operating characteristic (ROC) curve (AUR), averaged over
20 datasets [18]. This metric, equivalent to the probability that a randomly chosen true edge
is preferred by the inference scheme to a randomly chosen false edge, summarizes, across a
range of thresholds, the ability to select edges in the true data-generating graph. Results
presented below use a computationally favorable in-degree restriction dmax = 2. In order to
check robustness to dmax all experiments were repeated using dmax = 3, with no substantial
changes in observed outcome (SFig. 6).

3.2 Empirical results
3.2.1 Even sampling interval—Fig. 2(a) displays box-plots over AUR scores for the
Cantone dynamical system under even sampling intervals. Note that under even sampling,
for an otherwise identical scheme, changing variance function does not a ect the model,
leading to identical AUR scores for schemes which differ only in variance function. (An
exception to this is the VAR model, since the parameters A carry a subtly different meaning,
which under a Bayesian formulation leads to a translation of the prior distribution and in the
information criteria case changes the definition of the predictor set.)

Despite the presence of nonlinearities and memory in the cellular drift f, neither the use of
quadratic basis functions nor the inclusion of lagged predictors appear to improve
performance in terms of AUR. In order to verify that quadratic predictors are sufficiently
nonlinear and that lagged predictors are sufficiently delayed, we repeated the investigation
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using both cubic predictors and using a delay twice as long. Results (SFigs. 3,4) demonstrate
that no improvement to the AUR scores is achieved in this way.

Corresponding results for the Swat model are shown in SFig. 2. Here we find that none of
the methods performs well.

We also performed inference using biochemical data from the experimental system reported
in Cantone et al. [10] (specifically the “switch-on” dataset therein). AUR scores obtained
using this data (SFig. 5) were in close agreement with those obtained using synthetic data
(Fig. 2(a)), suggesting that the results of the simulations are relevant to real world studies.

3.2.2 Uneven sampling intervals—Many biological time-course experiments are
carried out with uneven sampling intervals. We therefore repeated the analysis above with
sampling times of 0, 1, 5, 10, 15, 20, 30, 40, 50, 60, 75, 90, 105, 120, 140, 160, 180, 210,
240 and 280 minutes. Fig. 2(b) displays the AUR scores so obtained. We find that all the
methods perform worse in the uneven sampling regime, with no method performing
significantly better than random. Corresponding results for the Swat model are shown in
SFig. 7. Again, here we find that none of the methods performs well.

3.2.3 Consistency—Fig. 3 displays AUR scores for Cantone for a large number of evenly
sampled time points (n = 100), and the limiting case of zero measurement noise and zero
cellular heterogeneity (σmeas = 0, σcell = 0, even sampling intervals). Consistency (in the
sense of asymptotic convergence of the network estimate to the data-generating network)
may be unattainable due to the nonidentifiability resulting from limited exploration of the
dynamical phase space. This lack of surjectivity means that in many cases inference cannot
possibly reveal the full data-generating graph, although as we have seen network inference
can nonetheless be informative. From Fig. 3 we see that the Bayesian schemes using linear
predictors approach AUR equal to unity, and in this sense show empirical consistency with
respect to network inference. However, some of the other methods do not converge to the
correct graph even in this limit.

4 Discussion
The analyses presented here were aimed at better understanding statistical network inference
for biological applications. We showed how a broad class of approaches, including VAR
models, linear DBNs and certain ODE-based approaches, are related to stochastic dynamics
at the cellular level. We discuss a number of these aspects below and close with some views
on future perspectives for network inference, including recommendations for practitioners.

4.1 Time intervals
We found that uneven sampling intervals posed problems, even for methods that explicitly
accounted for the sampling interval. Further insight may be gained from an error analysis of
the approximations indicated in Section 2.2. Assuming the true large sample process obeys
dX∞/dt = F(X∞), we have that under an observation process with independent additive
Gaussian measurement error Y(t) ~ N(X∞(t), M) an expansion for the variance

 over a time interval Δ is given by

(17)

(see SI for details). Recall that the model family in Eqn. 10 approximates this variance by

 where h(Δ) = Δ–α. From this perspective it is clear that each variance
function we considered captures only partial variation due to Δ. It is therefore not surprising
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that performance suffers in the uneven sampling regime, which requires the variance
function to apply equally to large Δ as to small Δ. Moreover, a natural choice of variance
function driven by Eqn. 17 is not possible, since this would require knowledge of the
unknown process F. The implication for experimental design is that absent specific reasons
for uneven sampling, it may be preferable to collect data at regular intervals.

