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ABSTRACT
Objective To identify predictors of nurses’ acceptance of
bar coded medication administration (BCMA).
Design Cross-sectional survey of registered nurses
(N¼83) at an academic pediatric hospital that recently
implemented BCMA.
Methods Surveys assessed seven BCMA-related
perceptions: ease of use; usefulness for the job; social
influence from non-specific others to use BCMA; training;
technical support; usefulness for patient care; and social
influence from patients/families. An all possible subset
regression procedure with five goodness-of-fit indicators
was used to identify which set of perceptions best
predicted BCMA acceptance (intention to use,
satisfaction).
Results Nurses reported a moderate perceived ease
of use and low perceived usefulness of BCMA.
Nurses perceived moderate-or-higher social influence to
use BCMA and had moderately positive perceptions of
BCMA-related training and technical support.
Behavioral intention to use BCMA was high, but
satisfaction was low. Behavioral intention to use was
best predicted by perceived ease of use, perceived social
influence from non-specific others, and perceived
usefulness for patient care (56% of variance explained).
Satisfaction was best predicted by perceived ease of
use, perceived usefulness for patient care, and perceived
social influence from patients/families (76% of variance
explained).
Discussion Variation in and low scores on ease of use
and usefulness are concerning, especially as these
variables often correlate with acceptance, as found in
this study. Predicting acceptance benefited from using
a broad set of perceptions and adapting variables to the
healthcare context.
Conclusion Success with BCMA and other technologies
can benefit from assessing end-user acceptance
and elucidating the factors promoting acceptance and use.

BACKGROUND AND SIGNIFICANCE
The Institute of Medicine estimates an incidence of
one medication error per day for the average
hospitalized patient.1 The medication administra-
tion stage accounts for 26%e32% of all adult
patient medication errors2 3 and up to 60% of
pediatric patient medication errors.4 Medication
administration errors are especially concerning
because they have a very low (0%e2%) chance of
being intercepted before resulting in patient harm,
compared to errors in other stages (eg, 48%e49%
chance of medication ordering errors being inter-
cepted).3 5 Bar coded medication administration
(BCMA) technology is recommended1 6e9 and

increasingly implemented by US hospitals10 as one
way to prevent and intercept medication adminis-
tration errors.11

Several studies report the medication safety
benefits of BCMA,12e14 although these benefits are
not universal.15 16 However, the mere presence of
BCMA or any other health information technology
(IT) is not sufficient to reap its potential safety
benefits: clinicians must also accept and appropri-
ately use available IT.17e20 There is evidence that
BCMA systems are not always favorably perceived
by workers,21 22 are sometimes resisted,23 and are
worked around or used inappropriately.24e30 To
design and implement BCMA systems that clini-
cians will be more likely to accept and use appro-
priately, it is important to understand what shapes
BCMA acceptance and use.

OBJECTIVES
The objective of this study was to model BCMA
acceptance in a sample of registered nurses at
a pediatric hospital that recently implemented
BCMA. Using survey data, we conducted analyses
to identify which combination of perceptions best
predicted BCMA acceptance.
More generally, this study sought to add to the

growing recognition of, and literature on, imple-
mentation science in the context of health IT.20 31e42

Implementation science literature seeks to under-
stand the who, what, when, where, and why of
health IT implementation, as well as the
predictors, moderators, and mediators of health
IT implementation success or failure. Outside of
healthcare, research on technology implementation
can trace its roots to pioneering work on organiza-
tional change,43 44 although current research on
technology implementation has been largely driven
by research on technology acceptance,45e49 and
technology adoption and diffusion.35 50e53 This
study contributes to health IT implementation
science by comparing theory-driven quantitative
models of health IT acceptance.

