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Abstract
Body-machine interfaces establish a way to interact with a variety of devices, allowing their users
to extend the limits of their performance. Recent advances in this field, ranging from computer-
interfaces to bionic limbs, have had important consequences for people with movement disorders.
In this article, we provide an overview of the basic concepts underlying the body-machine
interface with special emphasis on their use for rehabilitation and for operating assistive devices.
We outline the steps involved in building such an interface and we highlight the critical role of
body-machine interfaces in addressing theoretical issues in motor control as well as their utility in
movement rehabilitation.
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Introduction
From the concept of cyborg that was introduced in the late 1950s (Clynes & Kline, 1960;
Wiener, 1950), the idea of integrating humans and machines has recurred in science fiction
and popular culture. In the past two decades, there has been rapid progress in the
development of “body-machine interfaces”1 that provide a link between the human and an
external machine. These interfaces are capable both of extending human capabilities (e.g.,
controlling computers) and of replacing them (e.g., bionic limbs). The general purpose of a
body-machine interface is to enable the user to retain a complete or shared control over the
device through signals derived from the user’s body. This makes it distinct from systems
with autonomous control, where the machine attempts to retain full command, except for
occasional external interventions from the user.

In this review, we provide an overview of body-machine interfaces that are mainly based on
movements, with specific applications to assistive devices and rehabilitation. Our novel
approach to the task of interfacing the human body with external devices is based on two
key aspects:

Corresponding Author: Ferdinando A. Mussa-Ivaldi Sensory Motor Performance Program Rehabilitation Institute of Chicago 345 E
Superior St Room 1304 Chicago IL 60611 USA Ph: 312-238-1230 sandro@northwestern.edu.
1The body-machine interface also shares the abbreviation – BMI - with the better known “brain-machine interface”. This is not merely
a coincidence or an accident of language, since there are significant commonalities between the two concepts. In both cases, the
technological challenge is to decode information about motor intent, and to encode information about the state of a controlled device
into some kind of sensory stimulus. If one rejects the separation between mind and body one may agree that the brain-machine
interface is a particular instantiation – perhaps the most striking - of the body-machine interface.
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1. The possibility to take advantage of new programmable maps between body
motions and their functional and sensory consequences for investigating the
process of motor learning, and

2. The development of a new clinical approach to disability that combines the
facilitation of the access to assistive devices, such as powered wheelchair, with the
development of functional exercises for the recovery of motor functions.

Regarding the first aspect, a body-machine interface offers the opportunity to present
subjects with tasks that they have never experienced before, thus allowing us to explore
learning from a condition that is relatively free from biases due to prior experience. While
the interface establishes a map from body-derived signals to a task space, the learner must
effectively form some kind of inverse – or generalized inverse - of this map in order to
translate a goal in task space into body signals that are appropriate for reaching that goal.
The transformation from neural signals to device commands is at the core of research on
brain machine-interfaces. However, while the brain-machine interfaces effectively bypass
the motor system, the body-machine interface takes advantage of the motor skills that are
still available to the user and has the potential to enhance these skills through their consistent
use.

This utility of the body-machine interface in exploiting and enhancing motor skills plays an
important role in the second aspect of body-machine interfaces, which relates to
rehabilitation. For example, even subjects with severe spinal cord injury (C3 or C4 level of
injury) often retain a significant level of mobility of their shoulder and neck. This residual
ability can be used for exploring the external world and interacting with it. Therefore, in this
situation, a body-machine interface not only aims at providing the control over an external
device, but could also serve as a tool for rehabilitation by inducing the user to frequently
perform body movements that acquire a new functional meaning through the interface.

A brief taxonomy of body-machine interfaces
The scheme of a typical body-machine interface is shown in Figure 1. The first element is
the body, which in this context refers to the human or the animal from which signals are
obtained to operate an external device. These signals can be derived from a variety of
sources. They may be extracted from body motions – goniometers, accelerometers or
pressure switches, - or they may measure some underlying neurophysiological activity -
muscle activity, EEG or neuronal firing. The second element of a body-machine interface
system - the machine - refers to the device or instrument to be controlled. This may be a
device of common use, such as an automotive or a musical instrument; or a tool for people
with movement disorders, such as a bionic limb or a powered wheelchair. The third and key
element is the interface that links the body and the machine. The interface transforms the
body signals into commands for controlling the device. In principle, the link may also
operate in the reverse direction, by encoding the state of the device (or the environment) into
stimuli to be delivered to the user (e.g., cochlear implants). However, the inclusion of
sensory interfaces in body-machine interfaces appears to be a greater challenge than the
decoding of body signals into commands to the machine. Nevertheless, the possibility to
augment the channels for feedback information is of critical importance and the area of
sensory substitution is an active field of research (Amedi, et al., 2007; Bach-y-Rita, 2004;
Bach-y-Rita, Collins, Saunders, White, & Scadden, 1969; Kaczmarek, Webster, Bach-y-
Rita, & Tompkins, 1991; Tyler, Danilov, & Bach, 2003).

Many of the existing interfaces that humans interact with on a daily basis (like computer
keyboards, joysticks, video game controllers or musical instruments) can be termed body-
machine interfaces. However, a characteristic feature of the most recent body-machine
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interface advances has been the development of “learning interfaces”, where human and
machine adapt to each other. This is a dual learning paradigm, in which there is constant
evolution of both systems, although the learning of the two systems – human and machine -
typically operates at different timescales (more details are in the section on “Additional
Design Choices in Building a Map”)

Early body-machine interfaces were used as a means for understanding the basic
mechanisms through which the nervous system controls movement. Litvintsev et al. (1968)
used electromyography (EMG) signals from rats as arguments to a non-linear function,
whose value was then fed back as a pain stimulus to the rat. The authors found that the rats
could learn to control the muscle activity of two muscles by employing search strategies that
minimized the pain experienced. Shortly afterwards, (Fetz & Finocchio, 1971) published the
first experiment in which monkeys were trained by operant conditioning to control the
activity of individual cortical neurons (Figure 2). Similar studies were performed in humans
using goniometers and visual feedback (Krinskii & Shik, 1964; McDonald, Oliver, &
Newell, 1995), showing how body-machine interfaces could provide a useful tool to study
important problems in motor control such as the problem of motor redundancy, i.e., how the
nervous system controlled a system with multiple degrees of freedom.

