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Abstract
Parsimony and protein grouping are widely employed to enforce economy in the number of
identified proteins, with the goal of increasing the quality and reliability of protein identifications;
however, in a counterintuitive manner, parsimony and protein grouping may actually decrease the
reproducibility and interpretability of protein identifications. We present a simple illustration
demonstrating ways in which parsimony and protein grouping may lower the reproducibility or
interpretability of results. We then provide an example of a data set where a probabilistic method
increases the reproducibility and interpretability of identifications made on replicate analyses of
Human Du145 prostate cancer cell lines.

Introduction
Reproducible protein identifications, which are replicated in the various different biological
fluids, are of paramount importance to the characterization of proteomes and for biomarker
discovery; however, in shotgun proteomics the detected evidence is the fragmentation
spectra, which come from peptides and not from proteins. To derive proteins, we are
therefore dependent on protein inference procedures, which take protein databases as input.
These databases hypothesize protein sequences that are anticipated to be either present or
absent in the sample. The task is reminiscent of classical experimental design: we may test
the hypothesized absence or presence of each individual protein, and reject the hypotheses
based on how improbable the individual hypotheses are given the mass spectrometry data.
The main advantage of such a probabilistic approach is that it can model the inherent
uncertainty of the protein inference process. Unfortunately, few proteomics labs currently
follow such a workflow for protein inference. Here, we present our main arguments why
other labs would benefit from probabilistic protein inference.

In an effort to formalize the standards for presentation and publication of protein
identifications the Paris guidelines1 encouraged two alternative approaches intended to
increase the reliability of protein identifications: protein grouping and parsimony. Today,
parsimony and protein grouping are widely used in standard, well-regarded analysis
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tools2–4; however, surprisingly, parsimony and protein grouping may actually lower the
reproducibility and interpretability of protein identifications.

Parsimony
The advent of parsimony, which chooses the smallest set of proteins (or protein groups)
accounting for a set of confidently identified peptides, comes from a well-intended attempt
to quell the publication of massive numbers of identified proteins that were not reproducible
in follow-up experiments5. By enforcing economy in the protein identifications (in statistics
this is commonly referred to as “regularization”6), proteins supported by peptide evidence
that could potentially be explained by other proteins are avoided. Today, parsimony is
generally thought to yield conservative identifications, achieving an increased specificity at
the cost of a lowered sensitivity; however, the certainty with which parsimony assigns
presence and absence to proteins can actually lower the accuracy.

Here we present a simple example where parsimony lowers the reproducibility of the
identified proteins. Figure 1 depicts three cases. In case 1, two peptides (peptides 2 and 3)
are identified, all of which match three proteins (proteins A, B, and C). In case 2 all proteins
have identical peptide evidence, except for an additional identified peptide (peptide 1),
which matches only protein A. Likewise, in case 3 all proteins have identical peptide
evidence, except for an additional identified peptide (peptide 4), which matches only protein
C.

In case 1, any attempt to yield a single protein identification must result in a coin toss,
choosing from the set {A, B, C} in an arbitrary fashion. In proprietary software packages the
mechanism behind this choice is often opaque. Furthermore, two replicate experiments may
result in case 2 (identifying protein A) and case 3 (identifying protein C). Despite the
substantial overlap in peptide-level evidence, a parsimony-based approach will yield little
reproducibility in the protein identifications from these replicates. Once again a coin toss is
introduced, allowing a small bit of peptide evidence to completely tip the scales and change
the result. The outcome is that parsimony lowers the reproducibility of protein
identifications.

In general, “fixed threshold” methods (such as parsimony), use evidence to threshold
peptides or proteins into strict present/absent states. Fixed-threshold methods employ hard-
edge decision making, which considers only one conclusion from a set of possible outcomes.
For example, the experimenter first derives a list of peptides (e.g., using a target-decoy
strategy with a fixed false discovery rate threshold), and then uses this list as an input to
subsequent protein inferences. As noted by others7, this initial threshold results in the
experimenter filtering away peptide identifications that otherwise could be used for protein
inference.