Modeling acceptance
The study’s overarching conceptual framework
was based on the Technology Acceptance Model
(TAM), a family of theoriesdTAM,46 TAM2,47 and
TAM354dthat posit a causal relationship (a)
between user perceptions of technology and user
acceptance and (b) between acceptance and actual
use. TAM is the most widely used theoretical
framework in the health IT acceptance and use
literature, although no previous work has used
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TAM to study nurses’ BCMA acceptance.31 55 Holden and
Karsh31 reviewed TAM research in healthcare and concluded
that TAM predicts health ITacceptance and use reasonably well
but proposed two important future directions for modeling
health IT acceptance (figure 1):
1. Adding variables to models of health IT acceptance to reflect

new variables added to TAM in the 25 years since its
inception, and

2. Contextualizing variables by modifying model variables to
better match the unique characteristics of the healthcare
setting, its users, and its technologies.
Accordingly, we measured nurses’ perceptions of BCMA using

(a) both the variables from the base TAM as well as additional
theoretically important variables and (b) both generic and
contextualized versions of these variables. We then constructed
two statistical models to identify which combinations of variables
most efficiently predicted BCMA acceptance.

For Model 1, the outcome of acceptance was operationalized
as nurses’ behavioral intention (BI) to use BCMA.46 56 BI is the
measure of acceptance specified in TAM, is conceptually similar
to an individual’s motivation to use technology, and has been
shown to correlate with actual use.57 For Model 2, we used an
alternative measure of acceptance: nurses’ satisfaction (SATISF)
with BCMA. Organizations usually mandate the use of BCMA
and other safety-critical health IT. Technology acceptance
research suggests that when technology use is mandatory,
SATISF may be a better indicator of acceptance than BI.58

SATISF is an overall evaluation or attitude toward BCMA, has
been found to predict actual use, and is a classic conceptuali-
zation of acceptance.59e61

For both models, nine theory-based variables formed the set of
candidate predictors of acceptance: seven perception and two
demographic variables. The first variable was generic perceived
ease of use (PEOU), or ‘the degree to which a person believes
that using a particular system would be free of effort’ (Davis,
p 320).46 The second was generic perceived usefulness (PU), or
‘the degree to which a person believes that using a particular
system would enhance his or her job performance’ (Davis,
p 320).46 These are the two key perceptions predicting accep-
tance in the parsimonious base TAM. We also included several
perception variables reflecting recent research extending the base

TAM.47 48 54 Thus, the third predictor variable was perceived
social influence (SI), or ‘the degree to which an individual
perceives that important others believe he or she should use the
new system’ (Venkatesh et al, p 451).48 The fourth and
fifth variables represented perceived facilitating conditions, or ‘the
degree to which an individual believes that an organizational and
technical infrastructure exists to support use of the system’

(Venkatesh et al, p 453).48 Specifically, these were: perceptions
of BCMA training received (TRAINING) and perceptions of
technical support (SUPPORT). The two remaining perception
variables were generic TAM variables adapted to the healthcare
context. We adapted generic PU, which refers to IT’s usefulness
for the clinician’s job,31 to form a contextualized sixth predictor
variable representing the perceived usefulness of BCMA for
improving patient care (PU-PT). We also adapted generic SI,
which refers to the perceived social influence of non-specific
‘important others,’ to form a contextualized seventh predictor
variable representing the perceived social influence of patients
(or their families) on nurses to use BCMA (SI-PT).62 The eighth
and ninth predictors were two demographic variables found to
influence acceptance in recent TAM research47 48 54 63: age
(AGE) and experience (EXP). All the variables are depicted in
figure 1.
We hypothesized that BCMA acceptance (BI, SATISF) would

be best predicted by a larger set of variables than the two (PEOU
and PU) found in the base TAM and that contextualized vari-
ables (PU-PTand SI-PT) would be better predictors of acceptance
than their generic counterparts (PU and SI).