From a more practical perspective, most recent work on body-machine interfaces involves
learning to control a cursor on a computer display. This approach typically offers great
flexibility: once one learns to move a cursor on a screen, the same control skill can be used
to control other devices (for e.g., typing on a keyboard or driving a wheelchair) by simply
altering the underlying software interface over which the cursor is moving. Several
approaches to cursor control have been developed that are based on various body
movements. These include EMG control (Barreto, Scargle, & Adjouadi, 2000), eye
movements - including electro-oculography (EOG) as well as gaze tracking (Jacob, 1991),
head control devices (see the HeadmouseTM, Origin Instruments, Grand Prairie, TX),
tongue pointing devices (Salem & Zhai, 1997) etc. Apart from cursor control, there have
also been approaches that attempt to directly interface with assistive devices. These include
multiple-DOF robot arms (Ferreira, et al., 2008; Kuiken, et al., 2009; Serruya, Hatsopoulos,
Paninski, Fellows, & Donoghue, 2002), ankle/knee orthosis (Horn, 1972; Popovic &
Schwirtlich, 1988) and wheelchair control (Barea, Boquete, Mazo, & Lopez, 2002; Craig &
Nguyen, 2005; Plotkin, et al., 2010) (Figure 3).

A particular type of body-machine interface that has received a lot of attention is the brain-
machine interface, in which signals from the brain, obtained either invasively through
electrode recordings or non-invasively by electroencephalography (EEG), are directly
interfaced to the machine, thereby completely bypassing movements of the body (for
detailed reviews on this topic, see (Hatsopoulos & Donoghue, 2009; Lebedev & Nicolelis,
2006; Mak & Wolpaw, 2009; Mussa-Ivaldi & Miller, 2003; Wolpaw, 2004, 2007; Wolpaw,
et al., 2000; Wolpaw, Birbaumer, McFarland, Pfurtscheller, & Vaughan, 2002). Brain
machine interfaces are especially relevant to movement disorders such as severe paralysis,
ALS or locked-in syndrome, where there is little or no residual movement control ability.
Aside from such extreme cases, it might be preferable to develop and use body-machine
interfaces that rely on movements for individuals with movement disorders because (i) they
do not have increased risk of surgical complications that are currently present in invasive
brain-machine interfaces, (ii) the bandwidth of body motions is currently an order of
magnitude higher (~5 bits/s) (Felton, Radwin, Wilson, & Williams, 2009) compared to the
bandwidth of decoded neural signals (~0.05 to 0.5 bits/s) (Townsend, et al., 2010; Wolpaw,
et al., 2000). Since brain-machine interfaces have been extensively reviewed elsewhere
(Mak & Wolpaw, 2009; Wolpaw, et al., 2002), here we focus on interfaces based on the
reorganization of body motions.
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Exploiting Features of the Motor Control System
The body-machine interface typically exploits two important and related features of the
motor control system – redundancy and plasticity. The term redundancy refers to the fact
that the human body (even after severe injury) generally has many more degrees of freedom
than the few command signals needed to control devices such as wheelchairs or moving a
cursor on a computer monitor. The plasticity or reorganization comes from the fact that the
body has to assign new functions to the available movement’s ability.

a) Redundancy and flexibility
Redundancy is a key resource of the motor control system. It refers to the possibility to
perform an action in a variety of “equivalent” ways. For example, when we reach for an
object with our hand, we may use multiple configurations of the arm and multiple patterns
of muscle activities. Several hypotheses have been formulated to explain how the Central
Nervous System (CNS) is capable of finding the consistent and stable movement patterns
that are characteristic of skilled performance. Although the abundance of such patterns for a
same task presents a computational challenge for the CNS to solve, redundancy offers the
flexibility that is needed to achieve a given goal when some of the options become
unfeasible. This is critical after traumatic events such as stroke where, despite the loss of
certain body movements, the survivor is still able to find alternative ways of carrying out
daily activities through compensatory strategies (Cirstea & Levin, 2000)

Redundancy offers two important resources for body-machine interfaces: (i) the possibility
to explore an overabundant number of signals for extracting the best sub-set of combinations
to be used for interfacing with the external world, (ii) the possibility to find new natural
subsets of solutions, either when the users’ ability decreases for the progression of a
disorder, or as it increases because of the benefits of a treatment as well as a positive
consequence of practice and motor learning.

b) Reorganization and plasticity
The exploitation of redundancy also requires a reorganization (or “remapping”) of the
residual ability to control body motions. In a body-machine interface, the signals collected
from the body, are used for achieving new functional goals. When subjects use movements
of the eye (Barea, et al., 2002; Philips, Catellier, Barrett, & Wright, 2007) head (Craig &
Nguyen, 2005), shoulders (Casadio, et al., 2011; Casadio, et al., 2010) or tongue (Huo,
Wang, & Ghovanloo, 2008) for driving a wheelchair or piloting a robotic arm, they associate
these parts of the body with functions that before the injury were performed by other parts.
One remarkable feature in this reorganization process is that the assistive devices are no
longer treated as external objects appended to the body, but rather they almost become an
integrated, essential part of the body (Seymour, 1998). Understanding the extent of such
plasticity in the brain, especially after injury, is an important consideration when designing
body-machine interfaces for rehabilitation and assistive purposes.