Grouping
These hidden complications from parsimony are further confounded by a tendency to
incorrectly mix-up parsimony with “protein grouping”. Parsimony resolves shared and
ambiguous evidence by choosing the smallest set of proteins. In contrast, protein grouping
merges several proteins into a single inference question concerning those proteins. Several
grouping strategies are widely employed. For example, one grouping strategy would group
only proteins that map to identical peptides, while another strategy would group together
two proteins when the peptides from the first protein form a subset of the peptides from the
second. In the paragraphs below we will present two reasons why protein grouping should
be avoided, at least in the form in which it is practiced today. The first reason is that protein
grouping presents a bad experimental design in the sense that it does not allow the
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experimenter to compensate for known sources of variability; the second reason is that it
hinders reproducible experiments.

Identification of a protein group answers a fundamentally different question than
identification of a single protein: identifying protein A answers the question “Is protein A in
the sample?” while identifying protein group {A, B, C} answers the question “Is at least one
protein from the set {A, B, C} in the sample?” Grouping has traditionally been applied after
the data (i.e. the peptide identifications) are observed. From a statistical viewpoint, it is
considered good practice to formulate the tested hypothesis before data are observed, and
any experimental design implying that questions are posed after the experimenter observes
the data is discouraged. For this reason, unless multiple testing correction is applied, protein
grouping should only be performed before spectra or other experimental evidence are
considered. We will come back to how grouping prior to experiments can be achieved.

Grouping after the fact introduces a scenario where many multiple hypotheses are tested,
and frequently yields replicate experiments with results that answer fundamentally different
questions. For example, if proteins with identical peptide sets are grouped, then case 2 in
Figure 1 would group {B, C} and leave protein A ungrouped, while case 3 would group
proteins {A, B} and leave protein C ungrouped. There is no way to properly compare or
merge the results because grouping was performed after the fact, and so the experiments
answer different identification questions.

Probabilistic approaches
Fixed threshold methods like parsimony yield results that are inherently binary; they provide
predicted event outcomes, but do not provide any information about the confidence or
uncertainty in these predictions. There is no middle ground: a peptide is either identified or
not identified, and proteins are subsequently identified or not identified. In contrast,
probabilistic models8;9 assign probabilities, which are interpretable measures of confidence,
to wether a peptide or protein is present in the sample or not.

Because they do not threshold events into binary outcomes, probabilistic approaches can
make use of all evidence, not simply the evidence that’s exceeded a certain threshold. As a
result, probabilistic methods have access to greater amounts of information compared to
fixed threshold methods. Furthermore, fixed threshold methods exhibit discontinuities in
their response to minor changes to inputs (effectively, they employ a shifted heavyside
function to transform the input data). As a result, a very minor change to a spectrum (for
example, spectrum file format conversion resulting in a slight change in the precision of real
values) can result in a disproportionately large change in the protein identifications.
Probabilistic methods can smoothly respond to minor changes with correspondingly minor
variations in the results.

Lastly, the confidence measures computed by probabilistic methods can always be
thresholded later to derive a list of identified proteins. Thresholding as a last step preserves
the extra information carried in probabilities. Furthermore, the probabilities can be used to
assess the global and local false discovery rates (the latter is sometimes called the “posterior
error probability”).

Caveats to probabilistic approaches
Due to the reasons described above, truly probabilistic methods (i.e. methods that compute
the actual probabilities of peptides and proteins) are better tools than qualitative heuristics
like parsimony and other fixed threshold methods. However, it should be noted that
computing exact probabilities is a difficult task. Probabilistic methods are relying on a

Serang et al. Page 3

J Proteome Res. Author manuscript; available in PMC 2013 December 07.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



number of assumptions to model the mass spectrometry process. When these assumptions
are not realistic, their application is reminiscent of an incorrect hard-edge decision, and the
resulting probabilities may become biased or skewed.