Fig. 4 displays an approximation to the true variance function for the Cantone model (see
SI). Observe that for small sampling intervals Δ the true curvature is best captured by a
functional approximation of the form  with α = 1, 2, whereas for intervals larger
than 10 mins (which are more common in practice) the flat approximation  correctly
captures the asymptotic behavior. In applications where high frequency sampling is
infeasible the flat variance function might be a sensible choice. To understand whether
difficulties related to sampling intervals disappear in the large sample limit, we repeated the
empirical consistency analysis under uneven sampling (SFigs. 11,12). Interestingly, we
found that none of the methods appeared to be empirically consistent, and that the choice of
variance function is influential. However, unevenly sampled data are common in biology
and it may be the case that in some settings, the existence of multiple time scales (e.g.
signaling, transcription, accumulating epigenetic alterations) mean that unevenly sampled
data are nonetheless useful. Our findings suggest that care should be taken in the uneven
sampling regime.

4.2 Interventional data
The Cantone data are favorable in the sense that gene profiles show interesting time-varying
behavior under global perturbation, exploring a large proportion of the dynamical phase
space. However such behavior is dependent on the specific dynamical system and is not
displayed by the Swat model, which has a much larger phase space, being a nine-
dimensional dynamical system. This may help explain the poor performance of all the
methods on this latter model using global perturbation data and perhaps reinforces the
intuitive notion that dynamics that are favorable (in this informal sense) facilitate network
inference. In some cases, perturbation data are available in which individual variables are
inhibited (e.g. by RNA interference, gene knockouts or inhibitor treatments). Such data have
the potential to explore much more of the dynamical phase space, including regions which
cannot be accessed without direct inhibition of specific molecular components. This is an
important consideration because the statistical estimators described in Section 2.4 take the
form

(18)

where the average is over the region  in state space visited during the experiments.
Clearly if the region  is only a small subspace of phase space then the estimate

Eqn. 18 will be poor compared to one based on the entire phase space .

To investigate the added value of interventional treatments for network inference, we
repeated both the Cantone and Swat analyses with an ensemble of datasets obtained by
inhibiting each variable in turn; this gave 5 and 9 datasets for Cantone and Swat
respectively. Whilst no improvement to the Cantone AUR scores was observed (SFig. 15),
there was improved performance for Swat (SFig. 16). This suggests that global perturbations
are insufficient to explore the Swat dynamical phase space, and supports the intuitive notion
that intervention experiments may be essential for inference regarding larger dynamical
systems. Nevertheless AUR scores remain far from unity. This may be because the Swat
drift function contains complex interaction terms which single interventions alone fail to
elucidate. An important problem in experimental design will be to estimate how much
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(possibly combinatorial) intervention is required to achieve a certain level of network
inference performance.

We considered precise artificial intervention of single components in silico. However,
biological interventions may be imprecise and imperfect. For example, RNA interference
achieves only incomplete silencing of the target and small-molecule inhibitors may have off-
target effects. Moreover, at present such interventions are not instantaneous nor truly
exogenous. This means that in many cases the system itself may be changed by the
intervention, rendering resulting predictions inaccurate for the native system of interest.
There remains a need for novel statistical methodology capable of analyzing time-course
data under biological interventions. Existing literature in causal inference [47] and related
work in graphical models [15] are relevant, but in biological applications it may also be
important to consider the mechanism of action of specific interventions.