Steps in Building a Body-Machine Interface
Figure 4 illustrates schematically the steps involved in building a body-machine interface.
To illustrate these steps, we make reference to a body-machine interface that we have
developed recently. The interface consists of a virtual environment, in which various actions
(such as driving a virtual wheelchair or playing a video game) are performed by controlled
motions of the shoulder complex. Subjects with high-level spinal cord injury used this
interface to control a virtual wheelchair and to perform other operations, such as playing a
computer game (Casadio, et al., 2011; Casadio, et al., 2010).
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1. Acquisition of data signals
The first step in building a body-machine interface is to acquire signals from the body. As
mentioned in the introduction, a wide array of signals are available for this purpose,
including those that are directly involved with the production of movement and forces (such
as kinematics, dynamics, EMG, and pressure data), and those that are precursors to
movement (such as EEG and neuronal activity).

In our interface to control a virtual wheelchair, we derived the control signals from shoulder
motions. We placed active markers with an infrared light source on the subjects’ upper body
(two on each arm). Each marker was monitored by an infrared camera. The motion capture
software extracted the two coordinates of the marker’s centroid in image space.
Alternatively, it is possible to capture the upper body motions with accelerometers and
gyroscopes.

2. Transforming body signals into the control space
The second step in the development of the body-machine interface is to map the acquired
body signals onto the control space, i.e., the space defined by the commands to the external
device. We consider two alternative approaches:

Pattern Recognition
In pattern recognition, the acquired body signals are represented as a multi-dimensional
“feature vector”. Depending on the values of the different features, the vector is classified
into one of several patterns according to the method used. For example, consider the case of
two body signals (e.g. EMGs from two muscles) where the feature vector consists of the
amplitude of the signals (Fetz & Finocchio, 1971). This feature vector spans a 2-D space,
which may then be divided into four quadrants using a threshold on each of the two signals.
Depending on the quadrant in which the feature vector falls, a different operation of the
machine is triggered – e.g., making the cursor move left, right, forward or back. In practice,
more sophisticated classification techniques (e.g. Linear Discriminant Analysis, Bayesian
classifiers or neural networks (Duda & Hart, 1973; Gish, 1990; Wan, 1990) are used to
classify multidimensional signals into several distinct patterns. This approach has been
successfully applied for controlling bionic limbs (Kuiken, et al., 2009; Saridis & Gootee,
1982; Zecca, Micera, Carrozza, & Dario, 2002). For example, EMG signals from multiple
muscles are first classified as belonging to one of several distinct grasp patterns.
Subsequently, the interface drives the bionic arm into the appropriate grasp configurations,
enabling the user to interact with objects in the environment.

Building a continuous map
A second approach to transforming body movements into control signals is through the
definition of a continuous map. Several different methods share the same basic mechanism:

a map, W, from the N-dimensional vectors in body signal coordinates , to

the M dimensional control vector , with M≤N:

The function W may be linear or non-linear (Table 1). The full dimensional representation
of the embedded signals can be recovered via an inverse transformation if M=N (and W is
not singular) or via a right inverse transformation if M<N:
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In the virtual wheelchair example, we take the latter approach and use a linear map to
transform the acquired signals. The four cameras together provide an 8-dimensional body-
signal vector (each camera obtaining the two-dimensional position of a marker in its image).
The commands to the wheelchair are two-dimensional controls for the linear speed (v) and
the angular rotational speed (ω) of the wheelchair. Therefore the 8-dimensional body-signal
space is effectively mapped to a 2-dimensional control space. This implies that there are
redundant solutions: multiple body signals producing the same device-control signal. The
“map” between the subject’s actions and the behavior of the machine is established by a
calibration procedure.

We used two different approaches for building the map. In the first approach, we asked
subjects to maintain specified postures for pre-specified control commands (e.g. move
forward, move backward, turn left, turn right, stop) (Pressman, Casadio, Acosta, Fishbach,
& Mussa-Ivaldi, 2010). The map, W, from body signals to controls was derived by least-
square regression over the acquired x, u pairs. In a second, alternative approach, we used
principal component analysis in the space of possible movements (Casadio, et al., 2011;
Casadio, et al., 2010).This method is a form of unsupervised learning (Sejnowski & Hinton,
1999). Subjects were asked to move their arms and upper body and were encouraged to
freely explore the available and comfortable space of shoulder motions. Then, we extracted
the first two principal components corresponding to the greatest movement variation. This
approach is based on the assumption that in general, the axes along which there is greatest
variance correspond to movements that can be easily performed with large range of motion
(although this is not always the case – see section on Dimensionality reduction below). After
deriving the two principal components with highest variance, the corresponding
eigenvectors were laid over the monitor x,y axes (Figure 5). Simple scaling and rotations
were applied to the map W, so as to obtain the most intuitive map between the motions of
the body and the geometrical properties of the device commands (move forward, backward,
left or right).

The calibrations based on both approaches were tested on impaired and unimpaired
volunteers. Some control subjects preferred the least-squares regression method because
using a limited number of selected postures allowed them to establish the mapping in a more
straightforward way. However, this method resulted not to be a good candidate for severely
impaired SCI subjects, who encountered difficulties in choosing or maintaining four distinct
postures. We found that the unsupervised PCA method based on their exploratory
movements, provided a customized map that took into account the subjects’ preferences and
residual abilities and was easy to learn during practice (Casadio, et al., 2010).