METHOD
Design and setting
This study was a cross-sectional segment of a larger, longitudinal
study of the impact of BCMA on patient and employee safety.
For this study, data were taken from paper surveys administered
to ‘full time’ ($24 h/week) registered nurses at a 236-bed free-
standing pediatric academic hospital in the Midwest US. Nurses
from three care units were surveyed: a pediatric intensive care
unit; a hematology/oncology/bone marrow transplant unit; and
a medical/surgical unit. The survey was administered in
AugusteNovember 2007, on average 3 months after study units
began using BCMA (Centricity Pharmacy; GE Healthcare,

Figure 1 Study conceptual model and
the specific perception, demographic,
and acceptance variables used to test
it. aIn the technology acceptance
literature, these are predicted to
moderate the perceptionseacceptance
relationship. TAM, Technology
Acceptance Model.
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Wauwatosa, Wisconsin, USA).i Box 1 contains more information
about the hospital, units, participants, and BCMA system.

Procedure
Eligible registered nurses providing direct patient care were
informed about the study and hand-delivered survey packets during
in-services, staff meetings, or shift-change meetings. Each survey
packet was individually labeled with a nurse’s name and a unique

ID; each contained a personalized cover letter, survey, informational
sheet/consent form, stamped reply envelope, and US$5 cash
incentive. Nurses were instructed to complete the survey on their
own time. Reminder postcards were placed in nurse mailboxes after
1 week, followed by a new survey packet 7e10 days thereafter, and
another reminder postcard 7e10 days later. The study was
approved by human subjects/Institutional Review Boards at the
University of WisconsineMadison and at the research hospital.

Instruments
Standard multi-item scales validated in prior studies were used
for PEOU,49 PU,49 SI,64 TRAINING,65 66 and SUPPORT.65 66 BI

Box 1 Information on the study hospital, study units, study participants, and bar coded medication administration (BCMA)
system

Hospital
< Academic, tertiary care, free-standing pediatric community hospital in the Midwest US
< 236 beds; annual patient admission of 12 463 in 2008
< In addition to BCMA, hospital information technologies included computerized provider order entry (CPOE), a pharmacy information

system, and automated medication-dispensing cabinets.

Study units
< Pediatric intensive care unit (PICU). 36 beds. Multi-specialty unit providing critical care to children (ages birth and beyond) and to adults

with unique childhood diseases, managing a spectrum of medical and surgical diseases including trauma, burns, and solid organ
transplants.

< Hematology/oncology/transplant (HOT) unit. 24 beds. Inpatient services provided to patients (ages infant to 18) with hematologic and
oncologic diseases before and after bone marrow transplants.

< Medical/surgical (MED) unit. 48 beds. Acute care provided to a mixed population of patients (ages infant to 18) with pre- and post-
surgery and medical needs.

Study participants
< 83 Registered nurses reporting working $24 h/week
< 97% Female; 95% white, non-Hispanic; 90% completed at least college education
< 41% Aged 18e29, 24% aged 30e39, 22% aged 40e49, 11% aged 50e59, 1% aged 60+
< Mean of 33.5 h worked per week (SD 6.0, range 24e42)
< 44% Day shift, 29% night shift, 11% weekends, 10% evening, 6% floating or other
< Mean of 10.8 years in occupation (SD 10.4), 8.6 years with employer (SD 8.4), 8.0 years in job (SD 8.1), 7.7 years in unit (SD 7.8).

BCMA system
< Hospital’s stated objectives of implementing BCMA: To improve patient safety by assuring that the correct medication (including

pertinent attributes) is administered to the correct patient.
< Software: Centricity Pharmacy (GE Healthcare). Software functionality included an overview of scheduled medications, an overview of

previously administered medications, verification of the five rights of medication administration and alerts for discrepancies, alerts for
late medications, medication-related documentation, and verification of employee/login. The electronic medication administration record
(eMAR) used by the BCMA system was embedded in and modifiable through the Pharmacy Information System.

< Hardware: PICU and HOT used a 4600G handheld gun for scanning. These devices were ‘dumb’ reader input devices interfaced with
Centricity Pharmacy software. In the PICU the scanning device was attached to a computer-on-wheels and in the HOT unit to a tabletop
computer. The MED unit used standalone handheld PDA-style scanners (Symbol Pocket PC model mc 5040) loaded with the software.
These PDA-style scanners were also available to other units but were not observed to be used in HOT and were infrequently used in
PICU.