Some published attempts to create truly probabilistic methods implicitly make unrealistic
assumptions, and are anecdotally known to exhibit a behavior similar to fixed threshold
methods (i.e. they work very well in some settings but occasionally perform very poorly).
One common hallmark of such behavior is a large number of peptides and proteins assigned
probabilities of 0 and 1. The quintessential motivation of probabilistic approaches is that
they respect the uncertainty inherent in inference; models that numerically favor certain
results (i.e. probabilities of 0 and 1) do not comply with this, and thus are not substantially
more useful than heuristics and fixed threshold methods. Likewise, numeric methods
derived in an opaque manner are frequently rife with unrecognized assumptions. These
methods behave probabilistically only when those assumptions are met, and so they are also
not substantially superior to heuristics and fixed threshold methods. Recognizing and
respecting uncertainty is of paramount import, even in the case of making assumptions.

For these reasons, we favor probabilistic methods that clearly state their assumptions. We
also prefer simple methods over complex ones, whose inner workings are less transparent.
These simple and clearly derived methods are frequently (but not necessarily) Bayesian in
nature, because generative Bayesian models can describe the causal relationships in a mass
spectrometry process in a simpler and more interpretable manner.

Methods
Sample preparation

Human Du145 prostate cancer cells were washed in cold PBS, and lysed in lysis buffer (8M
urea, 0.1% RapiGest (Waters, USA), 100mM ammonium bicarbonate). Once lysed, the
sample was diluted 8-fold with 100mM ammonium bicarbonate and protein concentration
was measured by BCA assay. The proteins were denatured with 5 mM TCEP and free
sulfhydryl bonds were alkylated with 10 mM iodoacetamide. The proteins were digested
with trypsin. HCl was added to a final concentration of 50 mM and TFA was added to a
final concentration of 1%. Peptides were desalted using Waters C18 Sep-Pak.

LC-MS/MS analysis
LC-MS/MS analysis was performed using a IntegraFrit (New Objective, USA) capillary (75
µm ID) packed with 20 cm of ReproSil Pur C18-AQ 3 µm beads (Dr. Maisch GmbH,
Germany), and joined by union to a PicoTip (New Objective, USA) pulled silica tip (20 µm
ID). Prior to loading the column, sample was loaded onto a fritted capillary trap (75 µm ID)
packed with 2 cm of the same material. For each sample injection, 1 µg total protein was
loaded onto the trap using an Agilent 1100 binary pump. Each sample was separated using a
binary mobile phase gradient to elute the peptides. Mobile phase A consisted of 0.1% formic
acid in water, and mobile phase B consisted of 0.1% formic acid in acetonitrile. The gradient
program consisted of three steps at a flow rate of 0.3 µL/min using an Agilent 1100
nanopump: (1) a linear gradient from 5% to 40% mobile phase B over two hours, (2) a 10
minute column wash at 80% mobile phase B, and (3) column re-equilibration for 30 minutes
at 5% mobile phase B.

Mass spectra were acquired on a LTQ Velos Orbitrap (Thermo Fisher Scientific) mass
spectrometer operated on an 11-scan cycle consisting of a single high-resolution precursor
scan event at 60,000 resolution (at 400 m/z) followed by ten data-dependent MS/MS scan
events in the LTQ using collision induced dissociation (CID). The data-dependent settings
were a repeat duration of 30 seconds, a repeat count of 2, and an exclusion duration of 3
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minutes. Charge state rejection was enabled to fragment only 2+ and 3+ ions. The datasets
are available in raw format via ProteomeCommons.org Tranche, using the following hashes:

ZqZiUrS98AyU1hYCu76AMNKtkl2x7soToeL8xMQtLoJnR+
Oh48DRF7CBtO6hv+84dCFxqmXICpd/0R1UZXM6/
IDApggAAAAAAAACWw==
CpQQAfZEh65p4EkUZBLZpCZ65K1PEw90EBt/j6pS/
mnf+shkDfuK78+tLtHSRfIkyB0OnUGuusi/+gUx9XSy+
p2pHxEAAAAAAAACXg==

Data processing
The MS1 data were deconvolved and the monoisotopic mass and charge state of the analytes
were determined using Hardklör v2.0110. Next, we used Krönik v2.02 to determine those
features that were observed in at least five consecutive scans, with a gap tolerance of one
scan.