We need to stress that the issues involved in the calibration procedure depend critically on
the application. For example, to drive a wheelchair, it is important to consider design issues
that not only include the ease of performing movements, but also take into account stimulus-
response compatibility. For example, moving the shoulders forward should result in the
wheelchair moving forward rather than moving backward or turning to one side. However,
in cases where the body-machine interface is an experimental tool to investigate motor
learning (Liu, Mosier, Mussa-Ivaldi, Casadio, & Scheidt, 2011; Mosier, Scheidt, Acosta, &
Mussa-Ivaldi, 2005), such design constraints may not be relevant. In general, several other
design choices are available for building a map. Here, we briefly discuss some of the most
critical ones.
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Additional Design Choices in Building a Map
Fixed and Time-varying Maps

At present, the disabled users of assistive devices must learn to perform pre-defined control
actions. However, new and future generations of body-machines interface may succeed in
overturning this constraint and have the devices “learn their users” by adaptively modifying
the interface so as to match their evolving motor skills. This dual learning or “coadaptive’
paradigm becomes especially critical in the design of assistive devices for movement
disorders, like spinal cord injury, where depending on the site and severity of the injury,
there is wide variation in residual movement abilities. Then, an adaptive body-machine
interface may be customized to the user’s residual mobility, thus enabling to strike a balance
between two competing aims: convenience, in terms of ease of device control, and
rehabilitation, through the focused exercise of underutilized muscles.

The body-machine interface can be based on two different kinds of maps: a fixed map,
where the transformation matrix W is initially set with a calibration procedure that remains
fixed throughout interface use; or a time-varying map where W(t) changes, based on the
data acquired during the interface use (Table 1). In the latter case, as subjects use of the
interface, movement information is collected to “reshape” the mapping matrix based on a
continuous data stream. The co-adaptation of the interface may provide the means for
updating the performance of the system online, without need to repeat the initial calibration.
The online adaptation of the interface map is likely to result in a significant enhancement of
learning rate and also in a higher level of final performance, in terms of control accuracy,
timing, and motor coordination. However in some cases the online modification of the
control map may not result in appreciable performance gains. Instead, it is also possible to
observe adverse effects of map changes, because these changes may confuse the interface
user and impair the learning process. In such cases, the time interval between changes must
be increased and a stronger smoothness constraint can be imposed by raising the relative
influence of data collected in the preceding epoch, and by placing an explicit threshold in
the maximum change of W. The advantages or disadvantages of a fixed or a time varying
mapping may vary depending on the particular application and on individual preferences or
ability.

Dimensionality Reduction
Even with significant levels of disability, people can still generate a number of physiological
or motion signals, which exceed the number of control variables needed for operating
assistive devices and interacting with the external world. These signals define a high-
dimensional space, where one can choose among a spectrum of possibilities to “settle” into
low-dimensional control subspaces, or manifolds. The map between the body and the
control signals has a critical role for establishing these subspaces by finding the patterns that
are most natural or easiest to produce, and for using these patterns to generate the control
signals without imposing hard constraints. In the case of signals derived from body motion,
the map can be based on signal combinations, which are consistent with natural patterns of
control, as established by biomechanical couplings and muscle synergies. Dimensionality
reduction techniques can lead to the construction of the most appropriate map by identifying
candidate “motor primitives”. Although there is significant debate over the use of terms such
as synergies and motor primitives (Giszter, Patil, & Hart, 2007; Latash, 2008; Ting &
Macpherson, 2005; Ting & McKay, 2007), here by “motor primitive” we merely refer to a
group of body signals that the device operator controls as a single unit. Further, we assume
that combinations of motor primitives generate a broad repertoire of control signals.
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There are several approaches to dimensionality reduction (see (van der Maaten, Postma, &
van den Herik, 2009) and some of these techniques have been used to identify motor
synergies in EMG and movement data (d’Avella, Saltiel, & Bizzi, 2003; Flanders, 1991;
Kargo & Nitz, 2003; Santello, Flanders, & Soechting, 1998; Soechting & Lacquaniti, 1989;
Tresch, Saltiel, & Bizzi, 1999). A common feature of these techniques is their effectiveness
in reducing the dimension of a large signal set by identifying relationships between
subgroups of signals. Here, we will briefly consider three different and well established
methods, each one with specific merits and drawbacks: principal component analysis (PCA),
independent component analysis (ICA) and the Isomap method. The first two methods
assume the linear combination of sources, whereas the last is a nonlinear method. All these
methods can be applied to a large data set of body signals.

Principal Component Analysis (PCA)—This is the simplest approach from an
algorithmic point of view (Jolliffe, 2002). It is based on the decorrelation of signals by
diagonalization of their covariance matrix. Dimensionality is reduced by ranking the
eigenvalues and keeping only the eigenvectors that, combined, can account for the desired
amount of variance. The PCA algorithm derives a set of orthonormal basis vectors (the
principal components) that span a subspace containing the desired amount of data variance.
PCA has been widely used for identifying components of movements and
electrophysiological data (Flanders, 1991; Holdefer & Miller, 2002; Santello, et al., 1998).
A significant limitation of the method arises from its being linear and based on orthonormal
eigenvectors. Both properties are often perceived to limit the biological relevance of PCA.
The mechanics of force generation by the muscles is characterized by significant non-
linearity. Furthermore, the skeletal structure of the limbs is such that forces produced by
independently activated muscles are generally acting along lines that are not mutually
orthogonal. Here however, one is relatively free from such considerations as one is only
seeking a decomposition that is appropriate for the control of a device. PCA was
successfully used for building maps between the residual upper body movements of high
level spinal cord injury subjects and a two-dimensional control for an external device
(Casadio, et al., 2011; Casadio, et al., 2010).