4.3 Non-linear models
We focused on linear statistical models. Clearly, linear models are inadequate in many
cases. For example [50] demonstrate the benefit of a nonlinear model based on Michaelis-
Menten chemical kinetics for inference of transcription factor activity. However, network
inference based on nonlinear ODEs remains challenging [60]. Alternatively Äijö and
Lähdesmäki [1] consider the use of a non-parametric Gaussian process (GP) interaction term
in the regression, which is naturally more flexible than linear regression using finitely many
basis functions. This may help to overcome the linearity restriction, but introduces
additional degrees of freedom, including the GP covariance function and associated
hyperparameters. Whilst a thorough comparison of such approaches was beyond the scope
of this article, the potential utility of nonparametric interaction terms is worthy of
investigation. In this study we observed that neither the use of predictor products nor lagged
predictors led to improved performance; this may reflect nontrivial coupling between
cellular dynamics and the observed data.

4.4 Single-cell data
In the future it may become possible to measure single cell expression levels Xk non-
destructively (e.g. by live cell imaging), producing truly longitudinal datasets. It is
interesting to consider how such data may impact upon the performance of regression-based
network inference. Under independent additive Gaussian measurement error Y(t) ~ N(Xk(t),
M) an expansion for the single cell variance  over a time interval Δ, in analogy
with Eqn. 17, is given by

(19)

(see SI). Thus a (single) longitudinal single cell dataset contains less information about the
drift f than aggregate data (Eqn. 17) due to cellular stochasticity g. However, multiple
longitudinal datasets may jointly contain more information than a single aggregate dataset.
To empirically test the utility of such data, we carried out network inference using 10 such
longitudinal single-cell datasets on both the Cantone and Swat models, observed at even
intervals with the same magnitude of measurement error as aggregate data. Results (SFig.
13,14) show a small improvement to the mean AUR scores, but reduction by a factor of
about two in the variance of these scores (compared with the corresponding non-longitudinal
data), implying that the network estimators may be converging to an incorrect network. Bias
may occur when the cellular drift f is not well approximated by a linear function, as is the
case for the Swat model. Consider the idealized scenario where f ≡ f(X) is Markovian and it
is possible to observe longitudinal, single cell expression levels. Under these apparently
favorable circumstances even estimators obtained after a thorough exploration of state space
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may not offer good approximations, i.e. . As a toy example consider the cellular
drift

(20)

which is not well approximated by a linear function over the state space . In this
case averaging leads to cancellation

(21)

so that no interactions are inferred. Under such circumstances network inference is no longer
possible using the naïve linear regression approach. This suggests that network inference
rooted in non-linear models may be needed to fully exploit longitudinal single-cell data in
the future. A related line of work addresses heterogeneity of the drift function in time by
coupling DBNs with change point processes [27, 31, 33]. A promising direction would be
piecewise linear regression modeling for network inference applications, where the
heterogeneity appears in the spatial domain.

4.5 High-dimensions and missing variables
We focused on the simplest possible case of fully observed, low-dimensional systems. There
is a rich literature in high-dimensional variable selection and related graphical models [40,
23, 20] which applies equally to the regression models described here. The issues raised in
this paper remain relevant in the high-dimensional setting. However in practice even high-
dimensional observations are likely to be incomplete, since it is not currently possible to
measure all relevant chemical species. Therefore, inferred relationships between variables
may be indirect. This may be acceptable for the purpose of predicting the outcome of
biochemical interventions (e.g. inhibiting gene or protein nodes), but limits stronger causal
or mechanistic interpretations. Latent variable approaches are available [6], but model
selection can be challenging and remains an open area of research [30]. We note also that
the missing variable issue for biological networks is arguably more severe than in, say,
economics or epidemiology, insofar as measured variables may represent only a small
fraction of the true state vector, often with little specific insight available into the nature of
the missing variables or their relationship to observations. Further work is required to better
understand these issues in the context of inference for biological networks.

4.6 Future perspectives
We found that a simple linear model could successfully infer network structure using
globally perturbed time-course data from the Cantone system. It is encouraging that
inference based only on associations between variables, none of which were explicitly
intervened upon, can in some cases be effective. Interventional designs should further
enhance prospects for network inference. On the other hand, theoretical arguments, and the
results we showed from the Swat system, emphasize that in some cases network structure
may not be identifiable, even at the coarse level required for qualitative biological
prediction. On balance, we believe that network inference can be useful in generating
biological hypotheses and guiding further experiment. However, the concerns we raise
motivate a need for caution in statistical analysis and interpretation of results. At the present
time, we do not believe network inference should be treated as a routine analysis in
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bioinformatics applications, but rather as an open research area that may, in future, yield
standard experimental and statistical protocols.