The fragmentation spectra were searched with Crux v1.3511, using the sequest-search
command. We used a precursor mass window of ±10ppm, and no missed cleavages were
allowed. The datasets were searched against the 20185 protein sequences of the human
Swiss-Prot 2011_09 database. All the datasets were also searched against a decoy database
obtained by reversing the protein sequences from the target database. We used Bullseye12

v1.3 to assure that the retention time of each peptide was assigned to the apex of its
corresponding feature.

The resulting datasets were post-processed using Percolator v2.0113. Each replicate was
processed separately using the two different inference protocols. Parsimony found the
smallest set of proteins explaining the peptides identified at a 1% peptide-level q-value
threshold. In the probabilistic method, protein posterior probabilities were calculated using
Fido14. Protein q-values were calculated as the average posterior error probabilities of all
proteins scoring as well or better than the current protein15. The probabilistic method used a
1% q-value protein-level threshold. Figure 2, compares the number and percent of proteins
found by parsimony and a probabilistic approach in three, two, or one of the three replicates;
the probabilistic approach identifies more proteins (both by number and percentage)
reproduced in all three replicates.

Comparison of parsimony and probabilistic approach
To test our claim that parsimony lowers the reproducibility as compared to probabilistic
methods we provide a simple comparison over three replicate analyses of Human Du145
prostate cancer cells. For each replicate we first searched our data with Crux11 and
Percolator13, and subsequently inferred lists of proteins with both parsimony and a
probabilistic method. We subsequently evaluated each of the two protein inference strategies
by how concordant its inferred protein lists were over the replicates.

The first strategy was to deduce the most parsimonious set of proteins explaining the
peptides at a 1% peptide-level q-value threshold. Although parsimony is equivalent to a,
generally speaking, computationally prohibitive problem (the NP-hard set cover problem), it
is in practice possible to solve for the graphs produced from a fairly specific digestion
(trypsin, in this case).

The second strategy was to infer proteins by a Bayesian probabilistic method, Fido14. Fido
generatively models the mass spectrometry process using a Bayesian network of noisy-OR
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nodes. The Fido method marginalizes to compute protein and protein group-level
probabilities by effectively summing over all possible sets of proteins present. Although we
chose to use this particular probabilistic model, the general idea presented (i.e. recognizing
uncertainty) is more general than this specific model.

Using the Fido method, we demonstrate that parsimony slightly lowers the reproducibility of
the proteins identified (Figure 2) at a thresholds for the two methods that accept a similar
number of identified proteins.

Discussion and recommendations
The predominant strategies regarding parsimony and protein grouping arose in an attempt to
make protein identifications more reliable and to keep researchers from a more-
identifications-is-better mentality; however, it is not the inherent uncertainty of protein
inference that results in spurious or unreliable conclusions. Instead, it is only when this
inherent uncertainty is met with unstable or overconfident assumptions that we decrease our
ability to reliably characterize the contents of a protein sample. Viewed through this lens,
parsimony and protein grouping actually arrive at overly concrete conclusions, making
implicit assumptions such as, “When the peptides from one protein form a subset of the
peptides from a second protein, the first protein is never present.” This rule of thumb may be
generally true, but not universally true; the uncertainty should be reflected in the results by
avoiding the all-or-nothing thresholding used by parsimony.

From a probabilistic point of view, the peptide evidence in case 1 in Figure 1 may strongly
suggest that at least one of the proteins is present, it does not make a strong case that any
one particular protein is present. This uncertainty, although not desirable, must simply be
accepted as fact. Similarly, in case 2 protein A will have a higher probability, and B and C
will have lower probabilities, but not enough to be absolutely certain that A is present and B
and C are absent. Probabilistic methods are the only approaches that appropriately quantify
this uncertainty. Thus, using truly probabilistic methods with assumptions that model the
actual experimental setup is the best way to recognize and quantify the uncertainty inherent
in protein identification. In the past 10 years, several probabilistic methods for protein
identification have been published8;9. Although the current generation of probabilistic
models are far from perfect, there exist several methods that are make relatively few
assumptions where truth is unknown and are simple enough to be employed without great
caution. As probabilistic models grow in popularity, more advanced and sophisticated
methods will certainly follow. These methods will undoubtedly enable and advance mass
spectrometry by bottling some skills from the experts who design them. In the past twenty
years, many similar advances have been made in fields like image analysis or web search,
and these advances have enabled a far greater reach of experts by allowing them to design
models used by thousands of researchers.

However, as probabilistic models progress, we recommend that they frankly disclose their
shortcomings. Mass spectrometrists have understandingly become increasingly resistant to
believe the hype typically promulgated by new computational and statistical methods. By
honestly stating and illustrating the shortcomings of statistical methods, we can earn the
trust of those who use our tools. In review, we must reward methods that disclose and
discuss their own flaws and weaknesses; these methods show greater respect for the
uncertainty inherent to mass spectrometry-based inferences.

Likewise, unless multiple hypothesis testing is performed, protein grouping should be
performed before the experiment. This can be performed by merging entries in the protein
database that are similar. For example, proteins could be grouped if they stem from the same
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or a similar gene. Alternatively, proteins could be grouped if they contain sufficiently
overlapping peptide sets or if the proteins have a high degree of sequence similarity (as
judged by a pairwise alignment). Grouping can be done in any way the user wants, as long
as it is done before the experiment. At the very least, protein grouping must be performed
consistently between replicate experiments in order to give a comparable and interpretable
meaning to groups.

The Paris guidelines significantly advanced the field by first recognizing and addressing
important pitfalls that arise when identifying proteins or reporting results; however, for the
continued growth of mass spectrometry-based proteomics, we must continue to look
critically on accepted practices and their unintended consequences and formalize the
questions of genuine interest.

Hard-edge decision making can be beneficial when the conclusion drawn is almost certainly
correct. In this case, probabilistic methods and hard-edge decisions will agree (probabilities
will underscore the certainty of the outcome); however, in many aspects of fields like
proteomics, this sort of certainty simply does not exist. As a field, we do not truly believe
that two high-scoring peptide identifications certainly imply a present protein; likewise, we
do not genuinely believe that a subset protein (e.g. protein B in case 2) is certainly not in the
sample. Good decision making, whether probabilistic or absolute, occurs when we make
assumptions only where we truly believe them, and where we are self-critical and
forthcoming about the assumptions that we make from convenience, but do not fully
endorse.

When, despite underlying uncertainty, hard-edge decisions must be made, we recommend
making them at the last possible moment. As error (e.g. from an incorrect assumption or
presumption of certainty) propagates, it compounds16. In the case of protein inference, a
small amount of error from hard-edge decisions at the peptide level can result in much
increased error at the protein level. When hardedge decisions cannot be avoided, it is
preferable to apply them at the protein level, and thus prevent them from spreading and
growing into pernicious errors.

Uncertainty itself is not the enemy; it is only when we make overreaching conclusions in the
face of uncertainty that harm is done. A community that rewards the frank acknowledgment
of the uncertainty in protein identification will itself be rewarded. Including probabilistic
analyses in our practices and standards for publication will encourage us to be honest with
ourselves about ambiguous results, and help distinguish these from highly informative,
reproducible discoveries.
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Figure 1. Three possible outcomes for a proteomics experiment
Each case is depicted as a Bayesian network (arrows represent causal dependencies in the
experiment, by which proteins create peptides). (Case 1) Proteins A, B, and C are
ambiguously identified by peptides 2 and 3. (Case 2) Identical to case 1, but with one
additional identified peptide, mapping to protein A. (Case 3) Identical to case 1, but with
one additional identified peptide, mapping to protein C.
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Figure 2. Overlapping protein identifications from three analyses of the same sample
For both methods we counted the number of proteins that were found in all (3/3 replicates),
two (2/3 replicates), or exactly one (1/3 replicates) of the replicates. The relationship
between the sets of proteins identified over the replicates are also shown in form of Venn
diagrams when using parsimony and a probabilistic model. We find that the probabilistic
method finds more proteins that are common to all replicates, and less identifications that
are unique to one replicate, compared to parsimony.
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