< Clinical tasks supported: Planning of medication administration, verification of the ‘5 rights’ (right drug, right dose, right patient, right
form, right route) and of the right user, documentation of medication administration, and documentation of medication related tasks such
as monitoring of blood glucose levels.

< Non-clinical tasks supported: Regulatory compliance for documenting controlled substances, administrative oversight of medication
policy compliance, and to a lesser degree inventory management (following the study, the hospital also began using the system for
charge capture).

< Intended end users: Primarily bedside registered nurses (RNs). Nurse interns could use the system but could not sign off on medication
administration. Physicians used the BCMA system’s eMAR to view an overview of the medications.

< Implementation timeline and end-user training: Roll-out commenced in the HOT unit in December 2006, and over the next 6 months was
implemented first in the MED unit and then in the PICU. Nurses were trained on the system during in-services. Additionally, some nurses
were trained to be super users in order to serve as just-in-time expert assistants on the units.

iSystem implementation was staggered but for practical purposes data collection
was not. The post-BCMA time period is thus an average of the length of time that
the study units were using BCMA at the time of the survey.
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was measured with two items from Venkatesh and Morris67 and
two items created for the study. The more contextualized PU-
PT, SI-PT, and SATISF scales were newly created for the study
based on research literature. Frequent prompts in the survey
asked nurses to think of ‘the past 30 days’ when responding.
Responses were on a numbered seven-point scale ranging from
0 to 6, with the response category labels ‘not at all,’ ‘a little,’
‘some,’ ‘a moderate amount,’ ‘pretty much,’ ‘quite a lot,’ and
‘a great deal,’ as well as an option to mark ‘don’t know.’ AGE
was self-reported within five categories (20e29, 30e39,. 60+).
EXP was measured as nurses’ self-reported job tenure, in years
and months.

All survey items underwent extensive evaluation procedures,68 69

including cognitive interviewing70 with 16 non-study nurses. The
scales’ psychometric properties are reported in table 1. Compo-
nent items are reported in the Results section.

Analysis
Scales were constructed by taking the mean (floating denomi-
nator) of all valid individual item responses.

We used an all possible subset regression procedure to investigate
the optimal subset of predictors (regressors) for BI (Model 1) and
SATISF (Model 2). Candidate predictors were PEOU, PU, SI,
TRAINING, SUPPORT, PU-PT, SI-PT, AGE, and EXP.ii Models of
every combination of predictors were then assessed using five
goodness-of-fit measures: (1) R2; (2) root mean square error
(RMSE); (3) Mallow’s Cp statistic; (4) Akaike information crite-
rion (AIC); and (5) Bayesian information criterion (BIC). The
optimal model was considered when higher R2 values were asso-
ciated with low RMSE, low AIC and BIC, and a Mallow’s Cp less
than the number of predictors plus 1. Various model comparisons
were then conducted based on these five fit measures.

We used Stata (StataCorp, LP) for analyses. An a priori
a criterion of 0.05 was used and 95% CIs were calculated around
parameter estimates.

RESULTS
Ninety-four of 202 nurses (46.5%) returned a survey. Eleven
nurses were excluded from final analysis because they
reported working <24 h/week, yielding an analyzed data set
of N¼83.

Nurses’ perceptions of BCMA
Table 2 reports nurse respondents’ mean scores on the seven
BCMA perception scales as well as response frequencies for
individual scale items. Perception scores were positively corre-
lated with one another (all p’s <0.05).

Overall, nurses rated the BCMA system as moderately easy to
use (PEOU, mean 2.80, SD 1.17). Thirty percent reported that
BCMA was ‘not at all’ or only ‘a little’ easy to use and 31%
perceived that using BCMA required ‘quite a lot’ of mental effort
or more.

