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ABSTRACT

Background HIV-1-infected individuals with higher viral
set points progress to AIDS more rapidly than those with
lower set points. Predicting viral set point early following
infection can contribute to our understanding of early
control of HIV-1 replication, to predicting long-term
clinical outcomes, and to the choice of optimal
therapeutic regimens.

Methods In a longitudinal study of 10 untreated HIV-1-
infected patients, we used gene expression profiling of
peripheral blood mononuclear cells to identify
transcriptional networks for viral set point prediction. At
each sampling time, a statistical analysis inferred the
optimal transcriptional network that best predicted viral
set point. We then assessed the accuracy of this
transcriptional model by predicting viral set point in an
independent cohort of 10 untreated HIV-1-infected
patients from Malawi.

Results The gene network inferred at time of enroliment
predicted viral set point 24 weeks later in the
independent Malawian cohort with an accuracy of
87.5%. As expected, the predictive accuracy of the
networks inferred at later time points was even greater,
exceeding 90% after week 4. The composition of the
inferred networks was largely conserved between time
points. The 12 genes comprising this dynamic signature
of viral set point implicated the involvement of two major
canonical pathways: interferon signaling (p<0.0003) and
membrane fraction (p<<0.02). A silico knockout study
showed that HLA-DRB1 and C4BPA may contribute to
restricting HIV-1 replication.

Conclusions Longitudinal gene expression profiling of
peripheral blood mononuclear cells from patients with
acute HIV-1 infection can be used to create
transcriptional network models to early predict viral set
point with a high degree of accuracy.

INTRODUCTION
The best established parameter for predicting the rate
of clinical progression in HIV-1-infected individuals is
the set point plasma virus RNA level,' usually called
viral set point. By a few weeks after infection, peak
virus replication is reached in most infected patients.
As immune responses are mobilized, partial
containment of HIV-1 occurs and a steady-state level
of virus replication is reached. This viral set point is
associated with the rate of disease progression.’ A
high viral set point is associated with rapid disease
progression, while a lower viral set point is associated
with slower disease progression.

A delineation of the mechanisms that contr-
ibute to establishing the set point virus load in
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HIV-1-infected individuals would add important
information to our understanding of how HIV-1
replication is contained. Studies in HIV-1-infected
humans and simian immunodeficiency virus (SIV)-
infected rhesus monkeys have implicated virus-
specific CD8* cytotoxic T lymphocytes in the early
control of AIDS virus replication.’ * Genome-wide
association studies have underscored the impor-
tance of this cellular immune response in early
HIV-1 control through demonstrating the contri-
bution of MHC genes in determining viral set
point.” ® However, this genome-wide association
studies work also suggests that other as yet unde-
fined factors also contribute to early HIV-1 control.

The set point plasma HIV-1 RNA level can
provide a useful clinical tool for determining the
timing for initiating anti-retroviral therapy for
infected individuals. For example, patients having
high set point values can be started on aggressive
anti-retroviral therapy and patients having low set
point values can be monitored without initiating
therapy. However, if an acutely-infected patient
presents to a physician before set point virus
replication is reached, the appropriate therapy for
an infected individual can be difficult to determine.
Therefore, a means of predicting set point plasma
virus RNA levels in a recently infected patient
would provide a useful tool for establishing
a treatment strategy for that individual.

RNA  microarray technology provides both
a powerful tool for exploring mechanisms under-
lying biologic phenomena and a means of catego-
rizing those phenomena into groups with differing
clinical outcomes.” Therefore, the whole blood
RNA transcriptional profile of individuals during
the period of acute HIV-1 infection may provide
a gene expression signature that may be associated
with particular clinical sequelae. The present study
was done to determine computationally whether
the expression of a limited network of genes by
peripheral blood mononuclear cells sampled from
HIV-1-infected individuals early after exposure to
the virus can predict viral set point.

RESULTS

Transcriptional network predictors of viral set point
Viral set point predictors were developed from the
longitudinal gene expression data from the first
cohort of untreated, acutely HIV-1-infected individ-
uals. We collected the peripheral blood mononuclear
cells of the patients during a course of 24 weeks:
enrollment, weeks 1, 2, 4, 12, and 24. At each time
point, we used a multivariate statistical analysis,
known as Bayesian networks, to infer a transcrip-
tional network comprised of viral load and
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transcripts, and then identified the dependency pattern between
the network and viral set point. Figure 1 shows the inferred
networks at each time, where an arrow represents the target
node’s dependency on its source node. The network models were
used to predict viral set point by substituting the viral load and
the expression levels of the genes in the networks. Table 1 reports
the predicted viral set points of individual patients obtained from
leave-one-out cross-validation calculations. Table 2 summarizes
the predictive accuracy, and shows that the transcriptional
network models can achieve at least 90% accuracy.

In addition to this leave-one-out cross-validation, we applied
the network models to predict viral set points of an independent
Malawian cohort. Table 1 reports the predicted viral set points of
individual subjects, and table 2 presents the predictive accuracy
at specified times. The independent validation achieves 87.5%
predictive accuracy in the early weeks and over 90% accuracy in
the later weeks following infection.

Signature genes of transcriptional network predictor
Table 3 lists the signature genes associated with the set point
viral load prediction at specified times. There were only a small

Figure 1  The transcriptional networks
inferred from the mRNA or viral load

A

number of genes that, in association with viral load, predicted
the set point viral load. There are more signature genes at early
times following the infection, (from enrollment to week 2) than
from week 4 to week 24. Therefore, in the early weeks following
infection, when viral load was a less dominant predictor of set
point, we need to take into account more transcripts interacting
with virus to achieve an accurate prediction of set point viral
load.

There are 12 genes in these networks (C4BPA, CCNB2,
CYP1B1, HLA-DRBI1, IFI27, IFIT1, LOC649210, MMP9, OAST,
OSBP2, OTOE, TYMS), 6 of which (C4BPA, HLA-DRB1, IFI27,
MMP9, OSBP2, TYMS) are repeated. For example, C4BPA
appears 3 times (weeks 1, 2, and 12). The pathway analyses
performed using DAVID Bioinformatics Resources® and Inge-
nuity Pathways Analysis (Ingenuity® Systems, http://www.
ingenuity.com) shows that the association with interferon
signaling (p<0.0003) and the membrane fraction (p<0.02) is
over-represented in this collection of signature genes. Further-
more, 9 of the 12 signature genes (C4BPA, CCNB2, CYP1B1,
HLA-DRB1, IFI27, IFIT1, MMP9, OAS1, TYMS) are related to
each other through 4 hubs: hydrogen peroxide, IENG, TGFB1,

B

data for predicting viral set point. An
arrow indicates that the source node
regulates its target node. The

transcriptional networks suggest how
gene products and viral replication may
interact to modulate viral set point.
Each network can further serve as

a predictive model for determining viral
set point: the viral set point can be
determined by substituting the
expression levels of the signature genes
and viral load into the network model.
The panels present the networks at
different times: (A) enrollment, (B)
week 1, (C) week 2, (D) week 4, (E)
week 12, (F) week 24, and (G) using
only viral load measurements.
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Table 1
independent test

Predicted viral set points at individual times of the leave-one-out cross-validation and the

Leave-one-out cross-validation

Measured viral

Enrol. Week 1 Week 2 Week 4 Week 12 Week 24 set point
Subject A NA 4.35 4.92 478 4.76 5.01 4.92
Subject B 4.38 NA NA 4.47 4.23 4.31 4.12
Subject C 3.76 3.97 NA NA 3.44 3.62 3.56
Subject D 4.94 4.88 4.93 4.99 4.83 5.13 5.12
Subject E 4.82 4.68 NA NA 4.94 NA 4.66
Subject F 5.06 5.16 4.82 5.10 5.04 471 5.20
Subject G 4.05 4.54 4.72 413 4.40 3.99 3.96
Subject H 5.01 5.15 5.04 497 492 5.35 5.19
Subject | 4.89 5.06 5.22 5.03 5.17 5.1 5.34
Subject J 4.01 NA NA 4.26 4.14 NA 3.82

Independent validation on Malawian data Measured viral

Enrol. Week 1 Week 2 Week 4 Week 12 Week 24 set point
Subject 1 3.06 3.70 NA NA NA 4.28 3.79
Subject 2 3.69 NA NA 3.49 3.47 4.00 3.51
Subject 3 3.92 NA 4.14 4.06 3.67 4.53 4.51
Subject 4 4.30 451 4.36 3.71 473 4.89 497
Subject 5 4.82 4.93 4.70 5.08 NA 4m 5.43
Subject 6 4.12 4.13 3.95 4.02 3.62 4.32 3.67
Subject 7 5.06 5.50 4.97 5.78 5.15 5.50 5.76
Subject 8 NA NA NA NA 3.92 NA 4.30
Subject 9 NA 3.79 NA 3.83 3.84 NA 3.42
Subject 10 2.29 3.43 NA NA NA NA 2.19

Note: The not available entries are due to lack of quality RNA samples for gene expression assessment.

and TNF (figure 2). The crucial mechanisms associated with
these genes are cell-cell signaling and interaction (p<0.001), cell
cycle (p<0.001), molecular transport (p<0.001), immune cell
trafficking (p<0.001), and hematological system development
and function (p<0.01).

In silico knockout study

The viral set point predictors allowed us to conduct a compu-
tational knockout study. Knocking out a gene was computa-
tionally equivalent to setting the expression level of the gene to
zero in the model. We knocked out a signature gene at a time,
and then predicted viral set point. Figure 3 illustrates that the
results, where each curve depicts the distribution of predicted
viral set points when the corresponding gene was eliminated.
When the predicted viral set point is greater than the actual
value, it implies that the gene knockout inhibits HIV-1 replica-
tion; similarly, the predicted viral set point smaller than the
actual value indicates that the gene knockout promotes HIV-1
replication. The results at early times (ie, enrollment and week
1) show that HLA-DRB1 and C4BPA are able to decrease HIV

viremia; this finding is consistent with the ability of HLA genes
910

Comparison between transcriptional network and viral load
alone models

A viral load measurement correlated with viral set point with
increasing accuracy, as the time of that measurement began to
approximate the time of the steady-state level of viral replication
in an individual.'* We created a univariate regression model that
uses viral load alone to predict set point. A graphical represen-
tation of the regression model in which viral load is the single
variable determining viral set point is shown in figure 1G.
Table 2 also reports the predictive accuracy for viral set point
generated using the regression models. At early times following
infection (ie, enrollment, and weeks 1 and 2), the transcriptional
network models predicted set point with 5% greater accuracy
than the viral load alone model (p<0.05). As expected, when the
time following infection more closely approximated chronic
infection (weeks 4, 12, and 24), the predictive accuracy of the
two types of models were comparable.

Comparison between transcriptional network and correlating
predictors
We further contrast our transcriptional network with correlating

to restrict AIDS progression. predictors.  Correlating  predictors, or correlation-based
Table 2 Accuracy of viral set point prediction in terms of normalized root-mean-square-error

Leave-one-out cross-validation

Enrol. Week 1 Week 2 Week 4 Week 12 Week 24
Transcriptional network model 95.54% 94.01% 93.96% 94.91% 94.97% 96.84%
Viral load alone prediction 88.43% 89.45% 87.14% 93.73% 93.62% 94.37%

Independent validation on Malawian data

Enrol. Week 1 Week 2 Week 4 Week 12 Week 24
Transcriptional network model 88.56% 84.86% 88.92% 90.99% 91.75% 90.71%
Viral load alone prediction 83.63% 78.26% 84.09% 86.79% 89.97% 91.58%
J Am Med Inform Assoc 2012;19:1103-1109. doi:10.1136/amiajnl-2012-000867 1105
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Table 3 The signature genes in the transcriptional network models

Enrol. Week 1 Week 2 Week 4 Week 12 Week 24
HLA-DRB1 C4BPA C4BPA 0SBP2 C4BPA CCNB2
IF127 IFIT1 CYP1B1 IFI27
L0C649210 MMP9 HLA-DRB1 0AS1
MMP9 TYMS 0SBP2 TYMS
OTOF

There are 19 represented genes, 12 of which are unique. Six of the 12 genes are repeated
(shown in boldface).

predictors, are conventional techniques to search for the best
transcripts whose expression levels statistically significantly
correlate with continuous outcomes and are able to predict the
outcomes. We used a statistical package in Matlab (MathWorks,
Natick, Massachusetts, USA) to find the correlating transcripts
of viral set point at each time. The results are summarized in
table 4. We noted that only three transcripts (IF127, HLA-DRB5,
MMP9) were selected for viral set point prediction. However, the
correlating predictors have worse predictive accuracy than
transcriptional network model (p<0.005).

DISCUSSION
Various strategies for predicting viral set point in HIV-
1-infected humans and SIV-infected- or simian HIV (SHIV)-

Figure 2 Regulatory relationships
among the signature genes. The names
of the nine signature genes are shown
in bold. The signature genes are
compactly related to each other through
4 hubs: hydrogen peroxide, IFNG,
TGFB1 and TNF.
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shown to predict the post-challenge set point plasma virus
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The early containment of an AIDS virus infection is mediated
to a significant extent by CD8" cytotoxic T lymphocytes. This
has been shown most dramatically in SIV-infected rhesus
monkeys, when depletion of CD8" lymphocytes by infusion of
a monoclonal anti-CD8 antibody eliminates early virus
containment, and animals die before they reach a set point level
of virus replication.'* It is therefore likely that many of the
signature gene transcripts are expressed in CD8* T lymphocytes
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A number of the 12 transcripts associated with viral control in
the present study have been implicated in HIV-1 human inter-
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Figure 3 In Silico Knockout Study. Each curve depicts the distribution of predicted viral set points when the corresponding gene was eliminated.

When the predicted viral set point becomes greater (smaller) than the actual value, it implies that the gene knock-out inhibits (promotes) HIV

replication. (A) Training data; (B) Independent test data.

vitro."”"" Some have been reported to interact directly with
HIV-1 proteins: CCNB2 interacts with HIV-1 Vpr in the
induction of cell cycle arrest; the expression of IFI27, MMP9 and
OAS1 are upregulated by Tat.'® 72 The group of transcripts
also includes interferon inducible genes with well documented
antiviral activity: IFI27, TFIT1 and OAS1."~" Interestingly,
HLA-DRB1**1303 has been associated with decreased virus load
as well as strong, polyfunctional mucosal CD4* T cell responses
in HIV-1-infected individuals.?! ?* Other of these transcripts

J Am Med Inform Assoc 2012;19:1103-1109. doi:10.1136/amiajnl-2012-000867

have not previously been associated with HIV-1 biology or
infections, and two have no previously reported functions.

A microarray assay focused on the signature transcripts
defined in this study might be used in a clinical setting. Rather
than employing an array that monitors 44 000 gene transcripts
like the one used in this study, a microarray assay focused on the
limited number of signature genes defined in the present study
could be devised. Such an assay might then be used in associa-
tion with other clinical data to determine whether a newly
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Table 4 Correlating predictors and their predictive accuracy

Enrol. Week 1 Week 2 Week 4 Week 12 Week 24
Best predictive transcript IF127 HLA-DRB5 MMP9 HLA-DRB5 HLA-DRB5 IF127
Leave-one-out cross-validation 85.69% 52.28% 53.59% 65.26% 49.88% 70.76%
Independent validation 79.80% 41.12% 51.45% 35.80% 40.31% 59.61%

diagnosed HIV-1-infected patient should receive immediate
treatment or monitored until the progression of disease warrants
instituting treatment.

MATERIALS AND METHODS

Patient information

A cohort of 10 acute HIV-1-infected patients was enrolled from
2 USA and 6 African sites. In this cohort, there are 2 Caucasians,
1 African American, 2 African Blacks, 2 African Chewas, 1
African Ngoni, 1 African Lomwe, and 1 African Tumbuka. At
enrollment they were verified as acute Fiebig stages 4 to 6
(plasma RNA+, third generation EIA+, Western blot indeter-
minant or +).2° Follow-up samples were collected from patients
at 1, 2, 4, 12, and 24 weeks post-enrollment. All patients were
untreated throughout the 24-week period of study.

A second cohort of 10 untreated Malawians with acute HIV-1
infection in Fiebig stages 4—6 was enrolled in the study as an
independent validation set. Blood samples from these patients
were collected at enrollment and at the same intervals as the
first cohort (at 1, 2, 4, 12, and 24 weeks after enrollment).

Whole blood sample collection and microarray hybridization
Whole blood was collected using standardized conditions into
Tempus vacutainer tubes. Total RNA was isolated from lysates
of the whole blood.?* All samples passing quality control were
then amplified and labeled using the Illumina TotalPrep-96 RNA
amplification kit. Amplified RNA was then hybridized to Illu-
mina HT-12 V3 beadchips and scanned on an Illumina Bead-
station 500 according to the protocol detailed by the
manufacturer (http://www.illumina.com). The gene expression
of the first cohort was assessed at Baylor Institute for Immu-
nology Research, and the second cohort was assessed at Duke
University.

Viral set point measurement

Viral set point, the steady-state viral load after acute infection,
was determined for all subjects by an experienced infectious-
disease clinician following the standard protocol.”

Statistical analysis of transcriptional network
To model the interactions among transcripts, viral load, and viral
set point, we carried out a multivariate dependency analysis
using dynamic Bayesian networks.?® %5 Such an analysis has
already been applied to several types of genomic data including
gene regulation,?” protein-protein interactions,?® SNPs*’ *° and
pedigrees.® A Bayesian network is a directed acyclic graph in
which nodes represent random variables and arcs define directed
dependencies quantified by conditional probability distributions.
Besides inferring transcriptional interactions, Bayesian networks
can be exploited for prediction. Thus, we reasoned that
a network capturing the relationship between transcripts and
viral set point might be used to compute the most probable
quantity for viral set point when given the levels of an indi-
vidual’s expression of these transcripts.

Our analysis began by selecting gene transcripts with at least
a twofold change in expression with respect to enrollment over

1108

the entire 24-weeks of the study. We then log10-transformed all
data, including gene expression, viral loads and viral set points.
Finally, we analyzed the data using a Bayesian network method.
Our aim was to search for the most probable network of gene-
gene dependency for each time point. To find such a network,
the analysis explored a space of different network models, scored
each model by its posterior probability conditional on the
available data, and returned the model with maximum posterior
probability. This probability was computed by Bayes theorem as
p(MID)xp(M)p(DIM), where p(D|M) is the probability that
the observed data are generated from the network model A1 and
p(M) is the prior probability encoding knowledge about the
model M before seeing any data. We assumed that all models
were equally likely a priori, so p(M) is uniform and p(M|D)
becomes proportional to p(D|M), a quantity known as marginal
likelihood. The marginal likelihood averages the likelihood
functions for different parameter values and is calculated as
p(DIM) = [p(D10)p(0)d0 where p(D|0) is the traditional like-
lihood function and p(f) is the prior probability density of
parameters. When we assumed the log-transformed data to be
Gaussian, p(DIM) = [p(DI0)p(0)40 has a closed-form solu-
tion.”> We used a greedy search algorithm?® with order permu-
tation to identify the most probable network model /1 with
highest marginal likelihood p (D).

Evaluation of predictive accuracy

Viral set point is a continuous quantity that we want to predict.
The popular method to evaluate the prediction of continuous
variables is based on root-mean-square-error (RMSE):

1y

N Z (5(»1 —X”)Z,

n=1

RMSE =

where N is the number of subjects, and %, and x, are the
predicted and actual values, respectively. However, this method
does not explain the degree of error/accuracy. When two distinct
cohorts share the same predictive RMSE, one cohort with higher
actual values has greater predictive accuracy than the other. To
better evaluate the predictive accuracy, we in this paper define
the accuracy A as follows:

N /5 2
A=1-NRMSE = 1— %Z(x x)

Xn

n=1

where NRMSE is the normalized RMSE. Unlike RMSE, the
normalized RMSE encodes the error rate, and helps us better
quantify the predictive accuracy.

Predictive validation

We used the first data set to infer a transcriptional network
model. To assess the robustness of the transcriptional network
for sampling variability, we used a leave-one-out cross-validation
strategy: a single observation from the data was treated as the
validation sample, the remaining observations were used to re-
estimate the parameters of the network model, and the newly

J Am Med Inform Assoc 2012;19:1103-1109. doi:10.1136/amiajnl-2012-000867
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parameterized model was used to predict the viral set point of
the validation sample. This process was repeated until each
observation in the data set was used once as the validation
sample. We then evaluated the predicted set points by mean
error rates deviating from the true values.

To confirm the results, we used the transcriptional network
models learned from the first data set to predict the viral set
points of 10 Malawian patients who were not included in the
network learning process. The validation was performed by
quantile-normalizing the Malawian data to the first data,
followed by log10-transformation and viral load prediction. The
measure of predictive accuracy was the same as the leave-one-
out cross-validation.
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