Independent Component Analysis (ICA)—This is a more recent method (Hyvärinen,
Karhunen, & Oja, 2001) leading to components that are maximally independent in a
statistical sense. ICA minimizes the mutual information between these components and not
their correlations as PCA does. Unlike PCA, ICA does not impose orthogonality. However
like PCA, ICA assumes that the observed signals come from a linear mixing of sources. ICA
can be considered as a refinement of PCA, which minimizes second and higher order
statistical dependencies in the input. ICA involves a pre-processing or “whitening” stage in
which the inputs are decorrelated and are set to have unit variance. If the underlying sources
are Gaussian and the transformation from signals to sources is orthogonal, then ICA and
PCA coincide. ICA has been applied successfully to the analysis of motor coordination (see
for example (Kargo & Nitz, 2003). A drawback of ICA over PCA is its greater
computational complexity, which may lead to a higher degree of arbitrariness in the
outcome. In summary, the two methods mentioned above offer different advantages – PCA
is not arbitrary in the sense that a data set has only one particular group of eigenvectors.
ICA, on the other hand has more “control knobs”, which are useful when attempting to
extract more biologically plausible components. However, this leads to greater arbitrariness
because depending upon how these control knobs are set, there may be different ICs
extracted from the same data. Given these tradeoffs, if one faces the task of engineering a
control map for a body-machine interface, the greater simplicity of PCA may be preferable
to the higher versatility of ICA because in most cases, the motor system can learn (albeit at a
slower rate) non-intuitive control of external devices (Mosier, et al., 2005).
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Isomap—Nonlinear forms of dimensionality reduction are intuitively appealing. The motor
primitives underlying the natural control of movement are likely to span not a linear vector
space but a curved surface, or manifold. Isomap is based on the simple idea of constructing a
map of local Euclidean distances between the data points. These local distances allows one
to estimate geodesic lines on the embedded hypersurface by selecting paths of minimum
length that are compatible with the distribution of data points. The Isomap algorithm has
been proven to be effective for nonlinear pattern recognition and for the classification of
behaviors (Tenenbaum, de Silva, & Langford, 2000).

In summary, the dimensionality reduction methods discussed above are different and thus
present different advantages in relation to a) the dimension of the reduced space and b) the
structure of the motor primitives that they assume or generate. Further, in real-time
applications, computation time may also play an important role in the method used, leading
to an advantage for linear methods, such as PCA and ICA, whereas in the analysis of natural
behavior, nonlinear methods like isomap may be more adequate to capture the nonlinear
properties that are associated with the geometrical and mechanical structure of the
musculoskeletal system. Here, we have chosen to focus on linear maps for considerations of
simplicity. However, researchers may consider that a body-machine interface would be more
effective and easier to learn if the interface requires control that is similar to neurobiological
control.

Decoding and Prediction
The maps discussed in the previous section are of the static (or algebraic) type (see Table 1).
They transform a set of body signals at a particular instant into the coordinates of a control
point by means of a linear operator (PCA and ICA) or a non-linear function. As such, these
maps do not have a predictive nature. In contrast, a crucial issue in brain-machine interfaces
is to decode motor intention from a segment of neural recordings (Serruya, et al., 2002).
This is a task that has dynamical rather than static nature. Wu and collaborators, in John
Donoghue’s lab have approached this task as a state estimation problem (Wu, et al., 2003).
They considered, at each time interval, k, the neural activity recorded from the motor cortex,
z k in the framework of Kalman theory (Kalman, 1960) as the observation of the state of
motion of the hand, xk:

Here, H is the observation matrix and k is the observation noise, which is assumed to be
Gaussian, with zero mean and covariance Q. The neural activity is typically a vector of
recorded firing rates over a period of time ending at tk. The state of the arm is a vector of
position, velocity and acceleration. In this sense, it is not the state in the classical sense –
i.e.position and velocity. By adding the acceleration, it is possible to represent the hand
dynamics as a linear equation

The matrix A describes the transition to the next state and the noise Wk is, again, assumed to
be Gaussian, with covariance W. Without going further into the computational details, the
approach of Wu and colleagues is based on two steps. First the parameters of the models –
i.e. the matrices H, A, Q and W are estimated based on least squares procedures over neural
and kinematic data. Then, the standard Kalman procedure is used to predict the next state –
i.e. the “intended state” - xk+1 fro the current state k and the current neural activity k. Figure
6 shows a comparison of estimated versus actual trajectories, over periods of 3.5 seconds.
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The Kalman filter is only one of many possible approaches to state estimation and is limited
to linear models corrupted by Gaussian, zero mean noise. Other methods include the Wiener
filter (Wiener, 1949) and various form of non-linear estimators, including modified Kalman
models (Wu, et al., 2004). The plausibility of assuming Gaussian noise in the modeling of
neural processes has been called in question by the observation that these processes are often
characterized by noise whose amplitude is not fixed but depends upon the amplitude of the
control signals(Harris & Wolpert, 1998). Despite these limitations, the linear Kalman filter
has been proven to be remarkably effective as a method to map neural commands into
control signals in brain-machine interfaces.

While the concept of decoding motor intention from neural activity has been applied to
brain-machine interfaces, it is possible to use a similar paradigm in a body-machine
interface. In this case, the observation variable could be a collection of body signals
recorded over a time interval and used to predict the intended state of motion of the control
point. In a way this approach corresponds to predicting a future motion from past movement
history. As for the brain-machine interface, the most critical issue is to estimate the optimal
delay and extent of time over which the observation variable must be collected in order to
predict the desired motion of the control point.

3. Control
The next step in the development of a body-machine interface is to build a control policy
that serves as an interface between body-signals and the signals for the control of the
external device. The aim of the control policy is to define an easy and intuitive mechanism
to provide the users with naturalistic control, i.e., with the ability to control the device
without excessive cognitive or motoric difficulty.

From the perspective of rehabilitation, the goal of attaining naturalistic control raises an
interesting question. Are assistive devices -such as wheelchairs- to be considered as
elements of the external world or as new “body parts”? A control engineer is likely to take
the former viewpoint and to consider the assistive device as an external element. However,
psychologists have highlighted how for disabled individuals these devices, through practice,
become part of the body schema (Seymour, 1998) i.e., these devices are considered as
essential parts or extensions of the body. This fundamental observation has to be taken into
account for designing appropriate controllers. For example, a wheelchair for a high level
SCI user becomes analogous to the legs of an able-bodied individual because it is the
indispensable means for regaining mobility (Papadimitriou, 2008). Therefore, it is important
that the controller establishes, whenever possible, a form of continuous mobility analogous
to natural control mode of the nervous system for the limbs motion.