Nurses rated BCMA as only somewhat useful for improving
either personal job performance (PU, mean 1.82, SD 1.45) or
patient care (PU-PT, mean 1.92, SD 1.46). Over 20% perceived
that BCMA did ‘not at all’ improve job performance and was
‘not at all’ useful in their job; even larger proportions of nurses

did not perceive BCMA at all improving productivity or effec-
tiveness. Over half the nurses perceived that BCMA did ‘not at
all’make patient care easier, although 55% perceived that BCMA
reduced the likelihood of medication error ‘a moderate amount’
or more.
Nurses reported high social influence from non-specific ‘others’

(SI, mean 4.09, SD 1.66) and moderate-or-higher social influence
from patients/families (SI-PT, mean 3.35, SD 1.54). In response
to the question, ‘To what extent do people who influence your
behavior think that you should use the bar coding system?’ 58%
responded ‘quite a lot’ or ‘a great deal.’ Although 75% reported
that patients or their families perceived ‘a moderate amount’ or
more that BCMA is good for quality patient care, 26% perceived
that patients or their families appreciated being scanned before
medication administration ‘a little’ or ‘not at all.’

Perceptions of training (TRAINING, mean 2.77, SD 1.26) and
technical support (SUPPORT, mean 3.11, SD 1.43) were centered
about the midpoint. Nurses’ perceptions of the timing of
training were more favorable; perceptions of the completeness of
training were less favorable.

Nurses’ acceptance of BCMA
Table 3 reports mean scores and response frequencies for ques-
tions about BCMA acceptance. BI and SATISF were positively
correlated (r¼0.81, p<0.05).
Intention to use BCMAwas relatively high (BI, mean 3.80, SD

1.22). However, 28% reported that if it were up to them, they
would not use BCMA at all, suggesting that when alternatives
(eg, workarounds) are available, nurses might not use BCMA.
Satisfaction with BCMAwas low (SATISF, mean 2.00, SD 1.47).
Over a third of respondents reported that they would not
recommend the BCMA system to a friend at another hospital and
70% reported ‘a moderate amount’ or more dissatisfaction with
BCMA (100% reported being at least somewhat dissatisfied).

Models predicting BCMA acceptance
Figure 2 depicts the best subset of predictors of BI and SATISF.
BI was best predicted by a combination of PEOU, SI, and PU-PT
(adjusted R2¼0.5660.14; AIC 183.9; BIC 193.1). A model
replacing PU-PTwith generic PU provided a worse fit (adjusted
R2¼0.5260.15; AIC 191.5; BIC 200.8), confirming the benefit of
using the contextualized PU-PT.
SATISF was best predicted by a combination of PEOU, PU-PT,

and SI-PT (adjusted R2¼0.7660.09; AIC 165.0; BIC 174.2). A
model replacing PU-PTwith generic PU and replacing SI-PTwith

Table 1 Psychometric properties of survey scales

Scale
Cronbach’s a (optimal
value >0.70)

Composite
reliability (optimal
value >0.70)

Average variance
extracted (optimal
value >0.50)

PEOU 0.793 0.810 0.528

PU 0.927 0.927 0.765

SI 0.772 0.804 0.681

TRAINING 0.900 0.901 0.699

SUPPORT 0.832 0.837 0.722

PU-PT* 0.903 0.911 0.735

SI-PT* 0.897 0.904 0.706

BI 0.733 0.554 0.256

SATISF* 0.912 0.913 0.724

*Scales newly created for the study.
BI, behavioral intention to use; PEOU, perceived ease of use; PU, perceived usefulness,
generic; PU-PT, perceived usefulness for patient care; SATISF, satisfaction; SI, perceived
social influence, generic; SI-PT, perceived social influence from patient/family; SUPPORT,
perceptions of technical support; TRAINING, perceptions of training received.

iiThe treatment of age and experience as direct predictors of acceptance differs from
recent literature in which age, experience, gender, and voluntariness of use moderate
the relationship between perceptions and acceptance. Gender and voluntariness of
use were not modeled because there was very little variation on those variables in
the sample.
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generic SI provided a worse fit (adjusted R2¼0.6960.11; AIC
185.6; BIC 194.8).

