Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1979 Jun;30(3):771–776. doi: 10.1128/jvi.30.3.771-776.1979

Program of bacteriophage gh-1 DNA transcription in infected Pseudomonas putida.

J F Jolly
PMCID: PMC353387  PMID: 480467

Abstract

The program of transcription in phage gh-1-infected Pseudomonas putida was examined. It was found that the host P. putida RNA polymerase transcribes early RNA from the L strand of gh-1 DNA during the initial stages of infection. The host RNA polymerase is also undoubtedly responsible for transcription of complementary RNA late in the infectious cycle because complementary RNA was not transcribed when rifampin was added to the infected cell culture. The gh-1-induced RNA polymerase transcribes late RNA from the L strand of gh-1 DNA late in the infectious cycle. The P. putida RNA polymerase transcribed only early RNA from primarily the L strand of gh-1 DNA in vitro when the molar ratio of enzyme to gh-1 DNA was 0.5. When the molar ratio was 50 the P. putida RNA polymerase transcribed RNA from the H strand of gh-1 DNA as well as complementary RNA. Thgh-1 RNA polymerase transcribed only the L strand of gh-1 DNA in vitro but transcribed both early and late RNA.

Full text

PDF
776

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aloni Y., Attardi G. Symmetrical in vivo transcription of mitochondrial DNA in HeLa cells. Proc Natl Acad Sci U S A. 1971 Aug;68(8):1757–1761. doi: 10.1073/pnas.68.8.1757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bovre K., Szybalski W. Patterns of convergent and overlapping transcription within the b2 region of coliphage lambda. Virology. 1969 Aug;38(4):614–626. doi: 10.1016/0042-6822(69)90181-0. [DOI] [PubMed] [Google Scholar]
  3. Brunovskis I., Summers W. C. The process of infection with coliphage 17. VI. A phage gene controlling shutoff of host RNA synthesis. Virology. 1972 Nov;50(2):322–327. doi: 10.1016/0042-6822(72)90383-2. [DOI] [PubMed] [Google Scholar]
  4. Brunovskis I., Summers W. C. The process of infection with coliphage T7. V. Shutoff of host RNA synthesis by an early phage function. Virology. 1971 Jul;45(1):224–231. doi: 10.1016/0042-6822(71)90129-2. [DOI] [PubMed] [Google Scholar]
  5. Chamberlin M., McGrath J., Waskell L. New RNA polymerase from Escherichia coli infected with bacteriophage T7. Nature. 1970 Oct 17;228(5268):227–231. doi: 10.1038/228227a0. [DOI] [PubMed] [Google Scholar]
  6. Colby C., Duesberg P. H. Double-stranded RNA in vaccinia virus infected cells. Nature. 1969 Jun 7;222(5197):940–944. doi: 10.1038/222940a0. [DOI] [PubMed] [Google Scholar]
  7. Dunn J. J., Studier F. W. T7 early RNAs and Escherichia coli ribosomal RNAs are cut from large precursor RNAs in vivo by ribonuclease 3. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3296–3300. doi: 10.1073/pnas.70.12.3296. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dunn J. J., Studier F. W. T7 early RNAs are generated by site-specific cleavages. Proc Natl Acad Sci U S A. 1973 May;70(5):1559–1563. doi: 10.1073/pnas.70.5.1559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hercules K., Schweiger M., Sauerbier W. Cleavage by RNase 3 converts T3 and T7 early precursor RNA into translatable message. Proc Natl Acad Sci U S A. 1974 Mar;71(3):840–844. doi: 10.1073/pnas.71.3.840. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hyman R. W. Physical mapping of T7 messenger RNA. J Mol Biol. 1971 Oct 28;61(2):369–376. doi: 10.1016/0022-2836(71)90386-x. [DOI] [PubMed] [Google Scholar]
  11. Johnson J. C., DeBacker M., Boezi J. A. Deoxyribonucleic acid-dependent ribonucleic acid polymerase of Pseudomonas putida. J Biol Chem. 1971 Mar 10;246(5):1222–1232. [PubMed] [Google Scholar]
  12. Kindler P., Keil T. U., Hofschneider P. H. Isolation and characterization of a ribonuclease 3 deficient mutant of Escherichia coli. Mol Gen Genet. 1973 Oct 16;126(1):53–59. doi: 10.1007/BF00333481. [DOI] [PubMed] [Google Scholar]
  13. Lee L. F., Boezi J. A. Characterization of bacteriophage gh-1 for Pseudomonas putida. J Bacteriol. 1966 Dec;92(6):1821–1827. doi: 10.1128/jb.92.6.1821-1827.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. NYGAARD A. P., HALL B. D. FORMATION AND PROPERTIES OF RNA-DNA COMPLEXES. J Mol Biol. 1964 Jul;9:125–142. doi: 10.1016/s0022-2836(64)80095-4. [DOI] [PubMed] [Google Scholar]
  15. Notani G. W. Regulation of bacteriophage T4 gene expression. J Mol Biol. 1973 Jan 10;73(2):231–249. doi: 10.1016/0022-2836(73)90326-4. [DOI] [PubMed] [Google Scholar]
  16. Siegel R. B., Summers W. C. The process of infection with coliphage T7. 3. Control of phage-specific RNA synthesis in vivo by an early phage gene. J Mol Biol. 1970 Apr 14;49(1):115–123. doi: 10.1016/0022-2836(70)90380-3. [DOI] [PubMed] [Google Scholar]
  17. Towle H. C., Jolly J. F., Boezi J. A. Purification and characterization of bacteriophage gh-I-induced deoxyribonucleic acid-dependent ribonucleic acid polymerase from Pseudomonas putida. J Biol Chem. 1975 Mar 10;250(5):1723–1733. [PubMed] [Google Scholar]
  18. Vogt V. M. Purification and further properties of single-strand-specific nuclease from Aspergillus oryzae. Eur J Biochem. 1973 Feb 15;33(1):192–200. doi: 10.1111/j.1432-1033.1973.tb02669.x. [DOI] [PubMed] [Google Scholar]
  19. Young P. G., Attardi G. Characterization of double-stranded RNA from HeLa cell mitochondria. Biochem Biophys Res Commun. 1975 Aug 18;65(4):1201–1207. doi: 10.1016/s0006-291x(75)80357-3. [DOI] [PubMed] [Google Scholar]
  20. Zillig W., Fujiki H., Blum W., Janeković D., Schweiger M., Rahmsdorf H., Ponta H., Hirsch-Kauffmann M. In vivo and in vitro phosphorylation of DNA-dependent RNA polymerase of Escherichia coli by bacteriophage-T7-induced protein kinase. Proc Natl Acad Sci U S A. 1975 Jul;72(7):2506–2510. doi: 10.1073/pnas.72.7.2506. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES