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Abstract
The evaluation of possible interactions between chemical compounds and antitarget proteins is an
important task of research and development process. Here we describe the development and
validation of QSAR models for the prediction of antitarget end-points, created on the basis of
Multilevel and Quantitative Neighborhoods of Atoms descriptors and self-consistent regression.
Data on 4000 chemical compounds interacting with 18 antitarget proteins (13 receptors, 2
enzymes and 3 transporters) were used to model thirty two sets of end-points (IC50, Ki and Kact).
Each set was randomly divided into training and test sets in a ratio of 80% to 20%, respectively.
The test sets were used for external validation of QSAR models created on the basis of the training
sets. The coverage of prediction for all test sets exceeded 95% and for half of the test sets it was
100%. The accuracy of prediction for 29 of the end-points, based on the external test sets was
typically in the range of R2

test = 0.6–0.9; three tests sets had a lower R2
test values, specifically

0.55 – 0.6. The proposed approach showed a reasonable accuracy of prediction for 91% of the
antitarget end-points and high coverage for all external test sets. On the basis of the created
models we have developed a freely available on-line service for in silico prediction of 32
antitarget end-points: http://www.pharmaexpert.ru/GUSAR/antitargets.html.
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INTRODUCTION
The process of drug development is time-consuming and cost-intensive. Several years are
required for lead identification, optimization, in vitro and in vivo testing before the first
clinical trials are started. Preapproval costs of a new drug exceed US $800 million [1]. It is
well known that about 90% of drug-candidates fail in the first phase of clinical trials [2].
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Approximately 10% of new chemical entities (NCEs) show serious adverse drug reactions
(ADRs) after their introduction into medical practice. More than 17 drugs were withdrawn
from the market during the period from 1996 to 2006, because they had shown serious
adverse drug reactions [3]. For example, Amineptine (launched in 1978) is an indirect
dopamine agonist, which selectively inhibits dopamine uptake and induces its release, with
additional stimulation of the adrenergic system. However, microcystic, macrocystic acne
and hepatotoxicity were observed as common side effects [4]. Also, Duract (bromfenac
sodium) was launched in 1997 for the treatment of acute pain as a non-steroidal
antiinflammatory drug (NSAID). The drug was withdrawn after postmarketing reports of
severe hepatic failure that led to four deaths and eight liver-transplants [5]. Another drug,
Vioxx, was launched in 1999 for the treatment of pain and inflammation as an NSAID. In
2004, a long-term study of Vioxx in patients with increased risk of colon polyps was halted
because of increased cardiovascular risk. Thus, Vioxx was withdrawn from the market in
2004 [6].

Interactions with some enzymes, receptors and channels have been identified as molecular
mechanisms for certain side effects observed in the development of candidates or marketed
drugs, and are named antitargets [3]. Several antitargets were previously considered as drug
targets. Currently, it is thought that the benefit of action on these targets exceeds their side
effects. For example, the main target of the well-known antidepressant and serotonin uptake
inhibitor Prozac (Fluoxetine) is the sodium-dependent serotonin transporter that is
considered as a withdrawn target in DrugBank. Most common ADRs (e.g. hepatic toxicity,
hematologic toxicity and cardiovascular toxicity) are caused by drug action on antitargets
(off-targets). Alpha-1A adrenergic antagonists may cause orthostatic hypotension, dizziness
and fainting spells. D2 dopaminergic antagonists may cause extrapyramidal syndrome; M1
muscarinic antagonists may cause attention/memory deficits [7]. Antitarget-mediated side
effects may risk the further development of promising clinical candidates.

Therefore, to avoid potential interactions of drugs with antitargets, specific studies for their
detection should ideally be conducted before the pharmaceutical is launched. For this
purpose, several different computational approaches have been proposed. 3D
pharmacophore models rationalizing the affinity of several different chemical series have
been described for alpha-1A, 5-HT 2A and D2 receptors [8]. The ligand–protein inverse
docking approach was successfully used to predict the potential toxicity and side effects
related to protein targets of small molecules [9]. Different 2D and 3D QSAR techniques
have also been applied for prediction of antitarget activities [10–14]. However, until now
there was no computational approach that allowed prediction of the profiles of antitarget
effects for chemical compounds with reasonable accuracy (Q2

model > 0.6 and R2
test > 0.6)

and speed (~ 1 compound per second).