DISCUSSION
Nurses’ BCMA-related perceptions explained 56%e76% of vari-
ance in nurses’ BCMA acceptance (BI, SATISF). This finding is
important because acceptance has been shown in other studies to
predict the volume and nature of actual IT use as well as perfor-

mance with IT.48 60 61 71 In fact, there is more evidence for the
relationship between acceptance and IT use than there is for the
relationship between IT system quality and use.72 The health IT
literature abounds with case studies of unfavorable perceptions of
health IT linked to non-use (overrides, workarounds, feature non-
use), resistance, and even abandonment.36 73e79 There is also
emerging quantitative evidence linking perceptions to health IT
use.31 All of this promotes the need to properly measure,

Table 2 Nurses’ mean scores on perception scales and response frequencies for individual scale items

Mean (SD)

Response frequencies (%) on 0e6 scale*

0
Not at all

1
A little

2
Some

3
Moderate amount

4
Pretty much

5
Quite a lot

6
A great deal

Perceived ease of use (PEOU) (N¼82) 2.80 (1.17)

Clear and understandable 5 5 11 19 24 26 10

Easy to use 7 23 15 23 22 10 0

Requires a lot of mental efforty 1 8 21 21 18 26 5

Easy to get it to do what I want 10 19 32 17 17 2 2

Perceived usefulness, generic (PU) (N¼82) 1.82 (1.45)

Improves job performance 21 15 24 19 10 5 6

Increases productivity 55 15 12 9 9 0 0

Enhances effectiveness in job 33 15 25 14 6 5 2

Useful in job 21 12 18 22 15 7 4

Perceived social influence, generic (SI) (N¼75) 4.09 (1.66)

People who influence my behavior want me to use system 3 7 13 5 15 23 35

People who are important to me want me to use system 4 11 10 14 14 20 27

Perceptions of BCMA training (TRAINING) (N¼83) 2.77 (1.26)

Amount received 1 18 26 29 12 11 2

Usefulness of training 5 19 25 22 19 8 1

Completeness of training 5 16 32 17 17 10 4

How well timed was training 7 11 18 18 31 11 4

Perceptions of technical support (SUPPORT) (N¼74) 3.11 (1.43)

Quickness of response 4 14 23 23 17 12 6

Support staff helpfulness 1 12 15 31 12 21 7

Perceived usefulness for patient care (PU-PT) (N¼82) 1.92 (1.46)

Improves patient care 15 23 18 11 10 14 8

Reduces likelihood of medication error 11 22 11 19 12 14 10

Facilitates better patient care decision making 39 24 15 10 9 1 2

Makes caring for patients easier 51 19 15 10 4 1 0

Perceived social influence from patient/family (SI-PT) (N¼75) 3.35 (1.54)

Patients/families like system 1 10 18 19 27 19 4

Patients/families believe system reduces
chances of medication errors

4 10 12 13 20 25 16

Patients/families believe system is good for
quality patient care

1 12 12 14 26 22 13

Patients/families appreciate being scanned
before medication administration

15 11 17 18 10 22 7

*Calculated as the proportion of valid responses.
yItem reverse-scaled for scale construction.

Table 3 Nurses’ mean scores on acceptance scales and response frequencies for individual scale items

Mean (SD)

Response frequencies (%) on 0e6 scale*

0
Not at all

1
A little

2
Some

3
Moderate amount

4
Pretty much

5
Quite a lot

6
A great deal

Behavioral intention to use system (BI) (N¼83) 3.80 (1.22)

Intend to use system, if I have access 1 0 1 5 4 24 65

Predict I will use system, if I have access 2 0 5 2 2 34 54

Would want to use system, if it were up to me 28 14 14 10 11 14 8

Want to use system 26 16 18 14 10 7 8

Satisfaction with system (SATISF) (N¼83) 2.00 (1.47)

Satisfied with system 17 14 19 20 18 11 0

Prefer system to prior process 35 22 17 11 7 6 2

Dissatisfied with systemy 0 8 22 22 12 13 23

Would recommend to a friend at another hospital 37 16 19 13 7 6 1

*Calculated as the proportion of valid responses.
yItem reverse-scaled for scale construction.
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understand, and proactively shape clinical users’ perceptions of
health IT.