Discrete/Continuous
There are two broad classes of control – continuous and discrete. A continuous control
system is driven by variables defined over continuous intervals of real numbers. In contrast,
discrete control is based on control variables that can only take a finite set of values.
Electrically powered wheelchairs are controlled both in continuous and discrete modes. An
example of continuous control is the joystick (Dicianno, Cooper, & Coltellaro, 2010) that
provides a means to gradually regulate the speed and direction of movement. In contrast, for
individuals with severe paralysis, that cannot use a joystick controller, the approaches are
based on the discrete control methods. For example, the sip-and-puff system offers a limited
vocabulary of commands that the wheelchair driver issues by sucking and blowing on a
tube. This is true also for head and chin switches (Nisbet, 1996) and a number of
experimental interfaces such as controllers based on EMG signals (Ferreira, et al., 2008;
Simpson, 2005), EEG signals (Mak & Wolpaw, 2009), eye movements (Barea, et al., 2002;
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Philips, et al., 2007), sniffing (figure 3), head movements (Craig & Nguyen, 2005), and
tongue movements (Huo, et al., 2008).

Integrating Discrete and Continuous Control
In general, the interactions with computers and the operation of an assistive device require
the ability to combine discrete and continuous control actions. For example, in a computer
one uses the mouse to move a pointer (continuous) across the display and the keyboard
(discrete) to input text. Similarly, when controlling powered wheelchairs, the forward speed
and the direction may be regulated continuously, whereas discrete commands are issued to
power on or off the device, to generate an emergency stop, and to set important control
parameters such as maximum speed.

In body-machine interfaces, the discrete and continuous control actions may not share the
same control space. In particular, they have separate control spaces when the control
variables are different and depend on different signals from the body. Since the
dimensionality of the body signals usually exceeds the number of control variables, it is
possible to design the interface so that it has two separate sets of body signals for continuous
and discrete control and, consequently, two distinct control subspaces.

Instead, if the two controllers share the same control space, the discrete control elements –
such as a set of switches – can be implemented by recognizing in the continuous control
space a number of gestures, or by partitioning the space of the control point in contiguous
regions, or “keys”. To select a key, the subject moves the control point inside the key’s
region and keeps it there, at rest for a short time. In contrast, continuous control is obtained
by associating the controlled variable- e.g. the position of a cursor – with the instantaneous
body-configuration signals. The transitions between continuous and discrete control could
be established by an additional signal, a “switching gesture” that toggles the continuous map
and the keyboard map. This hybrid discrete/continuous control of body-machine interfaces
raises some issues of motor learning. For example, one should consider whether there may
be interference between learning a continuous map and learning a discrete map. Can motor
redundancy prevent or mitigate such interference? Because of redundancy, it is possible to
associate different body configurations (i.e. different combinations of the same
overabundant set of body signals) to the same coordinates of the control point, thus
assigning to the control point different functions depending on the configuration that is used.
In principle, this may allow the formation of separate and independent maps. Studies of
motor adaptation to force fields have shown that indeed by associating different arm
configurations to the same hand position subjects could learn multiple force fields without
interference (Gandolfo, Mussa-Ivaldi, & Bizzi, 1996).

Feedback and Sensory Substitution
The final step in building the body-machine interface is to complete the loop through some
sort of feedback. This is a crucial point because, as Arthur Prochazka pointed out
(Prochazka, 1996) “you can control only what you sense”. Sensory feedback may be
delivered either by augmenting existing sensory modalities or by replacing lost sensory
modalities. For closing the control loop of many body-machine interfaces, the simplest and
most used feedback modality is vision, followed by auditory feedback. These sensory
channels can be manipulated by using different Virtual reality (VR) and/or Augmented
Reality (AR) tools. A more advanced approach would involve the integration of other
feedback modalities, such as those used for augmenting telepresence - sensing pressure,
force, and vibration (Alm, Gutierrez, Hultling, & Saraste, 2003; Caldwell, Wardle, Kocak,
& Goodwin, 1996; Chouvardas, Miliou, & Hatalis, 2008; Okamura, Cutkosky, &
Dennerlein, 2001; Shimoga, 1993). Feedback modalities that are fundamental for control of
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body posture and movements (e.g. tactile feedback and proprioception) are also likely to
improve body-machine interface performance because they require less attention when
compared to visual feedback. In this framework, the concepts of redundancy and remapping,
described above for the forward flow of motor commands, are important also for the
creation of new pathways for sensory feedback.

Some of the first attempts at sensory remapping and substitution were proposed by Bach-y-
Rita and colleagues (Bach-y-Rita, 1999, 2004; Bach-y-Rita, et al., 1969; Kaczmarek, et al.,
1991). These investigators transformed visual images into tactile feedback for allowing
blind people to “see”. They converted images from a video camera into a tactile stimuli
using an electrode array placed on the subject’s back (Bach-y-Rita, et al., 1969). Based on a
similar idea, they also built a device to allow subjects with damaged vestibular nuclei to
regain their postural stability by means of an electrical stimulator placed on the tongue
(Figure 7, left panel) that reacted to a sensor that measured the subject’s motion (Tyler, et
al., 2003). In addition to transmitting stimuli as electrode impulses, another innovative
approach that has recently gained attention is “targeted reinnervation” (Kuiken, 2006;
Kuiken, et al., 2009; Kuiken, Miller, Lipschutz, Stubblefield, & Dumanian, 2005; Kuiken, et
al., 2007), a technique that allows amputees to not only to control prosthetic limbs, but also
to sense the missing limb (Figure 7, right panel). In the targeted muscle reinnervation
procedure, residual nerves that used to supply the amputated limb are transferred to a target
muscle which is denervated. This target muscle is then reinnervated by the residual nerves
and the signals at the muscle can be used to control prosthetic limbs. In addition to this
motor component, there has also been a “targeted sensory reinnervation” procedure where
the skin of the target muscle is denervated and is later reinnervated by the afferents from the
residual nerves. In this case, touching the reinnervated skin provides a sensation of the
missing limb, thereby closing a sensory feedback loop.