Earlier, we have shown that GUSAR software based on Multilevel and Quantitative
Neighbourhoods of Atoms (MNA, QNA) descriptors [15,16] and the self-consistent
regression (SCR) algorithm [17,18], may successfully be applied for multiple QSAR tasks
[15]. In this work, we have applied the GUSAR program to model the interactions between
drug-like organic compounds and antitargets including three types of proteins: receptors,
enzymes and transporters. A freely available on-line service for the quantitative prediction
of antitarget interaction profiles was developed using the models derived.

MATERIALS AND METHODS
Data sets

Data on the chemical structures and quantitative end-point values (50% inhibitory
concentration - IC50inhibition constant - Ki and activation constant - Kact) for approximately
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4000 chemical compounds interacting with 18 antitarget proteins were collected from
different literature sources. An example of chemical structures with end-point values is
presented in Table 1. The InChI keys for all chemicals and their activities used in this work
are available in the supplementary material S1.

Based on the “Withdrawn Drug Targets” and “Withdrawn Enzymes” represented in
DrugBank (http://www.drugbank.ca/downloads), the list of antitarget proteins includes
thirteen receptors, two enzymes and three transporters. A brief description of the data sets is
given below.

The ranges of end-point values for the sets of compounds interacting with each receptor are
presented in Table 2.

Table 2 shows that the range of the modeled values for compounds from the receptor data
sets exceeds 5 logarithmic units. This is a good prerequisite for the creation of accurate,
robust and predictive QSAR models. The minimal values for all cases are less than 5 –
log10(mol/L), which means that the created models can be used to assess both active and
inactive molecules.

Thirteen receptors belong to the hydroxytryptamine, adrenergic, androgen, dopamine, opioid
and estrogen families. The main adverse effects of antagonists to 5-hydroxytryptamine
receptors are sickness, emesis, diarrhea, sleeplessness and anxiety [19]. Adrenergic receptor
antagonists may cause orthostatic hypotension, reflex tachycardia, insomnia, nasal
congestion, tachycardia and palpitation [20]. Antagonism to androgen receptors may lead to
virilization, gynecomastia, hepatic pelioza and hepatoma [20]. The main undesirable effects
of dopamine receptor antagonists are palpitations, ectopic rhythm, tachycardia, retrosternal
pain, hypertension, vasoconstriction, shortness of breath and headache [7]. Antagonism to
opioid receptors may cause sickness, emesis, respiratory depression, and sedation [21].
Adverse effects related to the action of estrogen receptor antagonists are depression,
headache, obesity, sickness, hot flashes and puffiness [7].

The ranges of end-point values for the sets of compounds interacting with enzymes (amine
oxidase and carbonic anhydrase) and transporters (GABA, dopamine and serotonin
transporters) are represented in Table 3 and Table 4, respectively.

Table 3 and Table 4 show that the ranges of the modeled values for compounds from the
enzyme and transporter data sets exceed 4 logarithmic units. The minimal values for all
cases are less than 5 –log10(mol/L), thus the created models can be used for the evaluation
of both active and inactive molecules.

The main adverse effects of amine oxidase (MAO A) inhibitors are blood pressure lability,
bradycardia, chorea, convulsions, delirium, diarrhea, hepatotoxicity and drowsiness.
Interaction of ligands with carbonic anhydrase may be the cause of alopecia (hair loss),
anaphylaxis, aplastic anemia, anxiety, bone marrow suppression, chronic fatigue syndrome,
depression and renal tubular acidosis [20]. Neurotoxicity is the main adverse effect of
GABA and dopamine transporters blockers [22]. Adverse effects caused by the serotonin
transporter blockers are acute respiratory distress syndrome (ARDS), agitation, akathisia,
constipation, diarrhea, drowsiness, emesis, glaucoma, headache, hemorrhage, hypomania,
ischemic colitis, parkinsonism, myoclonus, QT interval prolongation and tremor [7].