Nurses’ perceptions of BCMA’s ease of use (PEOU) and
usefulness (PU, PU-PT) varied, with many nurses rating BCMA
unfavorably on those dimensions. Variation in these ratings was
associated with variation in BI and SATISF. Together with other
recent BCMA research, this finding suggests that BCMA
systems can be difficult to use for some and the costs of use may
not be justified by BCMA’s incremental benefit, resulting in
a lack of acceptance, workarounds, and suboptimal use.21 24 25 28

Consequently, the improved usability of BCMA systems,
achieved using appropriate usability methods,80e85 should be
a top priority.86 Social influence from non-specific others (SI) and
patients/families (SI-PT) were both rated highly and were
significantly associated with BI and SATISF, respectively. One
way to interpret this is that administrators, supervisors, and
colleagues can influence nurses’ BCMA use behavior (BI) but not
their personal evaluation of BCMA (SATISF), whereas the
reverse is true with patients and their families. More research is
needed to understand specifically who influences nurses’ and
other clinicians’ acceptance and use of health IT, by what means,
and with how much success.87

As hypothesized, there was a benefit to adding variables to the
base TAM, which was first developed in the mid-1980s based on
the psychological Theory of Reasoned Action,88 and has been

refined and expanded with new variables over the past quarter-
century. However, social influence (SI, SI-PT) was the only added
variable retained in the final models. Nevertheless, facilitating
conditions (TRAINING, SUPPORT) and demographic variables
(AGE, EXP) may still be important predictors in other contexts, as
shown by recent technology acceptance studies with physicians
using health IT such as electronic health records (EHRs).20 63 It is
also possible that the impact of TRAINING and SUPPORT is
indirect, mediated through PEOU and/or PU-PT. A third possi-
bility is that the added variables used in this study were poorly
contextualized and for that reason failed to predict acceptance: for
example, informal ‘over-the-shoulder learning’ from colleagues
may be a better predictor of acceptance than formal training.87

Our hypothesis about the benefit of contextualizing variables
was largely confirmed in that the contextualized PU-PT was
a better predictor of acceptance than the generic PU. The
contextualized SI-PTwas also a better predictor of SATISF than
the generic SI. These findings motivate continued use of our
contextualized measures of perceived usefulness and social
influence. More work is needed to contextualize additional TAM
variables such as PEOU and to identify additional contextuali-
zations of PU and SI.
Overall, the proportions of variance explained in BI (56%) and

SATISF (76%) were high and compare favorably with what is
typically reported in the general TAM (30%e40%) and health-
care TAM (40%e70%) literatures.31 While BI is the standard
acceptance measure in TAM, its use in mandatory settings bears
further reflection. At the study hospital, BCMA use was
expected by policy (indeed, nurses gave a mean response of 5.5
on the 0e6 scale in answer to the question, ‘To what extent is
the decision to use the bar coding system beyond your control?’iii).
The BI questions about anticipated future use yielded little
variability, whereas responses about wanting to use the system
in the future were more variable. Thus, nurses might have
intended to use BCMA in the future without necessarily
accepting it, making it important to measure SATISF as an
indicator of acceptance.58 It is possible that nurses who are not
satisfied with BCMA would report intending to use BCMA in
the future but in actual practice might end up working around
the system when they do not have to or might use BCMA only
as much as needed to be compliant with policy and no more.
Further work is needed to assess the relationship between BI,
SATISF, and actual use or workarounds.