Understanding Motor Learning with Body Machine Interfaces
As mentioned in the introduction, body machine interfaces also provide a new and non-
invasive framework for answering some fundamental questions in motor control and
learning. For example, a question relevant to motor learning concerns the change in
movement variability with learning (Darling & Cooke, 1987; Ranganathan & Newell, 2010).
In particular, in redundant tasks, certain combinations of motions in different degrees of
freedom do not alter task performance. The existence of this “null space” can be visualized
by moving the arm while keeping the index finger at a fixed point on a table. The presence
of this null space allows variability in execution while still maintaining task performance.
This is consistent with a number of empirical observations, including an early one by
Nikolai Bernstein (Bernstein, 1967), who investigated the hammering actions of expert
blacksmiths and described the contrast between the high variability in arm motions and the
accuracy of the impacts between the hammer and the head of the nail. Therefore, given that
null space variability does not directly contribute to task performance, how does the CNS
regulate variability in the null space with motor learning?

One hypothesis that addresses this question is the “uncontrolled manifold” (UCM)
hypothesis2 (Latash, Scholz, & Schoner, 2007; Scholz & Schoner, 1999). According to the
UCM hypothesis, and also to some forms of optimal feedback control (Todorov & Jordan,
2002), the brain takes advantage of the null space, either for increasing flexibility or for

2The term manifold was used instead of space, because the theory refers to the nonlinear geometry of the configuration space of
humans and animals. So, for example, the map from the arm configuration, expressed in terms of joint angles, to the position of the
index finger, expressed in Cartesian coordinates, defines regions of angular coordinates that correspond to the same position of the
finger tip. These regions are generally curved surfaces rather than flat linear spaces.
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increasing the accuracy in the task space at the expense of a larger variance in the null space.
Although several studies have shown support for this hypothesis (Yang & Scholz, 2005),
there are other studies showing results that are counter to the prediction made from the UCM
hypothesis (Domkin, Laczko, Jaric, Johansson, & Latash, 2002; Mosier, et al., 2005;
Ranganathan & Newell, 2009). One suggestion for the disparate results is that the motor
tasks used in these studies may lie on different ends of the continuum in terms of complexity
and experience, with some tasks being very complicated and novel while others are simple
and well-practiced (Latash, et al., 2007).

An inherent difficulty in testing this hypothesis is that it is difficult to design a task where
the CNS has to “start from scratch” and may actually discover the redundancy in the system.
Even in systems with a large number of degrees of freedom like the hand, the CNS is likely
to have adequate prior knowledge of the redundancy in these systems through daily
experience. Here, body-machine interfaces offer a way of addressing this problem because
one can introduce real or virtual objects that are controlled by different body signals.

For example, one can define a novel map between movements of the finger joints and a
cursor on the screen (Liu & Scheidt, 2008; Mosier, et al., 2005), where moving the cursor to
different targets on the screen requires the participant to adopt different hand postures.
Presumably, learning to control the cursor in this task would have to proceed by first
identifying which degrees of freedom in the fingers contribute (or do not contribute) to
cursor movement, making this analogous to what an infant would have to do when learning
to control her arm during development.

The relative distribution of variance between task space and null space appears to be
different during learning of body-machine interfaces. Observations of movements while
subjects learn to operate a body-machine interface (Casadio, et al., 2010; Danziger,
Fishbach, & Mussa-Ivaldi, 2009; Mosier, et al., 2005) show that the variance associated with
the null space variables decreases with training (Figure 8), a result that appears to be
inconsistent with the predictions from the UCM hypothesis and optimal feedback control.
However, the body-machine interface results and the observations supporting the UCM
hypothesis are easily reconciled if one considers that the initial decrease of variance in the
null space is characteristic of a system that is “learning to resolve redundancy” – i.e., trying
to learn what degrees of freedom contribute (or do not contribute) to task performance. Once
the CNS “knows” this distinction between null space and task space, it may take advantage
of the null-space to optimize performance, for example by minimizing control effort
(Soechting, Buneo, Herrmann, & Flanders, 1995). This hypothesis also leads to the
prediction that there might be an increase in null-space variance with extensive practice.
Therefore, body-machine interfaces offer an exciting way to test new hypotheses in motor
learning that might otherwise be difficult with standard motor tasks such as reaching or
grasping.

Relevance to Neurorehabilitation
As mentioned earlier, one of the important advancements in body-machine interfaces is
based on the system being adaptive, as the system must learn its user. In this sense, many
rehabilitation robotics devices may be considered as adaptive body-machine interfaces.
Commercial devices for robot assisted therapy, such as the MIT manus (Interactive Motion
Technologies, Inc., Cambridge, MA, USA), the Hapticmaster (FCS Control Systems,
Fokkerweg, The Netherlands) and others, measure signals from the body (such as hand
movements and forces) to produce assistive forces based on these signals. Moreover, in the
last decade, the controllers of these robots acquired an adaptive approach based on subjects’
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error (Patton, Stoykov, Kovic, & Mussa-Ivaldi, 2006), performance (Vergaro, et al., 2010)
or models of the user behavior (Emken, Benitez, & Reinkensmeyer, 2007).