The structural overlap was analyzed between the 32 dataset endpoints. The results are
presented in the supplementary material S2. It was found that all end-points have some
structural overlap except for the “sodium- and chloride-dependent GABA transporter 1
antagonists”. The major cases of overlap were found between receptor end-points, belonging
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to the hydroxytryptamine, adrenergic and dopamine families. More than one thousand
compounds in common were found among the drug-like molecules acting on the different
types of opioid receptors. In contrast to the receptor families, a small number of overlapping
structures was found for the enzymes.

Each set was randomly divided into training and test sets according to the ratio 80%:20%,
respectively. The training set was used to create the QSAR models and the test set was used
to assess the external predictive accuracy. QSAR models were developed using Multilevel
and Quantitative Neighbourhoods of Atoms (MNA, QNA) descriptors [15, 16] and the self-
consistent regression (SCR) algorithm [17, 18].

QSAR modeling on the basis of QNA descriptors
QSAR modeling on the basis of QNA descriptors has previously been implemented in the
software program GUSAR [15]. Reasonable results obtained by GUSAR modeling for
different biological endpoints [15] prompted this study to investigate the utility of the
method for modeling the interactions of chemical structures with sets of antitargets. A more
detailed explanation of our approach is presented in the supplementary material S3. It is
briefly described below.

The calculation of QNA descriptors is based on the connectivity matrix (C), and also, on the
standard values of ionization potential (IP) and electron affinity (EA) of atoms in a molecule
[15]. The main important feature of QNA descriptors is that they represent a molecule as a
set of the P and Q values, or, in other words, as a “constellation” in a two-dimensional QNA
descriptors’ space. The P and Q values can be considered as corresponding partial atomic
hardness and electronegativity.

For any given atom ithe QNA descriptors are calculated as follows:

with .

The estimation of a target property for a chemical compound is calculated as a mean value
of a function of the P and Q values for the atoms in a molecule in QNA descriptors space.
We proposed the use of two-dimensional Chebyshev polynomials for approximating the
function of P and Q values. So, the independent regression variables are calculated as
average values of particular two-dimensional Chebyshev polynomials of P and Q values for
the atoms in a molecule.

QNA descriptors and their polynomial transformations do not provide information on the
shape and volume of a molecule. Since this type of information can be important for
determining structure-activity relationships, these parameters were calculated separately and
added to the variables already obtained from the Chebyshev polynomials. The topological
length of the molecule is the maximal distance, calculated as the number of bonds between
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any two atoms (including hydrogen). The volume of a molecule is estimated as the sum of
each atom’s volume.

The number of initial variables for QSAR modeling depends on the number of compounds
in the training set and corresponds to the number of Chebyshev polynomials plus the
number of the first, second and third power of the values of topological length and volume
of a molecule. If the number of compounds in the training set varies from 100 to 2000, then
the number of initial variables equals one-half of the number of compounds in the training
set.

The GUSAR algorithm uses three randomly selected parameters to generate different QSAR
models based on QNA descriptors: (a) calculation of the QNA descriptors for either all
atoms or for only the atoms in a molecule with two or more immediate neighbors; (b)
adjustment of the connectivity matrix coefficient (c) adjustment of the parameters of the
Chebyshev polynomials. The detailed algorithm is described in the supplementary material
S3. The final QSAR model is the consensus of several different QNA-based models built in
this way.

QSAR modeling on the basis of biological activity profile prediction using MNA
descriptors

GUSAR enables QSAR models to be derived based on predicted biological activity profiles
of compounds. Each compound is represented as a list of MNA descriptors, which are used
as input parameters [16–18] for predicting biological activity profiles in the PASS
(Prediction of Activity Spectra for Substances) software program. The PASS algorithm is
based on a Bayesian approach and is used to calculate this profile. A detailed description of
the PASS algorithm is presented in the supplementary material S3.

GUSAR incorporates PASS version 10.1, which predicts 4130 types of biological activity
with a mean prediction accuracy of about 95%. The list of predictable biological activities
includes 501 pharmacotherapeutic effects, (e.g., Antihypertensive, Hepatoprotectant,
Nootropic, etc.), 3295 mechanisms of action, (e.g., 5 Hydroxytryptamine antagonist,
Acetylcholine M1 receptor agonist, Cyclooxygenase inhibitor, etc.), 57 adverse & toxic
effects (e.g., Carcinogenic, Mutagenic, Hematotoxic, etc.), 199 metabolic terms (e.g.,
CYP1A inducer, CYP1A1 inhibitor, CYP3A4 substrate, etc.) 49 transporter proteins (e.g.,
P-glycoprotein 3 inhibitor, Nucleoside transporters inhibitors) and 29 activities related to
gene expression (e.g., TH expression enhancer, TNF expression inhibitor, VEGF expression
inhibitor). The results of a PASS prediction are given as a list of biological activities, for
which the difference between the probability that a compound is active (Pa) and that it is
inactive (Pi) is calculated.