Limitations and future directions.
The results of the study may not generalize beyond the nurses at
this particular hospital, and our results may not generalize
beyond this particular vendor ’s BCMA. However, our results are
generally consistent with a large body of TAM literature. Simi-
larly, more important than generalization is the incremental
development of theory, which can be tested across multiple
settings. Given a <50% response rate and some missing values,
findings may have been affected by survey and item non-
response bias. Partly due to non-response, we suffered from
having a sample size not large enough to permit modeling
moderators or factors that predict perceptions. Some newly
constructed scales were used but all had strong psychometric
properties (table 1). The previously validated BI scale had less
than desirable properties and appeared to mix predictions of
behavior with motivation for behavior, as reflected in response

Figure 2 Fit indices and unstandardized parameter estimates from best
subset regression models. *p#0.05; **p#0.01. AIC, Akaike information
criterion; BCMA, bar coded medication administration; BIC, Bayesian
information criterion; Cp, Mallow’s Cp statistic; RMSE, root mean square
error.

iiiThis question was one of many asked on the full survey but not used in the present
study’s modeling analyses.
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distributions (table 3). As removing any one item from the BI
scale resulted in worse internal consistency, we did not modify
the scale, but urge improved conceptualization and measure-
ment of BI in healthcare settings. We also may have failed to
contextualize the variables appropriately and the contextuali-
zation of variables in this study may not apply to other
clinicians, health IT, or healthcare settings. Our design was
cross-sectional but the perceptions predicting acceptance may
change over time,47 as one recent study of intensive care nurses’
acceptance of EHRs found.89 Finally, we did not model actual
use. This was intentional because use in this hospital was
mandatory. However, future research on health IT in mandatory
environments might consider modeling ‘effective use,’ ‘work-
arounds,’ or ‘depth of use’ as alternatives to typical use metrics
such as ‘duration of use’ or ‘number of times used.’

CONCLUSION
Perceptions are more than the personal opinions or preferences
of individuals: they are the building blocks of human
behavior.88 90e92 By measuring nurses’ perceptions related to
BCMA, we were able to explain nurses’ acceptance of BCMA,
which is an antecedent to behavior. BCMA use behavior is of
great importance in light of accumulating evidence that nurses
override or work around BCMA even when policies are in place
mandating BCMA use. This study, then, has important impli-
cations for health IT researchers and healthcare administrators/
managers in charge of health IT implementation and improve-
ment.

First, the findings support the need to contextualize models of
technology acceptance or for that matter any other generic
model or theory developed outside of healthcare. This is a key
contribution as our results do not validate that the basic TAM
model is best. Instead, in most cases a contextualized version is
better. Specific methods such as belief elicitation interviews31 93

and literature-based methods94 are available to achieve contex-
tualization. Contextualization also provides more specific
strategies for designers, and the more contextualized, perhaps
the better. Contextualization might need to address the target
clinicians, the type of health IT, and the purpose for using the
health IT. Our contextualization of PU to patient care shows
that generically trying to improve nurse performance with
BCMA will not be sufficient to improve acceptance; rather
designers should focus on ensuring BCMA supports nurses’
abilities to provide patient care. That is a different target than,
for example, improving efficiency. An even more contextualized
PU variable, perhaps one focused on medication management,
might yield even more insight. Second, future research should
attempt to improve on existing health IT TAM models in at
least two ways: (1) by determining the predictors of PEOU and
PU and (2) by determining the mediators of and moderators
between predictors and acceptance. Variables that predict PEOU
and PU should provide even more precise design guidance for
developers. Mediators and moderators will be important for
those in charge of managing implementations.

Modeling health IT acceptance should not be a solely
academic pursuit. Results of empirical studies, such as the
current one, have direct implications for actual implementa-
tions.40 In this case, the results suggest making BCMA easy to
use, which is a recommendation for better design and usability
testing, making BCMA useful for nursing work and patient care,
and conveying to clinicians that key stakeholders promote their
BCMA use for legitimate reasons.
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