Some specific recommendations that arise from the results presented here are:

• A default model. Our results suggest that a reasonable default choice of model for
typical applications uses the standard design matrix with no lagged predictors and a
flat variance function, corresponding to the linear model

(22)

Coupled with the Bayesian variable selection scheme outlined in Section 2.4.1, this
simple model produced empirically consistent network estimators for Cantone
using evenly sampled global perturbation data (Fig. 3).

• Diagnostics and validation. It is clear that network inference does not enjoy general
theoretical guarantees and that the ability to successfully elucidate network
structure depends on details of the specific system under study. Therefore careful
empirical validation on a case-by-case basis is essential. This should include
statistical assessment of model fit, robustness and predictive ability and where
possible systematic validation using independent interventional data.

• Experimental design. We suggest sampling evenly in time as a default choice.
Interventional designs may be helpful to effectively explore larger dynamical phase
spaces. However, to control the burden of experimentally exploring multiple time
points, molecular species, interventions, culture conditions and biological samples,
adaptive designs that prune experiments based on informativeness for the specific
biological setting may be helpful [60].

In conclusion, linear statistical models for networks are closely related to models of cellular
dynamics and can shed light on patterns of biochemical regulation. However, biological
network inference remains profoundly challenging, and in some cases may not be possible
even in principle. Nevertheless, studies aimed at elucidating networks from high-throughput
data are now commonplace and play a prominent role in biology. For this reason there
remains an urgent need for both new methodology and theoretical and empirical
investigation of existing approaches. Furthermore, there remain many open questions in
experimental design and analysis of designed experiments in this setting.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Two published dynamical systems models of cellular processes were used to generate
datasets. Single cell trajectories were generated from an SDDE model (Eqn. 1) and averaged
under measurement noise and nonlongitudinality due to destructive sampling. (a) Data
generated from (a model due to) Cantone et al. [10], describing a synthetic network built in
yeast. (b) Data generated from Swat et al. [54], a theory-driven model of the G1/S transition
in mammalian cells.
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Figure 2.
An empirical comparison of network inference schemes. Simulated experiments based on
published dynamical systems allow benchmarking of performance in terms of area under
ROC curves (AUR; higher scores correspond to better network inference performance).16

(a) Even sampling intervals. (b) Uneven sampling intervals.
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Figure 3.
Investigation of empirical consistency of network estimators, using the Cantone [10] model
with even sampling intervals. Area under ROC curves are shown in the large dataset, zero
cellular heterogeneity and zero measurement noise limits.
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Figure 4.
Variance functions used in literature provide partial approximation to the “true” functional
form for Cantone et al. [10]. For small time steps a power law Δ–α provides a good
approximation, but for larger time steps a constant variance function may be more
appropriate. In practice the precise form of htrue will be unknown.
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Table 1

A nonexhaustive list of network inference schemes rooted in the linear model. The examples from literature
demonstrate the statistical features indicated, but may differ in some aspects of implementation. The symbol
∅ denotes the VAR(q) model which lacks a variance function.

Design matrix B Variance function
h(Δ) ∝

Variable selection Example

Standard Δ – 2 Ridge regression [4] Bansal and di Bernardo, “TSNIB”

Standard with lagged predictors ∅ Group LASSO [7] Bolstad et al.

Quadratic ∅ Conjugate Bayesian with network prior [25] Hill et al.

Standard ∅ Information criteria [29] Kim et al.,

Non-linear (Hill) basis functions 1 AIC with backstepping [35] Li and Chen

Standard 1 Conditional independence tests [36] Li et al. “DELDBN”

Standard ∅ Semi-conjugate Bayesian [42] Morrissey et al.

Standard Δ – 2 SVD and pseudoinverse [44] Nam et al. “LEARNe”

Standard ∅ Multi-stage analytic shrinkage approach [46] Opgen-Rhein and Strimmer

Standard and non-linear with
lagged predictors

∅ Granger causality [63] Zou and Feng
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