To obtain different QSAR models, the Pa-Pi values for the activities, randomly selected
from the total list of predicted biological activities, were input as independent variables for
the regression analysis. Similar to the QSAR analysis with QNA descriptors, topological
length and volume of molecules were added as variables to the biological activity profile;
the number of initial variables for creating regression models was also selected depending
on the number of compounds in the training set.

Self-consistent regression
GUSAR uses self-consistent regression (SCR) for building (Q)SAR models. SCR is based
on the regularized least-squares method described in [15, 17]. Unlike stepwise regression
and other methods of combinatorial search, the initial SCR model includes all regressors.
The basic purpose of the SCR method is to remove the variables, which poorly describe the
appropriate target value [15, 17]. The final number of variables in the QSAR equation,
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selected after the self-consistent regression procedure, is significantly less compared to the
initial number of variables. Nevertheless, the final model contains a set of variables that
correctly represents the existing relationship.

Nearest neighbor correction
It is well known that the use of both global and local models for non-congeneric sets
improves the quality of QSAR models [23]. We used the experimental data on the three
nearest neighbors (NN) to each input compound, to correct the prediction values obtained
from the regression model. The correction value is estimated by taking an average of three
values from the training set that are the most similar to the compound under prediction. The
similarity of each pair of compounds is estimated as Pearson’s coefficient calculated in the
space of the independent variables obtained after SCR. The mean experimental value
obtained for the three nearest neighbor compounds from the training set is averaged with the
predicted value of the test compound.

Applicability domain
The average similarity to the three nearest neighbor compounds in the training set was also
used for the assessment of applicability domain (AD) of the model. If the average similarity
exceeds the threshold, then the chemical compound under prediction is considered to be in
the AD of the model and vice-versa. The higher the value selected for the threshold, the
closer in similarity compounds must be to fall in the AD of the model. In this study a
threshold for the AD equal to 0.7 was used.

Consensus modeling
The final predicted value for each end-point is estimated by including a weighted average of
the predicted values from the set of QSAR models (for predictions that are within their
respective applicability domains). The value obtained from each model is weighted by the
similarity value calculated for the estimation of its applicability domain. This algorithm
combines the results of QSAR modelling on the basis of QNA descriptors and on the basis
of PASS-predicted biological activity profiles.

Interpretation of results
Typically, the affinity of pharmaceutical agent to the drug target should exceed the affinity
to off-targets for at least one to two orders of magnitude. The medium affinity of current
small molecule drugs to drug targets is about 16 nM, ranging from 16 mM to 1.6 pM [24].
Therefore, GUSAR prediction of interaction with antitarget(s) should be carefully
considered in each individual case taking into account the predicted/measured affinity of the
analyzed compound to the drug target. Particular attention should be paid to the compounds,
for which predicted affinity of interaction with three or more antitargets exceeded 1 µM.

RESULTS AND DISCUSSION
QSAR modeling and validation of antitarget end-points

The initial data for each antitarget end-point was randomly divided into the training and
external test sets in a ratio of 80% and 20%, respectively. External test sets were used for the
assessment of predictivity in the obtained QSAR models. The number of compounds in the
training and external test sets is shown in Table 5. Four antitarget end-points (Ki) include
more than 1000 chemical compounds in the training set and more than 250 compounds in
the external test set: 5-hydroxytryptamine 2A receptor antagonists, alpha1a adrenergic
receptor antagonist, delta-type opioid receptor antagonists and mu-type opioid receptor
antagonist. Thirty of the thirty two end-points (~94%) include more than 100 compounds in
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the training set. Therefore, only two training sets contain a small number of compounds:
“sodium- and chloride-dependent GABA transporter 1 antagonist” with IC50 values and
“amine oxidase [flavin-containing] A inhibitor” with Ki values (75 and 60 compounds,
respectively).