On the other hand, the approach described in our example for the body-wheelchair interface
could be seen in a rehabilitation perspective. This will allow combining the assistive and
rehabilitative potentials of the new body-machine interfaces and will open a new frontier
beneficial for a large population of impaired individual, such as SCI and stroke survivors.
After an injury, subjects face several related complications, some being immediate
neurological consequences of the injury, others being side-effects of immobility or reduced
mobility. The limited possibility for functional use of the upper body contributes to
weakness, poor posture and, with time, causes pain, bone loss, and attenuates voluntary
control of residual movements (Ballinger, Rintala, & Hart, 2000; Salisbury, Choy, & Nitz,
2003). By controlling the interface with their residual body motions, the paralyzed subjects
will not only operate wheelchairs and computers; they will also engage in a sustained
physical exercise while performing functional and entertaining activities. In preliminary
observations (Casadio, et al., 2011), we noticed that these activities appear to have relevant
collateral benefits in terms of motor control, strength, engagement and mood. By mapping
all the residual movement capacity into specific operational functions, we expect that
paralyzed users of assistive devices will find a natural balance between ease of device
control and exercise of under-utilized muscles. Moreover, the proposed body-machine
interface is suited to exercise all of the available degrees of freedom in their upper body
through targeted practice of control actions in VR environments. It is also possible to create
a transformation from body motions to a “command” space emphasizing degrees of freedom
that are more difficult to control, as determined, in our example, by principal component
analysis of recorded movements.

We would like to conclude with an observation on a contrast between the brain-machine and
the body-machine interface. The brain-machine interface has excited the fancy of the media,
which are often impressed with the idea of “controlling machines by thought”, and this is
indeed an intriguing concept. But we normally do not operate by mere thought. Think of the
simple act of opening a door. We may carry out this action in an automatic way. But we may
also choose to pay attention to each motion of the fingers as our hand grasps the handle. We
have a body and we often like to act and feel through it, rather than operating in a
subconscious way. In this sense, interfacing with machines, be it a car or a wheelchair, may
be seen not only as a way to reach some practical goal, but also as a means to extend and
enhance the skills of our bodies rather than to replace and bypass them.
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Figure. 1.
Schematic of a typical body-machine interface.
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Figure 2.
Operant conditioning of a motor cortical neuron. Left: Schematic diagram of the monkey,
showing the location of arm muscles (B: biceps, T: Triceps, F: Flexor Carpi Radialis, E:
Extensor Carpi Radialis) and the recorded motor cortical cell (U). Center: before the operant
conditioning, the neural activity in U precedes the activation of the muscles during an active
flexion of the elbow. Right: after training the monkey learns to activate the cortical cell
without any muscle activation. (From Fetz and Finocchio, 1971)
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Figure 3.
Driving a wheelchair with sniffs. A) The nasal cannula used to carry nasal pressure to the
sensor. (B) The sniff controller. (C)A healthy participant driving the sniff-controlled
wheelchair. The user interface. (D) The threshold settings for sniff-in and sniff-out
activation levels. (E) The current direction. (Plotkin, et al., 2010)
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Figure 4.
A schematic of these steps involved in building a body-machine interface
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Figure. 5.
Interface concept. The subject’s movements are detected by sensors placed on the upper
body. As the subject engages in spontaneous movements, the sensor signals define a point
moving in a high dimensional space (here represented as 3D). The calibration procedure
establishes a correspondence between the plane that captures the highest amount of signal
variance with the plane of the display, where the sensor signals are represented as a moving
cursor (see (Casadio, et al., 2011))
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Figure 6.
Reconstructing 2D hand motion using a Kalman filter. (a) Training: neural spiking activity
is recorded while the monkey moves a jointed manipulandum on a 2D plane to control a
cursor so that it hits randomly placed targets. (b) Decoding: true target trajectory (dashed
(red):dark to light) and reconstruction using the Kalman filter (solid (blue): dark to light).
( From Wu et al. 2003)
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Figure 7.
Left panel: Schematic of a tactile-vision sensory substitution (TVSS) system. Electro-tactile
stimuli are delivered to the dorsum of the tongue via flexible electrode arrays placed in the
mouth, with connection to the tongue display unit (TDU) via a ribbon cable passing out of
the mouth. An image is captured by a head-mounted CCD camera. The video data are
transmitted to the TDU via a video cable. The TDU converts the video into a pattern of 144
low-voltage pulse trains each corresponding to a pixel. The pulse trains are carried to the
electrode array via the ribbon cable, and the electrodes stimulate touch sensors on the
dorsum of the tongue. The subject experiences the resulting stream of sensation as an
image(from (Bach-y-Rita & Kercel, 2003)). Right panel. Experimental TMR-controlled
prosthesis consisting of a motorized elbow, wrist, and hand, with passive shoulder
components. B. Map of areas that the subject perceived as distinctly different fingers in
response to touch (from (Kuiken, et al., 2007))
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Figure 8.
Body motions of a subject performing the reaching task, during the initial (left) and final
(right) target set. The motions are represented in the space of the top three principal
components. The horizontal plane corresponds to the plane of the computer monitor. With
practice, the motions become oriented along the image of the monitor space. (From
(Casadio, et al., 2010))
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Table 1

Classification of Maps used in Body-machine interfaces based on different characteristics.

Type of Map Properties

Fixed The map parameters do not change during operation

Time-varying The map parameters change with time, either in a
pre-determined way or based on the user’s
performance

Static The instantaneous position of the control point is set
based on the instantaneous value of the body-derived
signals. This map is set by an algebraic equation.

Dynamic The state of the control point (position, velocity and
higher order derivatives, or a time history of position
values) is a function of the state or time-history of
body signals. This map is set by a differential
equation.

Linear The control point is derived by multiplication of the
body signals with a matrix of coefficients.
Superposition of inputs gives superposition of
outputs.

Non-Linear The control point is obtained by passing the body
signals through a non-linear function. Superposition
does not apply.
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