For each training set, forty models based on MNA descriptors and forty models based on
QNA descriptors were created. A leave-10%-out cross-validation procedure was performed
20 times for each model, and the results were used to select the most predictive models. The
average R2 value and the standard deviation of R2 values calculated for the test sets during
the L-10%-out procedure are presented in Table 5. From the full set of 80 models, we
selected only those models that satisfied the following conditions: a value of Q2 exceeding
0.6 and an R2 value from the leave-10%-out cross validation procedure exceeding 0.5. Thus,
over 10 models were selected for sixteen of the end-points (50%) and only the “sodium-
dependent serotonin transporter antagonist” activity was represented by two models. The
selected models were used for consensus predictions on the external test set obtained for
each antitarget end-point, taking into account the applicability domain of these models.

Table 5 shows the results of the consensus predictions on the external test sets for each
antitarget endpoint. Sixteen test sets (50%) were predicted with 100% coverage, and the
remaining test sets were predicted with coverage exceeding 95%. QSAR models obtained
for twenty nine of the antitarget endpoints (91%) showed good statistical criteria for the
external test sets. The accuracy of prediction for these end-points in external tests was in the
range of 0.6–0.9. Thus, two activities (6%) were predicted with an accuracy higher than 0.9
– Kact of “carbonic anhydrase I activator” and “carbonic anhydrase II activator”. Plots of
observed versus predicted values for these activities are shown in Figures 1 and 2. Six
activities (19%) were predicted with an accuracy higher than 0.8 and sixteen (50%) with an
accuracy higher than 0.7. Plots of observed versus predicted values for Ki of “alpha1a
adrenergic receptor antagonist” and “carbonic anhydrase II inhibitor” are shown in Figures 3
and 4. Only three antitarget end-points – Ki of “5-hydroxytryptamine 2A receptor
antagonist”, IC50 of “5-hydroxytryptamine 2C receptor antagonist” and Ki of “d(1A)
dopamine receptor antagonist” showed not so high but reasonable values for accuracy
exceeding 0.5.

Some points in Figures 1–4 can be considered to be outliers; nevertheless, the number of
outliers (~10–15) is negligible in comparison to the total number of points. In general,
Figures 1–4 show that there are no any visible artefacts in the predicted values.

These results show that MNA and QNA descriptors with Self-Consistent Regression can be
successfully used for the development of accurate and predictive QSAR models of antitarget
effects.

On-line service for quantitative prediction of antitarget interaction profiles for chemical
compounds

On the basis of our created QSAR models we have developed a freely available on-line
service for the simultaneous prediction of thirty two antitarget end-points available at: http://
www.pharmaexpert.ru/GUSAR/Antitargets/. It includes an on-line chemical editor
(ChemAxon Marvin Sketch) [25] for drawing the studied structure. This service provides a
reasonable computational speed (about 2 compounds per second for the simultaneous
prediction of 32 antitarget end-points). The assessment of the prediction results for the 32
antitarget endpoints may done in the same way as an assessment for in vitro experimental
assays. We consider that 1 µM (“6” in the units used on the website: -Log10(Value), mol/L)
is a minimal cut-off value for any end-point. This means that a compound predicted to have
an IC50 or Ki of less than 1 µM, is active against that undesirable target (antitarget). The
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significance of these predicted values depends on the therapeutic dose of the drug and the
magnitude of the interaction between the drug and its target. However, the probability of
adverse drug reactions may increase with the number of interactions with antitargets. For
statistical reasons, any compound interacting with three or more antitargets may be
considered potentially risky for further drug development and should be filtered out at the
early stage of studies.

An example of prediction results for the antibiotic agent Temafloxacin (Omniflox) obtained
with this service is represented in Figure 5. Temafloxacin was marketed in the United States
from February to June 1992. During the three months of its use, the FDA received 50 reports
of multiple side effects including three cases of death [6]. It was shown that Temafloxacin
may produce hemolytic anemia and other blood cell abnormalities, kidney dysfunction and
liver dysfunction [26]. Hemolytic anemia and blood cell abnormalities may be related to the
inhibition of carbonic anhydrase. The cause of kidney dysfunction may be the interaction of
Temafloxacin with the dopamine receptor and inhibition of the carbonic anhydrase. Liver
dysfunction may be induced by action on the androgen receptor.

Figure 5 shows that for these modeled antitarget end-points (carbonic anhydrase, dopamine
and androgen receptors), Temafloxacin falls in the applicability domain and is predicted to
be active (Ki and IC50 exceed 6 units in –log10(mol/L)). Thus, the GUSAR predictions
correspond to the multiple side effects which were found during Temafloxacin usage in
medical practice.

The web service also provides the total number of targets for which the input compound has
been predicted to be active. This can be useful for selection and prioritization of compounds
during the drug discovery process. A particular compound can be considered as a potential
source of adverse drug reactions if interactions with three or more antitargets are predicted
and exceed the cut-off value (1 µM). Compounds for which antitargets are not predicted can
be selected for further development as potential drugs. In addition, the service can help
medical chemists determine on which targets (molecular mechanism of toxicity) a particular
compound should be tested experimentally, to avoid ADR.

We have applied the web-service to fourteen known drugs which have been withdrawn from
the market, to estimate the number of antitargets they are predicted to interact with. In
addition to the withdrawn drugs, seven currently marketed drugs were also analyzed to find
out the difference in the number of antitargets. These prediction results are presented in
Table 6. The results show that more than seven antitargets were predicted for each
withdrawn drug, while less than three antitargets were predicted for each existing drug.
Thus, our service can successfully be applied for the selection and prioritization of
compounds during the drug discovery process.

CONCLUSIONS
We developed QSAR models for thirty two antitarget end-points based on MNA and QNA
descriptors and self-consistent regression. These models showed good accuracy of
prediction for 91% of the activities and high coverage of the external test sets for all end-
points. Thus, the QSAR models could successfully be used for filtering out chemical
compounds with a high probability of antitarget activity during the R&D process.

Our freely available on-line service for quantitative prediction of antitarget interaction
profiles of chemical compounds is useful for researchers to increase the efficacy of finding
drug-like leads with desirable pharmacological effects but without side effects and toxicity
caused by interactions with antitargets.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Carbonic anhydrase I activator test set, observed versus predicted Log10(Kact) values.
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Figure 2.
Carbonic anhydrase II activator test set, observed versus predicted Log10(Kact) values.
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Figure 3.
Alpha-1a adrenergic receptor antagonist test set, observed versus predicted Log10(Ki)
values.
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Figure 4.
Carbonic anhydrase I inhibitor test set, observed versus predicted Log10(Ki) values.
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Figure 5.
The results of the antitarget interaction profile prediction for Temafloxacin using our on-line
service.
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Table 1

Data set structural information.

Structure Activity End-
point

-Log10(End-
point), mol/L

5-hydroxytryptamine 1B receptor antagonist Ki 7

5-hydroxytryptamine 2A receptor antagonist Ki 6.45

alpha 1a adrenergic receptor antagonist Ki 7.95

5-hydroxytryptamine 2C receptor antagonist IC50 6.3

5-hydroxytryptamine 2A receptor antagonist IC50 5

alpha 1a adrenergic receptor antagonist Ki 9.7

alpha 1b adrenergic receptor antagonist Ki 6.59

alpha-2A adrenergic receptor antagonist Ki 6.36

alpha 1b adrenergic receptor antagonist Ki 6.66

alpha 1a adrenergic receptor antagonist Ki 7.55

IC50 8

amine oxidase [flavin-containing] A inhibitor

IC50 7.66

androgen receptor antagonist
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Structure Activity End-
point

-Log10(End-
point), mol/L

carbonic anhydrase I activator Kact 7.52

carbonic anhydrase II activator Kact 6.3

carbonic anhydrase I inhibitor Ki 6.05

carbonic anhydrase II inhibitor Ki 7.92

d(1 A) dopamine receptor antagonist Ki 6.38

d3 dopamine receptor antagonist Ki 6.01

mu-type opioid receptor antagonist IC50 8.43

delta-type opioid receptor antagonist Ki 6.72

mu-type opioid receptor antagonist Ki 6.15

kappa-type opioid receptor antagonist Ki 8.82

delta-type opioid receptor antagonist Ki 5.79

estrogen receptor antagonist IC50 6.23

estrogen receptor antagonist Ki 7.43

IC50 6.59

sodium- and chloride-dependent GABA
transporter 1 antagonist
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Structure Activity End-
point

-Log10(End-
point), mol/L

sodium-dependent dopamine transporter
antagonist

IC50 8.66

sodium-dependent serotonin transporter
antagonist

Ki 8.61
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Table 2

Receptor data sets.

Activity Name End-point Mina Maxb

5-hydroxytryptamine 1B receptor antagonist IC50 2.8 9.3

5-hydroxytryptamine 1B receptor antagonist Ki 3.8 9.7

5-hydroxytryptamine 2A receptor antagonist IC50 3.1 10.3

5-hydroxytryptamine 2A receptor antagonist Ki 4.3 10.4

5-hydroxytryptamine 2C receptor antagonist IC50 2.9 9.0

5-hydroxytryptamine 2C receptor antagonist Ki 3.4 10.7

alpha-1 A adrenergic receptor antagonist IC50 4.0 9.9

alpha-1 A adrenergic receptor antagonist Ki 3.6 11.0

alpha-1B adrenergic receptor antagonist Ki 4.3 10.0

alpha-2A adrenergic receptor antagonist IC50 3.2 9.3

alpha-2A adrenergic receptor antagonist Ki 2.4 9.9

androgen receptor antagonist IC50 4.2 10

d(1 A) dopamine receptor antagonist IC50 3.9 9.1

d(1 A) dopamine receptor antagonist Ki 4.1 10.1

d3 dopamine receptor antagonist Ki 4.2 10.7

delta-type opioid receptor antagonist Ki 4.3 12.0

estrogen receptor antagonist IC50 1.7 11.0

estrogen receptor antagonist Ki 3.0 12.7

kappa-type opioid receptor antagonist Ki 3.1 11.4

mu-type opioid receptor antagonist IC50 3.6 10.5

mu-type opioid receptor antagonist Ki 3.4 12.3

a
Minimal value of -Log10(End-point) values in the set, mol/L.

b
Maximal value of -Log10(End-point) values in the set, mol/L.
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Table 3

Enzyme data sets

Activity Name End-point Mina Maxb

amine oxidase [flavin-containing] A inhibitor IC50 3.0 9.0

amine oxidase [flavin-containing] A inhibitor Ki 3.5 9.5

carbonic anhydrase II activator Kact 2.4 10.0

carbonic anhydrase I activator Kact 1.5 10.9

carbonic anhydrase I inhibitor Ki 0.4 9.4

carbonic anhydrase II inhibitor Ki 4.4 9.7

a
Minimal value of -Log10(End-point) values in the set, mol/L.

b
Maximal value of -Log10(End-point) values in the set, mol/L.
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Table 4

Transporter data sets

Activity Name End-point Mina Maxb

sodium- and chloride-dependent GABA transporter 1 antagonist IC50 3.1 7.3

sodium-dependent dopamine transporter antagonist IC50 3.0 10.5

sodium-dependent dopamine transporter antagonist Ki 3.3 9.5

sodium-dependent serotonin transporter antagonist IC50 2.4 9.8

sodium-dependent serotonin transporter antagonist Ki 3.4 11.1

a
Minimal value of -Log10(End-point) values in the set, mol/L.

b
Maximal value of -Log10(End-point) values in the set, mol/L.
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Table 6

Prediction results for withdrawn and marketed drugs.

Drug Name State The number of predicted antitargets

Amineptine withdrawn 13

Duract withdrawn 8

Vioxx withdrawn 7

Astemizole withdrawn 17

Cerivastatin withdrawn 8

Chlormezanone withdrawn 10

Fenfluramine withdrawn 11

Flosequinan withdrawn 11

Glafenine withdrawn 14

Grepafloxacin withdrawn 12

Mibefradil withdrawn 16

Rofecoxib withdrawn 7

Troglitazone withdrawn 14

Ximelagatran withdrawn 14

Aspirin marketed 2

Ibuprofen marketed 2

Valtrex marketed 3

Microzide marketed 3

Neurontin marketed 3

Enoxaparin marketed 2

Lyrica marketed 2
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